湖南省株洲市南方中学2014-2015学年高一下学期期末考试数学试题Word版无答案

合集下载

湖南省株洲市第二中学2014-2015学年高二下学期第一次月考数学(理)试题 Word版缺答案

湖南省株洲市第二中学2014-2015学年高二下学期第一次月考数学(理)试题 Word版缺答案

湖南省株洲市第二中学2014-2015学年高二下学期第一次月考数学(理)试题 Word版缺答案————————————————————————————————作者:————————————————————————————————日期:株洲市二中2015年上学期高二第一次月考理科数学试题命题:金 晶 审题:张耀华 时量:120分钟 分值:150分 一、选择题(本大题共12小题,每小题5分,共60分)1.若z 是复数,且()13=+i z (i 为虚数单位),则z 的值为( )A .i +-3B .i --3C .i +3D .i -3 2.已知命题:p R x ∀∈,1sin 2x ≤,则( ) A .:p ⌝R x ∃∈,1sin 2x ≤ B .:p ⌝R x ∃∈,1sin 2x >C .:p ⌝R x ∀∈,1sin 2x >D .:p ⌝R x ∀∈,1sin 2x ≥ 3.设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为( )A .2B .3C .4D .54.函数1()ln(1)2f x x x=++-的定义域为( ) A .(2,)+∞ B .(1,2)(2,)-+∞U C .(1,2)- D .(]1,2- 5.在一个几何体的三视图中,正视图与俯视图如右下图所示,则相应的侧视图可为( )A .B .C .D .6.522)11)(2(-+xx 的展开式的常数项是( ) A .2 B .3 C .-2 D . -3 7.奇函数()f x 在(0,)+∞上的表达式为()f x x x =+,则在(,0)-∞的表达式为()=x f ( )A .x x +-B .x x --C .x x -+-D .x x ---主视图俯视图8.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .119.在ABC ∆中,1201A AB AC ∠=⋅=-ou u u r u u u r ,,则BC u u u r 的最小值是( )A .2B .2C .6D .610.设集合I ={1,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种 11.有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A .21 B .87 C .1211 D .4847 12.设离心率为e 的双曲线C :)0,0(12222>>=-b a by a x 的右焦点为F ,直线l 过点F 且斜率为k ,则直线l 与双曲线C 的左、右两支相交的充要条件是( )A .122>-e kB .122<-e kC .122>-k eD .122<-k e二、 填空题(本大题共4小题,每小题5分,共20分)13.已知向量1e u r ,2e u u r 是两个不共线的向量,若122a e e =-u r u u r r与12b e e λ=+u r u u r r 共线,则λ= .14.集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B A ,则实数m 的值是 . 15.若函数ln 26y x x =+-的零点为0x ,则满足0k x ≤的最大整数k = . 16.设定义域为R 的函数121(1)()(1)x x f x ax --⎧+≠⎪=⎨⎪=⎩,若关于x的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是 .F G EBCD AB 1C 1D 1A 1FEDCB A 三、必考解答题(本大题共5小题共60分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在ABC △中,,,a b c 分别为角,,A B C 所对的边长,已知ABC △的周长为31+,sin sin 3sin A B C +=,且ABC △的面积为3sin 8C . (1)求边AB 的长; (2)求tan()A B +的值.18.(本题满分12分)如图, ABCD 是正方形, DE ⊥平面ABCD ,DE AF //,3DE DA AF ==.(Ⅰ) 求证:AC ⊥BE ;(Ⅱ) 求面FBE 和面DBE 所形成的锐二面角的余弦值.19.(本题满分12分) 某地区举行环保知识大赛,比赛分初赛和决赛两部分,初赛采用选用选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题直接进入决赛,答错3次者则被淘汰,已知选手甲连续两次答错的概率为19(已知甲回答每个问题的正确率相同,且相互之间没有影响) (I )求甲选手回答一个问题的正确率; (II )求选手甲进入决赛的概率;(III )设选手甲在初赛中的答题的个数为,ξξ试求的分布列,并求出ξ的数学期望。

湖南省株洲市南方中学2014-2015学年高一下学期期末考试物理试题Word版含答案

湖南省株洲市南方中学2014-2015学年高一下学期期末考试物理试题Word版含答案

株洲市南方中学2015年春期末考试试卷 高一物理命题人:徐虎龙 审题人:乔加新 时量: 90 分钟基础题(100分)一、单项选择题(每题4分共56分,每小题只有一个正确答案,多选及错选不得分) 1.物体做曲线运动的条件为 A .物体运动的初速度为零 B .物体所受的合外力为零C .物体所受的合外力的方向与速度的方向在同一条直线上D .物体所受的合外力的方向与速度的方向不在同一条直线上2.如图所示,人在岸上用轻绳拉船,若人匀速行进, 则船将做A. 匀速运动B. 匀加速运动C. 变加速运动D. 匀减速运动3.关于开普勒第三定律的公式k TR 23,下列说法正确的是A .公式只适用于绕太阳做椭圆轨道运动的行星B .公式只适用于绕地球做圆周运动的卫星C .公式中k 值,对所有行星或卫星都相等D .围绕不同星球运动的行星(或卫星),其k 值不同 4.做平抛运动的物体,在水平方向通过的最大距离取决于A .物体的高度和重力B .物体的重力和初速度C .物体的高度和初速度D .物体的重力、高度和初速度 5.关于匀速圆周运动,以下说法正确的是 A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速曲线运动 C .匀速圆周运动v 、T 都是恒量D .匀速圆周运动T 是恒量,v 方向时刻改变 6.下列关于万有引力定律说法正确的是A .开普勒发现了万有引力定律B .哥白尼发现了万有引力定律C .万有引力定律是由牛顿发现的D .引力常量是胡克通过实验测定的7.河宽420 m ,船在静水中速度为5 m/s ,水流速度是3 m/s ,则船过河的最短时间 A .140 sB .105 sC .84 sD .53 s8.关于做匀速圆周运动的物体的线速度、角速度、周期与向心加速度的关系,下列说法中正确的是A .角速度大的向心加速度一定大B .线速度大的向心加速度一定大C .线速度与角速度乘积大的向心加速度一定大D .周期小的向心加速度一定大9.关于太阳与行星间的引力,下列说法中正确的是 A .太阳对行星的引力与行星对太阳的引力是一对平衡力B .太阳对行星的引力与行星对太阳的引力是一对作用力与反作用力C .太阳与行星间的引力大小与太阳的质量、行星的质量成正比,与两者距离成反比D .以上说法均不对10.如图所示,一物体在与水平方向成夹角为α的恒力F 的作用下,沿直线运动了一段距离x 。

湖南省株洲市第二中学14—15学年上学期高一期末数学试题(附答案)

湖南省株洲市第二中学14—15学年上学期高一期末数学试题(附答案)

湖南省株洲市第二中学14—15学年上学期高一期末数学试题一、选择题(40分)1.sin(690)-︒的值为( )A B .12- C .12 D .2.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U C A B ⋂等于( )A.{}23,B.{}145,,C.{}45,D.{}15,3.若函数()21,1ln ,1x x f x x x ⎧+≤=⎨>⎩, 则()()f f e =( )(其中e 为自然对数的底数)A .1B .2C .eD .54.下列四组函数,表示同一函数的是( ).A .()f x =()g x x =B .()f x x =,()2x g x x =C .()f x =()g xD .()1f x x =+, ()1,11,1x x g x x x +≥-⎧=⎨--<-⎩5.关于空间两条直线a 、b 与平面α,下列命题正确的是A .若//,a b b α⊂,则//a αB .若//,a b αα⊂,则//a bC .//,//a b αα,则//a bD .若,,a b αα⊥⊥则//a b6.在空间直角坐标系中,点(1,3,5)P -关于XOY 面对称的点的坐标是A .(1,3,5)--B .(1,3,5)-C .(1,3,5)D .(1,3,5)--7.如图,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点,则在正方体盒子中,∠ABC 等于 ( )A .45°B .60°C .90°D .120°8.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是A .344k -≤≤B .34k ≥或4k ≤-C .344k ≤≤D .344k -≤≤ 9.一个几何体的三视图如图所示,则该几何体的体积是( )A.1B.2C.31 D.34 10.圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,M 、N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值A.4 B1 C.6- D二、填空题(20分)11.已知函数()f x 是定义在R 上的奇函数,当0>x 时,()2x f x =,则(2)f -= . 12.如图,一个水平放置的平面图形的斜二测直观图是一个等腰直角三角形,它的底角为45°,两腰长均为1,则这个平面图形的面积为 .13.已知扇形的周长是8cm ,圆心角为2 rad ,则扇形的弧长为cm .14.已知无论k 取任何实数,直线0)142()32()41(=-+--+k y k x k 必经过一定点,则该定点坐标为 .15.我们称满足下面条件的函数)(x f y =为“ζ函数”:存在一条与函数)(x f y =的图象正视图 侧视图 俯视图 第9题图有两个不同交点(设为),(),,(2211y x Q y x P )的直线,)(x f y =在221x x x +=处的切线与此直线平行.下列函数: ①xy 1= ②)0(2>=x x y ③21x y -= ④x y ln =, 其中为“ζ函数”的是 (将所有你认为正确的序号填在横线上)三、解答题(共6个大题,合计40分)16.(6分)设集合{}|280A x R x =∈-=,{}22|2(1)+0B x R x m x m =∈-+= (1)若4m =,求A B ⋃;(2)若B A ⊆,求实数m 的取值范围.17.(6分)已知函数22(),1x f x x R x =∈+. (1)求1()()f x f x+的值; (2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.18(7分)如图所示的长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC19.(6分)已知ABC 的三个顶点的坐标为(1,1),(3,2),(5,4)A B C .(1)求边AB 上的高所在直线的方程;(2)若直线l 与AC 平行,且在x 轴上的截距比在y 轴上的截距大1,求直线l 与两条坐标轴围成的三角形的周长.20.(7分)已知点()1,3M ,直线:40l ax y -+=及圆0142:22=+--+y x y x C .(1)求过M 点的圆的切线方程;(2)若直线l 与圆C 相交于A ,B 两点,且弦AB 的长为32,求a 的值.21.(8分)已知函数()|2|2f x x a x x =-+,a R ∈.(1)若0a =,判断函数()y f x =的奇偶性,并加以证明;(2)若函数()f x 在R 上是增函数,求实数a 的取值范围;(3)若存在实数[]2,2,a ∈-使得关于x 的方程()(2)0f x tf a -=有三个不相等的实数根,求实数t 的取值范围.18.60°.19.(1)2140x y +-=(2)12720.(1)圆的切线方程为3=x 或0543=--y x ;(2)43-=a ; 21.(1)奇函数,(2)11a -≤≤,(3) 918t <<解析:(1)函数()y f x =为奇函数. 当0a =时,()||2f x x x x =+,x R ∈,∴()||2||2()f x x x x x x x f x -=---=--=- ∴函数()y f x =为奇函数;(2)22(22)(2)()(22)(2)x a x x a f x x a x x a ⎧+-≥=⎨-++<⎩,当2x a ≥时,()y f x =的对称轴为:1x a =-; 当2x a <时,()y f x =的对称轴为:1x a =+;∴当121a a a -≤≤+时,()y f x =在R 上是增函数,即11a -≤≤时,函数()y f x =在R 上是增函数;(3)方程()(2)0f x tf a -=的解即为方程()(2)f x tf a =的解.①当11a -≤≤时,函数()y f x =在R 上是增函数,∴关于x 的方程()(2)f x tf a =不可能有三个不相等的实数根;②当1a >时,即211a a a >+>-,∴()y f x =在(,1)a -∞+上单调增,在(1,2)a a +上单调减,在(2,)a +∞上单调增,∴当(2)(2)(1)f a tf a f a <<+时,关于x 的方程()(2)f x tf a =有三个不相等的实数根;即244(1)a t a a <⋅<+,∵1a >∴111(2)4t a a<<++.设11()(2)4h a a a=++,∵存在[]2,2,a ∈-使得关于x 的方程()(2)f x tf a =有三个不相等的实数根, ∴max 1()t h a <<,又可证11()(2)4h a a a=++在(1,2]上单调增 ∴max 9()8h a =∴918t <<; 12分 ③当1a <-时,即211a a a <-<+,∴()y f x =在(,2)a -∞上单调增,在(2,1)a a -上单调减,在(1,)a -+∞上单调增,。

2014-2015学年湖南省益阳市南县一中高一(下)5月月考数学试卷Word版含解析

2014-2015学年湖南省益阳市南县一中高一(下)5月月考数学试卷Word版含解析

2014-2015学年湖南省益阳市南县一中高一(下)5月月考数学试卷一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上相应位置).1.sin50°sin70°﹣cos50°sin20°的值等于()A.B.C.D.2.函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,23.已知某次期中考试中,甲、乙两组学生的数学成绩如下:则下列结论正确的是()甲:881009586959184749283乙:93 898177967877858986.A.甲>乙,s甲>s乙B.\overline{x}甲>乙,s甲<s乙C.\overline{x}甲<乙,s甲>s乙D.\overline{x}甲<乙,s甲<s乙4.运行如图的程序框图,设输出数据构成的集合为A,从集合A中任取一个元素α,则函数y=xαx∈[0,+∞)是增函数的概率为()A.B.C.D.5.某初级中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…300;使用系统抽样时,将学生统一编号为1,2,…300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277;②5,9,100,107,121,180,195,221,265,299;③11,41,71,101,131,161,191,221,251,281;④31,61,91,121,151,181,211,241,271,300关于上述样本的下列结论中,正确的是( )A . ②③都不能为系统抽样B . ②④都不能为分层抽样C . ①④都可能为系统抽样D . ①③都可能为分层抽样 6.设=4,若在方向上的投影为,且在方向上的投影为3,则和的夹角等于( )A .B .C .D .或7.已知函数f (x )=sin ωx (ω>0)的部分图象如图所示,A ,B 分别是这部分图象上的最高点、最低点,O 为坐标原点,若•=0,则函数f (x+1)是( )A . 周期为4的奇函数B . 周期为4的偶函数C . 周期为2π的奇函数D . 周期为2π的偶函数8.如图所示,下列结论正确的是( )①=+;②=﹣﹣;③=﹣;④=+.A . ①②B . ③④C . ①③D . ②④9.已知A ,B 均为锐角,sinA=,sinB=,则A+B 的值为( )A .B .C .D .10.若函数f (x )=2sin ()(﹣2<x <10)的图象与x 轴交于点A ,过点A 的直线l与函数的图象交于B 、C 两点,则(+)•=( )A . ﹣32B . ﹣16C . 16D . 32二.填空题(本大题共5小题,每小题5分,共25分)11.化简=.12.已知,则的值为.13.若=3,tan(α﹣β)=2,则tan(β﹣2α)=.14.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.15.函数f(x)=3sin(2x﹣)的图象为C,如下结论中正确的是①图象C关于直线x=π对称;②图象C关于点(,0)对称;③函数即f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图角向右平移个单位长度可以得到图象C.三、解答题(本小题共70分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2015春•北京校级期中)已知cosθ=,θ∈(0,).(Ⅰ)求sinθ的值;(Ⅱ)求cos2θ的值;(Ⅲ)若sin(θ﹣φ)=,0<φ<,求cosφ的值.17.(12分)(2010•雨湖区校级三模)已知点A(1,1),B(1,﹣1),C(cosθ,sinθ)(θ∈R),O为坐标原点.(1)若||=,求sin2θ的值;(2)若实数m,n满足m+n=,求(m﹣3)2+n2的最大值.18.(12分)(2015春•南县校级月考)如图所示,□ABCD中,=,=,BM=BC,AN=AB,(1)试用向量,来表示,.(2)AM交DN于O点,求AO:OM的值.19.(12分)(2015春•南县校级月考)从高一年级中抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.利用频率分布直方图估计:(1)这50名学生的众数P与中位数M(精确到0.1);(2)若在第3、5组的学生中,用分层抽样抽取11名学生参加心理测试,请问:在第3、5组各应抽取多少名学生参加测试;(3)为了进一步获得研究资料,学校决定再从第1组和第2组的学生中,随机抽取3名学生进行心理测试,列出所有基本事件,并求㈠第1组中的甲同学和第2组中的A同学都没有被抽到的概率;㈡第1组中至多有一个同学入选的概率.21.(13分)(2015春•建瓯市校级期末)已知a≥1,函数f(x)=(sinx﹣a)(a﹣cosx)+a.(1)当a=1时,求f(x)的值域;(2)若函数f(x)在[0,π]内有且只有一个零点,求a的取值范围.22.(12分)(2015春•南阳期末)已知向量=(sin x,1),=(4cos x,2cosx),设函数f(x)=•.(1)求函数f(x)的解析式.(2)求函数f(x),x∈[﹣π,π]的单调递增区间.(3)设函数h(x)=f(x)﹣k(k∈R)在区间[﹣π,π]上的零点的个数为n,试探求n的值及对应的k的取值范围.23.已知函数f(x)=sin2x+cos2x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递减区间;(Ⅲ)若函数g(x)=f(x)﹣k在上有两个不同的零点,求实数k的取值范围.24.已知函数,且ω≠0,ω∈R.(Ⅰ)若函数f(x)的图象经过点,且0<ω<3,求ω的值;(Ⅱ)在(Ⅰ)的条件下,若函数g(x)=mf(x)+n(m>0),当时,函数g(x)的值域为[﹣2,1],求m,n的值;(Ⅲ)若函数在上是减函数,求ω的取值范围.25.(12分)(2015春•河南校级期中)已知点A(4,0)、B(0,4)、C(3cosα,3sinα).(1)若α∈(0,π),且||=||,求α的大小;(2),求.26.(13分)(2013•济南二模)设函数(其中ω>0),且函数f(x)图象的两条相邻的对称轴间的距离为.(1)求ω的值;(2)将函数y=f(x)的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间的最大值和最小值.27.(12分)(2015春•河南校级期中)函数f(x)=sin2x﹣﹣(1)若x属于[,],求f(x)的最值及对应的x值;(2)若不等式[f(x)﹣m]2<1在x上恒成立,求实数m的取值范围.28.(12分)(2015春•南县校级月考)已知向量=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设c=(0,1),若+=c,求α,β的值.29.(14分)(2015春•菏泽期中)已知函数,其最小正周期为.(1)求f(x)的表达式;(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.30.(13分)(2015春•甘肃校级期末)已知函数f(x)=sin(ωx+φ)+2sin2﹣1(ω>0,0<φ<π)为奇函数,且相邻两对称轴间的距离为.(1)当x∈(﹣,)时,求f(x)的单调递减区间;(2)将函数y=f(x)的图象沿x轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象.当x∈[﹣,]时,求函数g(x)的值域.31.(10分)(2014秋•亭湖区校级期末)设两个非零向量与不共线.(1)若+,,,求证:A,B,D三点共线;(2)试确定实数k,使k+和+k共线.2014-2015学年湖南省益阳市南县一中高一(下)5月月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上相应位置).1.sin50°sin70°﹣cos50°sin20°的值等于()A.B.C.D.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由诱导公式五可得sin70°=cos20°,进而利用两角差的正弦公式,可得答案.解答:解:sin50°sin70°﹣cos50°sin20°=sin50°cos20°﹣cos50°sin20°=sin(50°﹣20°)=sin30°=,故选:C.点评:本题考查的知识点是两角差的正弦函数公式,其中将sin70°转化为cos20°,是解答的关键.2.函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,2考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.解答:解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选A点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.3.已知某次期中考试中,甲、乙两组学生的数学成绩如下:则下列结论正确的是()甲:881009586959184749283乙:93 898177967877858986.A.甲>乙,s甲>s乙B.\overline{x}甲>乙,s甲<s乙C.\overline{x}甲<乙,s甲>s乙D.\overline{x}甲<乙,s甲<s乙考点:众数、中位数、平均数;极差、方差与标准差.专题:概率与统计.分析:根据平均数的定义分别求出甲乙的平均数,即可比较大小,再根据甲乙的极值来看出谁的波动大,谁的方差就越大.解答:解:=(88+100+95+86+95+91+84+74+82+83)=88.8,=(93+89+81+77+96+78+77+85+89+86)=85.1,∴甲>乙,∵甲的极差为100﹣74=26,乙的极差为96﹣77=19,∴甲的波动比乙大,∴s2甲>s2乙,∴s甲>s乙,故选:A.点评:本题考查了平均数和方差的问题,属于基础题.4.运行如图的程序框图,设输出数据构成的集合为A,从集合A中任取一个元素α,则函数y=xαx∈[0,+∞)是增函数的概率为()A.B.C.D.考点:循环结构.专题:图表型.分析:先根据流程图进行逐一进行运行,求出集合A,再求出基本事件的总数,然后讨论满足“函数y=xα,x∈[0,+∞)是增函数”时包含基本事件,最后根据古典概型公式求出该概率即可.解答:解:由框图可知A={3,0,﹣1,8,15},其中基本事件的总数为5,设集合中满足“函数y=xα,x∈[0,+∞)是增函数”为事件E,当函数y=xα,x∈[0,+∞)是增函数时,α>0事件E包含基本事件为3,则.故选C.点评:本题主要考查了当型循环结构,以及与集合和古典概型相结合等问题,算法与其他知识结合在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.5.某初级中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…300;使用系统抽样时,将学生统一编号为1,2,…300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277;②5,9,100,107,121,180,195,221,265,299;③11,41,71,101,131,161,191,221,251,281;④31,61,91,121,151,181,211,241,271,300关于上述样本的下列结论中,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样考点:简单随机抽样;分层抽样方法.专题:概率与统计.分析:根据分层抽样和系统抽样的定义进行判断.①中数据相差30,符合系统抽样,也可能是分层抽样.②中数据排列没有规律.③中数据相差30,符合系统抽样的定义,也可能是分层抽样.④中数据相差30,但第一个数据大于30,不可能是系统抽样.解答:解:在系统抽样中,将学生统一编号为1,2,…300,并将整个编号依次分为10段.则每一段的号码数为30.①中数据为7,37,67,97,127,157,187,217,247,277,数据相差30,所以①为系统抽样或分层抽样.②中数据5,9,100,107,121,180,195,221,265,299;数据排列没有规律,可能为分层抽样.③中数据11,41,71,101,131,161,191,221,251,281;数据相差30,所以③为系统抽样或分层抽样.④中数据31,61,91,121,151,181,211,241,271,300,数据相差30,但第一个数据大于30,所以④不可能是系统抽样.故D正确.故选D.点评:本题主要考查抽样方法的应用,要求熟练掌握分层抽样和系统抽样的定义和区别.6.设=4,若在方向上的投影为,且在方向上的投影为3,则和的夹角等于()A.B.C.D.或考点:平面向量数量积的运算.专题:平面向量及应用.分析:设和的夹角为θ,运用向量的数量积的定义和投影的概念,解方程可得cosθ=,进而得到夹角.解答:解:设和的夹角为θ,由=4,可得||•||cosθ=4,若在方向上的投影为,则||cosθ=,在方向上的投影为3,则||cosθ=3,综上可得cosθ=,由于0≤θ≤π,则θ=.故选A.点评:本题考查向量的数量积的定义和投影的概念,考查特殊角的三角函数值的求法,属于基础题.7.已知函数f(x)=sinωx(ω>0)的部分图象如图所示,A,B分别是这部分图象上的最高点、最低点,O为坐标原点,若•=0,则函数f(x+1)是()A.周期为4的奇函数B.周期为4的偶函数C.周期为2π的奇函数D.周期为2π的偶函数考点:正弦函数的图象.专题:三角函数的图像与性质.分析:根据三角函数的图象求出函数周期,表示出A,B的坐标,结合向量•=0求出ω,求出f(x+1)的表达式进行判断.解答:解:函数的周期T=,则A点的横坐标为T=×=,B点的横坐标为T=×=,即A(,),B(,),∵•=0,∴(,)•(,)=0,即﹣3=0,解得ω=,即f(x)=sin x,则f(x+1)=sin(x+1)=sin(x+)=cos x,为偶函数,周期T==4,故选:B.点评:本题主要考查三角函数解析式的求解,利用向量数量积的关系求出ω是解决本题的关键.8.如图所示,下列结论正确的是()①=+;②=﹣﹣;③=﹣;④=+.A.①② B.③④ C.①③ D.②④考点:向量的加法及其几何意义.专题:计算题;平面向量及应用.分析:根据向量的加法、减法法则,分别判断,即可得出结论.解答:解:①根据向量的加法法则,可得=+,故正确;②根据向量的减法法则,可得=﹣,故不正确;③=+=+﹣2=﹣,故正确;④=+=+﹣=+,故不正确.故选:C.点评:本题考查向量的加法、减法法则,考查学生的计算能力,比较基础.9.已知A,B均为锐角,sinA=,sinB=,则A+B的值为()A.B.C.D.考点:两角和与差的正切函数.专题:三角函数的求值.分析:由条件利用同角三角函数的基本关系,求得cosA 和cosB的值,可得cos(A+B)=cosAcosB﹣sinAsinB 的值,再根据A+B的范围,求得A+B的值.解答:解:∵A,B均为锐角,sinA=,sinB=,∴cosA==,cosB==,A+B∈(0,π).再根据cos(A+B)=cosAcosB﹣sinAsinB=﹣=,∴A+B=,故选:D.点评:本题主要考查同角三角函数的基本关系,两角和的余弦公式,属于基础题.10.若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l 与函数的图象交于B、C两点,则(+)•=()A.﹣32 B.﹣16 C.16 D.32考点:平面向量数量积的运算;正弦函数的图象.专题:计算题;三角函数的图像与性质;平面向量及应用.分析:由f(x)=2sin()=0,结合已知x的范围可求A,设B(x1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解解答:解:由f(x)=2sin()=0可得∴x=6k﹣2,k∈Z∵﹣2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D点评:本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.二.填空题(本大题共5小题,每小题5分,共25分)11.化简=﹣1.考点:运用诱导公式化简求值;同角三角函数基本关系的运用.专题:计算题;三角函数的求值.分析:分类讨论,利用诱导公式,即可得出结论.解答:解:k是偶数时,==﹣1;k是奇数时,==﹣1.故答案为:﹣1.点评:本题考查诱导公式的运用,考查分类讨论的数学思想,考查学生的计算能力,比较基础.12.已知,则的值为.考点:三角函数的恒等变换及化简求值.专题:计算题.分析:利用同角三角函数的基本关系求得cos(﹣x)的值,利用诱导公式可得==,从而求得所求式子的值.解答:解:∵,∴cos(﹣x)=,∴===2cos(﹣x)=,故答案为.点评:本题考查同角三角函数的基本关系,诱导公式、二倍角公式的应用的应用,求出cos (﹣x)的值,是解题的关键.13.若=3,tan(α﹣β)=2,则tan(β﹣2α)=.考点:两角和与差的正切函数.专题:计算题.分析:把已知的第1个等式左边的分子分母都除以cosα,利用同角三角函数间的基本关系化简,得到tanα的方程,即可求出tanα的值,然后把所求的式子中的角β﹣2α变换为(β﹣α)﹣α后,利用两角差的正切函数公式化简,将求出的tanα的值和已知的tan(α﹣β)=2代入即可求出值.解答:解:∵==3,∴tanα=2.又tan(α﹣β)=2,∴tan(β﹣2α)=tan[(β﹣α)﹣α]=﹣tan[(α﹣β)+α]=﹣=.故答案为:点评:此题考查学生灵活运用同角三角函数间的基本关系及两角和与差的正切函数公式化简求值,是一道综合题.本题的突破点是将所求式子的角β﹣2α变换为(β﹣α)﹣α的形式.14.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.15.函数f(x)=3sin(2x﹣)的图象为C,如下结论中正确的是①②③①图象C关于直线x=π对称;②图象C关于点(,0)对称;③函数即f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图角向右平移个单位长度可以得到图象C.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的单调性;正弦函数的对称性.专题:综合题;压轴题;整体思想.分析:把代入求值,只要是的奇数倍,则①正确,把横坐标代入求值,只要是π的倍数,则②对;同理由x的范围求出的范围,根据正弦函数的单调区间判断③是否对,因为向右平移故把x=x﹣代入进行化简,再比较判断④是否正确.解答:解:①、把代入得,,故①正确;②、把x=代入得,,故②正确;③、当时,求得,故③正确;④、有条件得,,故④不正确.故答案为:①②③.点评:本题考查了复合三角函数图象的性质和图象的变换,把作为一个整体,根据条件和正弦函数的性质进行求解以及判断,考查了整体思想.三、解答题(本小题共70分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2015春•北京校级期中)已知cosθ=,θ∈(0,).(Ⅰ)求sinθ的值;(Ⅱ)求cos2θ的值;(Ⅲ)若sin(θ﹣φ)=,0<φ<,求cosφ的值.考点:同角三角函数基本关系的运用;两角和与差的余弦函数;二倍角的余弦.专题:三角函数的求值.分析:(Ⅰ)由条件利用同角三角函数的基本关系,求得sinθ的值.(Ⅱ)由条件利用二倍角的余弦公式,求得cos2θ的值.(Ⅲ)由条件求得cos(θ﹣φ)的值,再根据cosϕ=cos[θ﹣(θ﹣ϕ)]=cosθcos(θ﹣ϕ)+sinθsin (θ﹣ϕ),计算求的结果.解答:解:(Ⅰ)由cosθ=,θ∈(0,),可得.(Ⅱ).(Ⅲ)∵,,∴,结合,∴,∴cosϕ=cos[θ﹣(θ﹣ϕ)]=cosθcos(θ﹣ϕ)+sinθsin(θ﹣ϕ)==.点评:本题主要考查同角三角函数的基本关系,二倍角公式的应用,两角和差的余弦公式,属于基础题.17.(12分)(2010•雨湖区校级三模)已知点A(1,1),B(1,﹣1),C(cosθ,sinθ)(θ∈R),O为坐标原点.(1)若||=,求sin2θ的值;(2)若实数m,n满足m+n=,求(m﹣3)2+n2的最大值.考点:正弦函数的定义域和值域;向量的模;同角三角函数间的基本关系.分析:(1)根据向量的坐标计算(终点坐标减始点坐标)求出,然后再根据向量减法和模的坐标计算结合条件||=得出sinθ+cosθ=再两边平方即可得解.(2)根据向量相等和条件m+n=求出然后再代入(m﹣3)2+n2中可得(m﹣3)2+n2=﹣3(sinθ+cosθ)+10再结合辅助角公式可得(m﹣3)2+n2=﹣6sin(θ+)+10从而可得出当sin(θ+)=﹣1时,(m﹣3)2+n2取得最大值16.解答:解:(1)∵|﹣|=||,A(1,1),B(1,﹣1),C(cosθ,sinθ)∴=(cosθ﹣1,sinθ﹣1)∴||2=(cosθ﹣1)2+(sinθ﹣1)2=﹣2(sinθ+cosθ)+4.∴﹣2(sinθ+cosθ)+4=2,即sinθ+cosθ=,两边平方得1+sin2θ=,∴sin2θ=﹣.(2)由已知得:(m,m)+(n,﹣n)=(cosθ,sinθ),∴解得∴(m﹣3)2+n2=m2+n2﹣6m+9,=﹣3(sinθ+cosθ)+10=﹣6sin(θ+)+10,∴当sin(θ+)=﹣1时,(m﹣3)2+n2取得最大值16.点评:本题主要考察了向量的坐标计算、减法、模的坐标计算以及三角函数的化简求值,属常考题型,较难.解题的关键是掌握常用的变形技巧:通过sinθcosθ两边平方求出sin2θ:通过辅助角公式可将﹣3(sinθ+cosθ)+10化为﹣6sin(θ+)+10!18.(12分)(2015春•南县校级月考)如图所示,□ABCD中,=,=,BM=BC,AN=AB,(1)试用向量,来表示,.(2)AM交DN于O点,求AO:OM的值.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:(1)根据条件便可得到,由向量加法、减法的几何意义即可得到,;(2)由D,O,N三点共线,便有=,从而有,同理可得,这便可得到,可解出,这样便能得出AO:OM=3:11.解答:解:(1);∴;∴=;;∴;∴=;(2)D,O,N三点共线,则共线,存在实数λ,使;∴=;同理,A,O,M三点共线,存在μ,=;∴;解得,;∴;∴AO:OM=3:11.点评:考查共线向量基本定理,向量加法、减法的几何意义,以及平面向量基本定理,数乘的几何意义.19.(12分)(2015春•南县校级月考)从高一年级中抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.利用频率分布直方图估计:(1)这50名学生的众数P与中位数M(精确到0.1);(2)若在第3、5组的学生中,用分层抽样抽取11名学生参加心理测试,请问:在第3、5组各应抽取多少名学生参加测试;(3)为了进一步获得研究资料,学校决定再从第1组和第2组的学生中,随机抽取3名学生进行心理测试,列出所有基本事件,并求㈠第1组中的甲同学和第2组中的A同学都没有被抽到的概率;㈡第1组中至多有一个同学入选的概率.考点:古典概型及其概率计算公式;频率分布直方图;众数、中位数、平均数.专题:概率与统计.分析:(1)由频率分布直方图与众数、中位数的定义求出P=75,M=70;(2)根据第三与第五组的频率,求出第三与第五组的人数,按比例计算可得;(3)先求出第一、第二组的人数,再写出从中抽取3人的所有基本事件,分别找出符合(一),(二)的基本事件,利用古典概型求概率.解答:解:(1)由频率分布直方图知:众数P=75;中位数M=70,(2)第3组共有学生50×0.02×10=10(人);第5组共有学生50×0.024×10=12(人)抽取比例为=,∴第3组抽5人;第5组抽6人.(3)第1组共50×0.004×10=2人,用甲、乙表示;第2组共50×0.006×10=3人用A、B、C表示,则从这5名学生中随机抽取3名的所有可能为:(甲,乙,A)(甲,乙,B)(甲,乙,C)(甲,A,B)(甲,A,C)(甲,B,C)(乙,A,B)(乙,A,C)(乙,B,C)(A、B、C)共10个.(一)事件S={第1组中的甲同学和第2组中的A同学都没有被抽到}其有(乙,B,C)共1个,所以.(二)事件T={第1组中至多有一个同学入选}其有(甲,A,B)(甲,A,C)(甲,B,C)(乙,A,B)(乙,A,C)(乙,B,C)(A、B、C)共有7个,所以.点评:本题考查了利用频率分布直方图求众数、中位数;考查了分层抽样方法;考查了古典概型的概率计算,综合性较强.21.(13分)(2015春•建瓯市校级期末)已知a≥1,函数f(x)=(sinx﹣a)(a﹣cosx)+a.(1)当a=1时,求f(x)的值域;(2)若函数f(x)在[0,π]内有且只有一个零点,求a的取值范围.考点:函数零点的判定定理;三角函数中的恒等变换应用;三角函数的最值.专题:函数的性质及应用.分析:(1)当a=1时,化简函数f(x)的解析式为f(x)=,t∈[﹣,],再利用二次函数的性质求得它的值域.(2)化简函数的解析式f(x)=,在内有且只有一个零点,在上无零点,利用二次函数的性质求得a的取值范围.解答:解:(1)当a=1时,=,令t=sinx+cosx,则,f(x)=.当t=1时,,当时,.所以,f(x)的值域为.(2)=,令u=sinx+cosx,则当x∈[0,π]时,,f(x)=,f(x)在[0,π]内有且只有一个零点等价于h(u)在内有且只有一个零点,在上无零点.因为a≥1,所以h(u)在[﹣1,1)内为增函数.①若h(u)在[﹣1,1)内有且只有一个零点,内无零点.故只需,即,求得.②若为h(u)的零点,内无零点,则,得.经检验,符合题意.综上:或.点评:本题主要考查三角恒等变换,函数零点的判断,二次函数的性质应用,体现了转化、分类讨论的数学思想,属于中档题.22.(12分)(2015春•南阳期末)已知向量=(sin x,1),=(4cos x,2cosx),设函数f(x)=•.(1)求函数f(x)的解析式.(2)求函数f(x),x∈[﹣π,π]的单调递增区间.(3)设函数h(x)=f(x)﹣k(k∈R)在区间[﹣π,π]上的零点的个数为n,试探求n的值及对应的k的取值范围.考点:两角和与差的正弦函数;根的存在性及根的个数判断;平面向量数量积的运算.专题:三角函数的求值.分析:(1)由条件利用两个向量的数量积公式、三角恒等变换求得函数f(x)的解析式.(2)令2kπ﹣≤x+≤2kπ+,k∈z,求得x的范围,再结合x∈[﹣π,π]可得函数的增区间(3)由题意可得函数y=f(x)的图象和直线y=k在区间[﹣π,π]上的零点的个数为n,结合函数f(x)的图象可得结论.解答:解:(1)函数f(x)=•=4sin cos+2cosx=2sinx+2cosx=4sin(x+).(2)令2kπ﹣≤x+≤2kπ+,k∈z,求得2kπ﹣≤x≤2kπ+,k∈z.再结合x∈[﹣π,π]可得函数的增区间为[﹣,].(3)∵函数h(x)=f(x)﹣k(k∈R)在区间[﹣π,π]上的零点的个数为n,即函数y=f(x)的图象和直线y=k在区间[﹣π,π]上的零点的个数为n,结合函数f(x)的图象可得:当k>4,或k<﹣4时,n=0;当k=4,或k=﹣4时,n=1;当﹣4<k<﹣2,或﹣2<k<4时,n=2;当k=﹣2时,n=3.点评:本题主要考查两个向量的数量积公式,三角函数的恒等变换,正弦函数的单调性,方程根的存在性及个数判断,体现了转化、分类讨论的数学思想,属于中档题.23.已知函数f(x)=sin2x+cos2x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递减区间;(Ⅲ)若函数g(x)=f(x)﹣k在上有两个不同的零点,求实数k的取值范围.考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(Ⅰ)由条件利用两角和的正弦公式化简函数的解析式,再根据正弦函数的周期性求得它的最小正周期.(Ⅱ)利用正弦函数的减区间求得函数f(x)的递减区间.(Ⅲ)由条件利用f(x)的单调性求得函数g(x)=f(x)﹣k在上有两个不同的零点时k的范围.解答:解:(Ⅰ)由,可得f(x)的最小正周期为=π.(Ⅱ)由,求得,所以函数f(x)的递减区间为.(Ⅲ)由,得,而函数f(x)在上单调递增,;在上单调递减,,所以若函数g(x)=f(x)﹣k在上有两个不同的零点,则.点评:本题主要考查两角和的正弦公式,正弦函数的定义域和值域,单调性,周期性,属于基础题.24.已知函数,且ω≠0,ω∈R.(Ⅰ)若函数f(x)的图象经过点,且0<ω<3,求ω的值;(Ⅱ)在(Ⅰ)的条件下,若函数g(x)=mf(x)+n(m>0),当时,函数g(x)的值域为[﹣2,1],求m,n的值;(Ⅲ)若函数在上是减函数,求ω的取值范围.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)把点的坐标代入f(x)的解析式,结合ω的取值范围,求出ω的值;(Ⅱ)根据g(x)的解析式以及g(x)在[﹣2π,﹣]上的值域,列出方程组,求出m、n 的值;(Ⅲ)求出h(x)的解析式,根据h(x)在上的单调性,列出不等式组,求出ω的取值范围.解答:解:(Ⅰ)因为函数的图象经过点,所以,…(1分)所以,…(2分)所以;因为0<ω<3,所以,所以k=0,;…(3分)(Ⅱ)因为,所以;因为,所以;所以,…(4分)所以﹣2m+n≤g(x)≤m+n;因为函数g(x)的值域为[﹣2,1],所以;…(5分)解得m=1,n=0;…(6分)(Ⅲ)因为,所以;…(7分)因为函数h(x)在上是减函数,所以函数h(x)=2sinωx的图象过原点,且减区间是;所以;…(8分)解得,所以ω的取值范围是.…(9分)点评:本题考查了函数y=Asin(ωx+φ)的图象与性质的应用问题,也考查了方程与不等式的解法与应用问题,是综合性题目.25.(12分)(2015春•河南校级期中)已知点A(4,0)、B(0,4)、C(3cosα,3sinα).(1)若α∈(0,π),且||=||,求α的大小;(2),求.考点:三角函数的化简求值;向量的模.专题:三角函数的求值.分析:(1)直接利用||=||,列出方程求出α的正切函数值,然后求解α的大小;(2)通过,得到α的三角函数值,化简求解即可.解答:解:(1)点A(4,0)、B(0,4)、C(3cosα,3sinα).α∈(0,π),且||=||,可得:(3cosα﹣4)2+(3sinα﹣0)2=(3cosα)2+(3sinα﹣4)2,可得:﹣24cosα=﹣24sinα,即tanα=1,∴α=(2)=(3cosα﹣4,3sinα),=(3cosα,3sinα﹣4),,可得:9cos2α﹣12cosα+9sin2α﹣12sinα=0,sinα+cosα=.∴1+2sinαcosα=,∴2sinαcosα===2sinαcosα=点评:本题考查两角和与差的三角函数,弦切互化,三角函数的化简求值,考查计算能力.26.(13分)(2013•济南二模)设函数(其中ω>0),且函数f(x)图象的两条相邻的对称轴间的距离为.(1)求ω的值;(2)将函数y=f(x)的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间的最大值和最小值.考点:复合三角函数的单调性;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:(1)利用两角和的正弦公式化简函数f(x)的解析式为,再根据周期求得ω的值.(2)由(1)得f(x)=,再根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)=,由x∈,根据正弦函数的定义域和值域求得函数g(x)在区间的最大值和最小值.解答:解:(1)由于=.…(3分)∵函数f(x)图象的两条相邻的对称轴间的距离为,∴.…(5分)∴ω=2.…(6分)(2)由(1)得f(x)=,∴g(x)=.…(8分)由x∈可得,…(10分)。

中学2014-2015学年高一上学期期末考试数学试卷word版含答案

中学2014-2015学年高一上学期期末考试数学试卷word版含答案
C.无论 为何值,均有2个零点
D.无论 为何值,均有4个零点
9.已知直角梯形ABCD中,AD∥BC, ∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,
则 的最小值为 ()
A.4B.5C. D.2
10.
A. B. C. D.
二、填空题: 本大题共5小题, 每小题5分, 共25分. 请将答案填在答题卡对应题号的位置上. 答错位置, 书写不清, 模棱两可均不得分
(1)当9天购买一次配料时, 求该食堂用于配料的保管费用 是多少元?
(2)设该食堂 天购买一次配料, 求该食堂在这 天中用于配料的总费用 (元)关于 的函数关系式, 并求该食堂多少天购买一次配料才能使平均每天支付的费用最少?
20.对于函数 , 如果存在实数 使得 , 那么称 为 的线性函数.
(1)下面给出两组函数, 是否分别为 的线性函数?并说明理由;
19.
已知武汉二中食堂需要定期购买食品配料, 该食堂每天需要食品配料200千克, 配料的价格为 元/千克, 每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若 天购买一次, 需要支付 天的保管费). 其标准如下: 7天以内(含7天), 无论重量多少, 均按10元/天支付; 超出7天以外的天数, 根据实际剩余配料的重量, 以每天0.03元/千克支付.
第一组: ;
第二组: ;
(2)设 , 线性函数 .若不等式
在 上有解, 求实数 的取值范围;
21.(1)有时一个式子可以分拆成两个式子, 求和时可以达到相消化简的目的, 如我们初中曾学
过: = =
请用上面的数学思维来证明如下:
11.已知弧度数为2的圆心角所对的弦长为2, 则这个圆心角所对的弧长是.
12.已知 ,则 =. (用t表示)

XXX2014-2015学年下学期高一年级期中考试数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中考试数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中考试数学试卷。

后有答案XXX2014-2015学年下学期高一年级期中考试数学试卷本试卷分第Ⅰ卷(模块卷,100分)和第Ⅱ卷(综合卷,50分)两部分,共150分,考试时间120分钟。

第Ⅰ卷(模块卷)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列 $\{a_n\}$ 中,$a_1=-1$,$a_2=2$,则$a_4+a_5=$A。

3 B。

8 C。

14 D。

192.以下命题正确的是A。

$a>b>c>d \Rightarrow ac>bd$B。

$a>b \Rightarrow \frac{1}{1+a} < \frac{1}{1+b}$ C。

$a>b,cb-d$D。

$a>XXX>bc$3.下列函数中,最小值为2的是A。

$y=x+2$B。

$y=\frac{x^2+1}{2x+2}$C。

$y=x(2-x)(0<x<2)$D。

$y=\frac{x^2+2}{x+1}$4.设数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若$\{a_n\}$ 的通项公式为 $a_n=11-2n$,则当 $S_n$ 取最大值时$n$ 等于A。

4 B。

5 C。

6 D。

75.点 $P(x,y)$ 在不等式组 $\begin{cases} y \ge -x \\ x \le 2 \end{cases}$ 表示的平面区域内,则 $z=x+y$ 的最大值为A。

0 B。

1 C。

5 D。

66.$\triangle ABC$ 的内角 $A,B,C$ 的对边分别为 $a,b,c$,若 $a,b,c$ 成等比数列,且 $c=2a$,则 $\cos B=$A。

$\frac{13}{22}$ B。

$\frac{4}{4+\sqrt{3}}$ C。

$\frac{1}{2}$ D。

湖南省衡阳八中2014-2015学年高一(下)期末数学试卷(Word版含解析)

湖南省衡阳八中2014-2015学年高一(下)期末数学试卷一、选择题(每小题3分,共10小题,满分30分)1.cos45°cos15°﹣sin45°sin15°=()A.B.C.D.2.若a、b、c∈R,a>b,则下列不等式一定成立的是()A.<B.a2>b2C.>1 D.a(c2+1)>b(c2+1)3.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.﹣4 B.﹣6 C.﹣8 D.﹣104.若△ABC的三内角A、B、C对应的边分别是a、b、c,若a2+c2﹣b2=ac,则B=()A.30°B.60°C.120°D.150°5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n﹣1B.()n﹣1C.()n﹣1D.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC 的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定7.如图所示,D是△ABC的边AB上的中点,记,,则向量=()A.B.C.D.8.设x∈R,记不超过x的最大整数为[x],如[2.5]=2,[﹣2.5]=﹣3,令{x}=x﹣[x],则{},[],,三个数构成的数列()A.是等比数列但不是等差数列B.是等差数列但不是等比数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列9.灯塔A和灯塔B与海洋观察站C的距离都是10海里,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东20°,则灯塔A和灯塔B的距离为()A.10海里B.20海里C.10海里D.10海里10.已知S n是等差数列{a n}n∈N*的前n项和,且S6>S7>S5,给出下列五个命题:①d<0;②S11>0;③S12<0;④数列{S n}中最大项为S11;⑤|a6|>|a7|,其中正确命题的个数()A.5 B.4 C.3 D.1二、填空题(每小题3分,共5小题,满分15分)11.已知=(2,λ),=(3,4),若⊥,则λ=.12.已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为.13.已知,则=.14.已知等差数列{a n}中,a32+a82+2a3a8=9,且a n<0,则S10为.15.已知平面内n(n∈N+)条直线,任意两条都相交,任意三条不共点,这n条直线将平面分割成a n个区域,则a n=.三、解答题(共6小题,满分55分)16.在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=﹣.(Ⅰ)求cosC的值;(Ⅱ)若a=5,求△ABC的面积.17.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).(1)求f(x)的解析式;(2)对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的范围.18.若x,y满足,求:(1)z=2x+y的最小值;(2)z=x2+y2的范围.(3)z=的最大值.19.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.20.已知向量,设函数且f(x)的最小正周期为π.(1)求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移个单位,得到函数y=g(x)的图象,求函数y=g(x)在区间上上的取值范围.21.我们把一系列向量(i=1,2,3,…,n)按次序排成一列,称之为向量列,记作{},已知向量列{}满足:=(1,1),=(x n,y n)=(x n﹣1﹣y n﹣1,x n﹣1+y n﹣1)(n≥2).(1)证明:数列{||}是等比数列;(2)设θn表示向量与间的夹角,若b n=θn,对于任意正整数n,不等式++…+>a(a+2)恒成立,求实数a的范围(3)设c n=||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.湖南省衡阳八中2014-2015学年高一(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共10小题,满分30分)1.cos45°cos15°﹣sin45°sin15°=()A.B.C.D.考点:两角和与差的余弦函数.专题:计算题.分析:观察所求的式子,发现满足两角和与差的余弦函数公式,故利用此公式化简,再利用特殊角的三角函数值即可求出值.解答:解:cos45°cos15°﹣sin45°sin15°=cos(45°+15°)=cos60°=.故选A点评:此题考查了两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.2.若a、b、c∈R,a>b,则下列不等式一定成立的是()A.<B.a2>b2C.>1 D.a(c2+1)>b(c2+1)考点:不等式的基本性质.专题:不等式的解法及应用.分析:利用不等式的基本性质即可判断出正误.解答:解:A.取a=2,b=﹣1,满足a>b,但是不成立;B.取a=1,b=﹣2,满足a>b,但是a2>b2不成立;C.取a=2,b=﹣1,满足a>b,但是>1不成立;D.∵a>b,c2+1>0,∴a(c2+1)>b(c2+1),正确.故选:D.点评:本题考查了不等式的基本性质,属于基础题.3.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.﹣4 B.﹣6 C.﹣8 D.﹣10考点:等差数列;等比数列.专题:等差数列与等比数列.分析:利用已知条件列出关于a1,d的方程,求出a1,代入通项公式即可求得a2.解答:解:∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴a32=a1•a4,即(a1+4)2=a1×(a1+6),解得a1=﹣8,∴a2=a1+2=﹣6.故选B.点评:本题考查了等差数列的通项公式和等比数列的定义,比较简单.4.若△ABC的三内角A、B、C对应的边分别是a、b、c,若a2+c2﹣b2=ac,则B=()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分析:由题意和余弦定理求出cosB的值,再由内角的范围和特殊角的余弦值求出角B的值.解答:解:由题意知,a2+c2﹣b2=ac,则由余弦定理得,cosB==,又0<B<180°,则B=60°,故选:B.点评:本题考查余弦定理的应用,注意内角的范围,属于基础题.5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n﹣1B.()n﹣1C.()n﹣1D.考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由S n=2a n+1,可得S n=2(S n+1﹣S n),化为,利用等比数列的通项公式即可得出.解答:解:∵S n=2a n+1,∴S n=2(S n+1﹣S n),化为,∴数列{S n}是等比数列,首项是1∴S n=.故选:B.点评:本题考查了递推式的意义、等比数列的通项公式及其前n项和公式,属于基础题.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC 的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定考点:三角形的形状判断.专题:解三角形.分析:根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sinA的值进而求得A,判断出三角形的形状.解答:解:∵bcosC+ccosB=asinA,∴sinBcosC+sinCcosB=sin(B+C)=sinA=sin2A,∵sinA≠0,∴sinA=1,A=,故三角形为直角三角形,故选:A.点评:本题主要考查了正弦定理的应用,解题的关键时利用正弦定理把等式中的边转化为角的正弦,属于基本知识的考查.7.如图所示,D是△ABC的边AB上的中点,记,,则向量=()A.B.C.D.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:由D是△ABC的边AB上的中点,可得.在△BCD中,利用向量的三角形法则可得,代入即可.解答:解:∵D是△ABC的边AB上的中点,∴.在△BCD中,由向量的三角形法则可得=.故选B.点评:熟练掌握向量共线定理和向量的三角形法则是解题的关键.8.设x∈R,记不超过x的最大整数为[x],如[2.5]=2,[﹣2.5]=﹣3,令{x}=x﹣[x],则{},[],,三个数构成的数列()A.是等比数列但不是等差数列B.是等差数列但不是等比数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列考点:等比关系的确定;等差关系的确定.专题:等差数列与等比数列.分析:根据定义分别求出[]=1,{}=,然后结合等比数列的定义进行判断即可得到结论.解答:解:由题意得[]=1,{}=﹣[]=﹣1=,∵×==12,∴,1,成等比数列,不成等差数列,故选:A点评:本题主要考查等比数列的判断,根据定义将条件进行化简是解决本题的关键.9.灯塔A和灯塔B与海洋观察站C的距离都是10海里,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东20°,则灯塔A和灯塔B的距离为()A.10海里B.20海里C.10海里D.10海里考点:解三角形的实际应用.专题:解三角形.分析:根据题意确定AC,BC,C的值,利用余弦定理求得答案.解答:解:在△ABC中,由题意知AC=BC=10,∠ACB=120°,∴由余弦定理知AB===10(海里).故灯塔A和灯塔B的距离为10(海里).故选:D.点评:本题主要考查了余弦定理的应用.注重了对学生实际解决问题能力的考查.10.已知S n是等差数列{a n}n∈N*的前n项和,且S6>S7>S5,给出下列五个命题:①d<0;②S11>0;③S12<0;④数列{S n}中最大项为S11;⑤|a6|>|a7|,其中正确命题的个数()A.5 B.4 C.3 D.1考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先由条件确定第六项和第七项的正负,进而确定公差的正负,再将S11,S12由第六项和第七项的正负判定.解答:解:∵等差数列{a n}中,S6最大,且S6>S7>S5,∴a1>0,d<0,①正确;∵S6>S7>S5,∴a6>0,a7<0,∴a1+6d<0,a1+5d>0,S6最大,∴④不正确;S11=11a1+55d=11(a1+5d)>0,S12=12a1+66d=12(a1+a12)=12(a6+a7)>0,∴②⑤正确,③错误故选:C.点评:本题考查等差数列的前n项和的最值.在等差数列中S n存在最大值的条件是:a1>0,d<0.二、填空题(每小题3分,共5小题,满分15分)11.已知=(2,λ),=(3,4),若⊥,则λ=﹣.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用⊥即=0,代入坐标计算即可.解答:解:∵⊥,∴=0,又∵=(2,λ),=(3,4),∴(2,λ)•(3,4)=0,即:6+4λ=0,解得:λ=﹣,故答案为:﹣.点评:本题考查平面向量数量积的运算,注意解题方法的积累,属于基础题.12.已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为(﹣∞,﹣)∪(1,+∞).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:不等式恒成立,需△<0,解出即可.解答:解:∵x2+(m+1)x+m2>0的解集为R,∴△=(m+1)2﹣4m2<0,解得:m<﹣,或m>1.故答案为:(﹣∞,﹣)∪(1,+∞).点评:本题考查函数恒成立问题、一元二次不等式的解法,考查转化思想、考查学生解决问题的能力.13.已知,则=.考点:诱导公式的作用;三角函数的化简求值.专题:三角函数的求值.分析:利用诱导公式化简所给的式子,运算求得的结果.解答:解:∵,故答案为.点评:本题主要考查利用诱导公式进行化简求值,要特别注意符号的选取,属于中档题.14.已知等差数列{a n}中,a32+a82+2a3a8=9,且a n<0,则S10为﹣15.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a3+a8=﹣3,再由等差数列的求和公式和性质可得S10=5(a3+a8),代值计算可得.解答:解:∵等差数列{a n}中a32+a82+2a3a8=9,∴(a3+a8)2=9,又∵a n<0,∴a3+a8=﹣3,∴S10==5(a1+a10)=5(a3+a8)=﹣15故答案为:﹣15点评:本题考查等差数列的求和公式和等差数列的性质,属基础题.15.已知平面内n(n∈N+)条直线,任意两条都相交,任意三条不共点,这n条直线将平面分割成a n个区域,则a n=.考点:归纳推理.专题:等差数列与等比数列;推理和证明.分析:因为第n(n≥2)条直线与前n﹣1条直线都相交且不共点,则它被前n﹣1条直线分割成n段,每一段将它所在的原区域一分为二,即在原区域数上增加了n个,故a n=a n﹣1+n (n≥2),利用累加法可得答案.解答:解:∵a1=2,a2=4,a3=7,a4=11,注意到a n=a n﹣1+n(n≥2),因为第n(n≥2)条直线与前n﹣1条直线都相交且不共点,则它被前n﹣1条直线分割成n段,每一段将它所在的原区域一分为二,即在原区域数上增加了n个,故a n=a n﹣1+n(n≥2);则a2=a1+2,a3=a2+3,a4=a3+4,…a n=a n﹣1+n将这n﹣1个式子累加得:a n=a1+2+3+…+n=1+=.故答案为:点评:本题考查的知识点是合情推理﹣﹣归纳推理,其中根据已知分析出a n满足:a n=a n﹣1+n (n≥2),是解答的关键.三、解答题(共6小题,满分55分)16.在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=﹣.(Ⅰ)求cosC的值;(Ⅱ)若a=5,求△ABC的面积.考点:正弦定理;两角和与差的余弦函数.专题:计算题.分析:(Ⅰ)由B和C为三角形的内角,得到sin(B+C)大于0,由cos(B+C)的值,利用同角三角函数间的基本关系求出sin(B+C)的值,然后将C变形为(B+C)﹣B,利用两角和与差的余弦函数公式化简cos[(B+C)﹣B]后,根据B的度数,利用特殊角的三角函数值求出sinB和cosB的值,将各自的值代入求出cos[(B+C)﹣B]的值,即为cosC的值;(Ⅱ)由C为三角形的内角及第一问求出的cosC的值,利用同角三角函数间的基本关系求出sinC的值,再由三角形的内角和定理及诱导公式得到sinA=sin(B+C),由sin(B+C)的值得到sinA的值,由sinC,sinA及a的值,利用正弦定理求出c的值,进而由a,c及sinB 的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:(本小题满分12分)解:(Ⅰ)在△ABC中,由cos(B+C)=﹣,得sin(B+C)===,又B=60°,∴cosC=cos[(B+C)﹣B]=cos(B+C)cosB+sin(B+C)sinB=﹣×+×=;…(6分)(Ⅱ)∵cosC=,C为三角形的内角,sin(B+C)=,∴sinC===,sinA=sin(B+C)=.在△ABC中,由正弦定理=得:=,∴c=8,又a=5,sinB=,则△ABC的面积为S=acsinB=×5×8×=10.…(12分)点评:此题考查了正弦定理,三角形的面积公式,两角和与差的余弦函数公式,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.17.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).(1)求f(x)的解析式;(2)对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的范围.考点:函数恒成立问题;二次函数的性质.专题:计算题.分析:(1)根据不等式的解集与方程解之间的关系可知2x2+bx+c=0的两根为0,5,从而可求b、c的值,进而可求f(x)的解析式;(2)要使对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,只需f(x)max≤2﹣t即可,从而可求t的范围.解答:解:(1)∵f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).∴2x2+bx+c=0的两根为0,5∴∴b=﹣10,c=0∴f(x)=2x2﹣10x;(2)要使对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,只需f(x)max≤2﹣t即可∵f(x)=2x2﹣10x=2,x∈[﹣1,1],∴f(x)max=f(﹣1)=12∴12≤2﹣t∴t≤﹣10点评:本题重点考查函数的解析式,考查恒成立问题,解题的关键是利用好不等式的解集与方程解之间的关系,将恒成立问题转化为函数的最值加以解决.18.若x,y满足,求:(1)z=2x+y的最小值;(2)z=x2+y2的范围.(3)z=的最大值.考点:简单线性规划.专题:不等式的解法及应用.分析:先根据约束条件画出可行域,再分别利用几何意义求最值.解答:解:作出满足已知条件的可行域为△ABC内(及边界)区域,如图其中A(1,2),B(2,1),C(3,4).(1)目标函数z=2x+y,表示直线l:y=﹣2x+z,z表示该直线纵截距,当l过点A(1,2)时纵截距有最小值,故z min=4.(2)目标函数z=x2+y2表示区域内的点到坐标系点的距离的平方,又原点O到AB的距离d=且垂足是D(,)在线段AB上,故OD2≤z≤OC2,即z∈[,25];(3)目标函数z==1+,则表示区域中的点与坐标原点连线的斜率,当直线过点A时,斜率最大,即=2,即z max=3.点评:本题考查了线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.19.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.考点:等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{a n}的通项公式代入设bn=log3a1+log3a2+…+log3a n,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到b n的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n 项和.解答:解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.点评:此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.20.已知向量,设函数且f(x)的最小正周期为π.(1)求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移个单位,得到函数y=g(x)的图象,求函数y=g(x)在区间上上的取值范围.考点:平面向量数量积的运算;正弦函数的单调性;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)由数量积的运算和三角函数的公式可得f(x)=sin(2ωx+)+,由周期可得ω=1,可得f(x)=sin(2x+)+,把2x+整体放在正弦函数的单调递增区间,解不等式可得;(2)由图象变换的知识可得g(x)=sin(x+),由x的取值范围结合三角函数的运算可得答案.解答:解:(1)由题意可得=sinωxcosωx+cos2ωx=sin2ωx+=sin(2ωx+)+,∵函数的周期T=π=,∴ω=1,故f(x)=sin(2x+)+,由﹣≤2x+≤,k∈Z解得≤x≤,k∈Z故f(x)的单调递增区间是…(6分)(2)由题意可得f(x)=sin(2x+)+图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得函数y=sin(x+)+的图象,再向下g(x)=sin(x+)的图象,故y=g(x)=sin(x+)…(9分)∵,∴,∴…(11分)∴,即g(x)的取值范围为.…(12分)点评:本题考查平面向量数量积的运算,以及正弦函数的单调性和函数图象的变换,属中档题.21.我们把一系列向量(i=1,2,3,…,n)按次序排成一列,称之为向量列,记作{},已知向量列{}满足:=(1,1),=(x n,y n)=(x n﹣1﹣y n﹣1,x n﹣1+y n﹣1)(n≥2).(1)证明:数列{||}是等比数列;(2)设θn表示向量与间的夹角,若b n=θn,对于任意正整数n,不等式++…+>a(a+2)恒成立,求实数a的范围(3)设c n=||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.考点:数列的应用;平面向量数量积的运算.专题:等差数列与等比数列.分析:(1)通过向量模的定义计算可知||==||;(2)通过向量数量积的定义可知cosθn=,进而b n=,则问题转化为解不等式1>a(a+2),计算即得结论;(3)通过假设数列{c n}中的第n项最小,找出数列的单调性计算即得结论.解答:(1)证明:∵=(x n,y n)=(x n﹣1﹣y n﹣1,x n﹣1+y n﹣1)(n≥2),∴||====||,∴数列{||}是等比数列;(2)解:∵cosθn===•=,∴θn=,∴b n=θn=,∴不等式++…+>a(a+2)恒成立,即++…+>a(a+2)恒成立,记T n=++…+,显然数列{T n}单调递增,∴要使T n>a(a+2)成立,只需1>a(a+2),解得﹣1﹣<a<﹣1+,∴使不等式对于任意正整数恒成立的a的取值范围是:(﹣1﹣,﹣1+);(3)结论:数列{c n}中存在最小项,最小项是c5=﹣•.理由如下:∵=(1,1),即||=,∴||=•=,∴c n=||•log2||=•,假设数列{c n}中的第n项最小,∵c1=,c2=0,∴0≤c2<c1,当n≥3时,有c n<0,∵c n<c n+1,∴•≤•,即≥,∴≥,整理得:n2﹣6n+7≥0,解得:n≥3+或n≤3﹣(舍),∴n≥5,即有c5<c6<c7<…,由c n>c n+1,得3≤n≤5,又0≤c2<c1,∴c5<c4<…<c1,故数列{c n}中存在最小项,最小项是c5=﹣•.点评:本题是一道关于数列与向量、不等式的综合题,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.。

第二中学2014-2015学年高一下学期考试数学试题及答案期末复习(6)

高一下学期数学期末复习试题61. 在中,角所对的边分别是,且,则( )A. B.C. D. 2. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则 3. 已知等差数列{a n },前n 项和为S n ,S 10=90,a 5=8,则a 4=( ) A.16 B.12 C.8 D.64. 在等差数列中, ()A. 22B.18C.20D. 135. 已知等比数列{ a n },S n 为其前n 项和,S 3=10,S 6=30,则S 9=( )A.50B.60C.70D.906. 设变量x,y 满足约束条件,则目标函数的最大值为( )(A)10 (B)11 (C)12 (D)147. 的内角的对边分别为.若成等比数列,且,则( )A.B. C. D. 8. 在2012年年底,某家庭打算把10万元定期存入银行后,既不加进存款也不取钱,每年到期利息连同本金自动转存,定期存款期限为10年。

如果不考虑利息税,且中国银行人民币定期存款的年利率为5﹪,则到期时的存款本金和是( ) A . B. C. D.9. 已知函数的定义域,则实数的取值范围为( )A . B. C. D. 10.等差数列公差为,为其前项和,,则以下不正确的是ABC ∆C B A ,,c b a ,,A b a sin 3==B sin 3333636-a b >22ac bc >a b >-a b ->ac bc >a b >a b >a c b c ->-{}n a =++=++=++963852741,29,45a a a a a a a a a 求--1,+y 1,3- 3.x y x x y ≥⎧⎪≥⎨⎪≤⎩=4+z x y ABC ∆,,A B C ,,a b c ,,a b c 2c a =cos B =414343905110.⨯1005110.⨯).(90511200-⨯).(100511200-⨯12+-=ax ax y R a 40≥≤a a 或40<<a 40≤≤a 4≥a {}n a( )A. B. C. D.11.在△ABC 中,若,则△ABC 的形状是( ) A. 等腰或直角三角形 B. 直角三角形 C. 不能确定 D. 等腰三角形 13.在中,已知,则 . 14.已知点(3,1)和(4,6)在直线的两侧,则a 的取值范围是_________. 15.已知数列{a n }满足a 1=1,a n +1=a n +2n ,那么a 20的值是_____________. 16..已知数列:,,,,…,那么数列前n 项和为17.(本题12分)若不等式的解集是,(1) 求的值; (2) 求不等式的解集.18.(本题12分)的内角A 、B 、C 所对的边分别为a 、b 、c ,且. (1)当时,求a 的值; (2)当的面积为3时,求的值。

湖南省株洲市第二中学14—15学年下学期高一第一次月考数学试题(附答案)

株洲市二中2015年上学期高一第一次月考数学试题分值:150分 时量:120分钟.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知角α的终边经过点(4,3)P --,则αsin 的值为( ) A .53-B .54- C .53 D .432.设平面向量a (1,0)=-,b (0,2)=,则32+等于( ) A .)3,6(B .)6,2(-C .)1,2(D .)2,7(3.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( ).4.下列给出的命题正确的是( )A .零向量是唯一没有方向的向量B .平面内的单位向量有且仅有一个C .a 与b 是共线向量,b 与c 是平行向量,则a 与c 是方向相同的向量D .相等的向量必是共线向量5.若函数y =sin ()x +φ()0≤φ≤π是R 上的偶函数,则φ的值可以是( ) A .0 B . π4 C . π2D .π6.已知向量a ,b 满足3a =,23b =,且()a a b ⊥+,则b 在a 方向上的投影是( )A .3B .2 C .3- D .2- 7.将函数()()32sin 2--=θx x f 的图象F 按向量a = )3,6(π,平移得到图象F ',若F '的一条对称轴是直线4π=x ,则θ的一个可能取值是( ) A .6π-B .3π-C .2π D .3π8.已知1a =,2b =,且()21b a b ⋅+=,则a 与b 夹角的余弦值是( )A .13-B .3C .4- D .13 9. 如图所示,点P 是函数)sin(2ϕω+=x y (0,>∈ωR x )的图象的最高点,M 、N 是图象与x 轴的交点,若PM PN 0⋅=,则ω的值为 ( )A .8B.4π C. 8πD .410、已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=13x 3+|a |x 2+2a ·b x +1在x ∈R 上有极值,则向量a 、b 的夹角θ的取值范围是( ). A.⎣⎡⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎝⎛⎦⎤π6,π2D.⎝⎛⎦⎤π6,π二、填空题:本大题共5小题,每小题5分,满分25分.请把答案直接填在答题卡相应的位置上.11. )4sin()4cos(ππ---的值是________.12.在圆中,等于半径长的弦长所对的圆心角的弧度数是______.13.已知平面上三点A 、B 、C 满足|A B |6=,|BC|8=,|AC|10=,则AB AC AC BC BC AB ⋅+⋅+⋅的值等于 .14.计算sin 21°+sin 22°+sin 23°+…+sin 289°=________.15、如下图,两块全等的等腰直角三角形拼在一起,若AD AB kAC =λ+,则k λ+= .三、解答题 :本大题共6个小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R).(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.17.(本小题满分12分)已知sin α是方程25x 7x 60--=的根,α是第三象限角, (1)分别求sin ,cos ,tan ααα的值;(2)求233sin()cos()22tan ()sin()cos()22ππ-α--α⋅π-αππα+-α 的值.18.(本小题满分12分) 已知定义在]2,6[ππ-∈x 上的函数f (x)sin(2x)=π-. (1)求)(x f 的最小正周期与单调递增区间;(2)若方程a x f =)(只有一解,求实数a 的取值范围.19、(本小题满分13分)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2. (1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求22sin 2sin cos 1tan ++αααα的值.20.(本小题满分13分)某海滨浴场的海浪高度y (米)是时间t(0t24)≤≤(小时)的函数,记作y=f(t),下表是某天各时的浪高数据:(1(2)依据规定,当海浪高度不少于1米时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的上午8时至晚上20时之间,有多少时间可供冲浪爱好者进行冲浪?21.(本小题满分13分)如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点,B P在单位圆上,且(B,∠=AOBα(1)求4cos3sin5cos3sin-+αααα的值;(2)设2(),63∠=≤≤=+AOP OQ OA OP ππθθ,四边形OAQP 的面积为S ,2()(1)1=⋅--f OA OQ θ,求()f θ的最值及此时θ的值.参考答案一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知角α的终边经过点(4,3)P --,则αsin 的值为( A ) A .53-B .54- C .53 D .432.设平面向量a (1,0)=-,b (0,2)=,则b a 32+等于( B ) A .)3,6(B .)6,2(-C .)1,2(D .)2,7(3.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( D ).4.下列给出的命题正确的是( D )A .零向量是唯一没有方向的向量B .平面内的单位向量有且仅有一个C .a 与b 是共线向量,b 与c 是平行向量,则a 与c 是方向相同的向量D .相等的向量必是共线向量5.若函数y =sin ()x +φ()0≤φ≤π是R 上的偶函数,则φ的值可以是( C ) A .0 B . π4 C . π2D .π6.已知向量a ,b 满足3a =,23b =,且()a ab ⊥+,则b 在a 方向上的投影是( C )A .3BC .3-D . 7.将函数()()32sin 2--=θx x f 的图象F 按向量a = )3,6(π,平移得到图象F ′,若F ′的一条对称轴是直线4π=x ,则θ的一个可能取值是( B )A .6π-B .3π-C .2π D .3π 8.已知1a =,2b =,且()21b a b ⋅+=,则a 与b 夹角的余弦值是( C )A .13-B .3C .4- D .13 9. 如图所示,点P 是函数)sin(2ϕω+=x y (0,>∈ωR x )的图象的最高点,M 、N 是图象与x 轴的交点,若PM PN 0⋅=,则ω的值为 ( B )A .8B.4π C. 8πD .410、已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=13x 3+|a |x 2+2a ·b x +1在x ∈R 上有极值,则向量a 、b 的夹角θ的取值范围是( D ). A.⎣⎡⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎝⎛⎦⎤π6,π2D.⎝⎛⎦⎤π6,π二、填空题:本大题共5小题,每小题5分,满分25分.请把答案直接填在答题卡相应的位置上. 11. )4sin()4cos(ππ---的值是________.2 12.在圆中,等于半径长的弦长所对的圆心角的弧度数是______.3π13.已知平面上三点A 、B 、C 满足|A B |6=,|BC|8=,|AC|10=,则⋅+⋅+⋅的值等于 . 10014.计算sin 21°+sin 22°+sin 23°+…+sin 289°=________.89215、如下图,两块全等的等腰直角三角形拼在一起,若AD AB kAC =λ+, 则k λ+= .解:过点D 做连接BF ,设AC=1,则DF =,三、解答题 :本大题共6个小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R). (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0.整理,得x 2-2x -3=0,解得x =-1或x =3. …………6分 (2)若a ∥b ,则有1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. …………8分当x =0时,a =(1,0),b =(3,0),a -b =(-2,0),∴|a -b |=2.当x =-2时,a =(1,-2),b =(-1,2),a -b =(2,-4),∴|a -b |=2 5. 综上,可知|a -b |=2或25.…………12分17.(本小题满分12分)已知sin α是方程25x 7x 60--=的根,α是第三象限角,(1)分别求sin ,cos ,tan ααα的值; (2)求233sin()cos()22tan ()sin()cos()22ππ-α--α⋅π-αππα+-α 的值.解:(1)方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,又α是第三象限角,∴sin α=-35,∴cos α=-1-sin 2α=-45,3tan 4α=……………6分(2)sin ⎝⎛⎭⎫-α-32πcos ⎝⎛⎭⎫32π-αcos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α·tan 2(π-α)=-sin ⎝⎛⎭⎫π+π2+αcos ⎝⎛⎭⎫π+π2-αsin αcos α·tan 2α=-sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2-αsin αcos α·tan 2α=-cos αsin αsin αcos α·tan 2α=-tan 2α=-sin 2αcos 2α=-⎝⎛⎭⎫-352⎝⎛⎭⎫-452=-916.……………12分 18.(本小题满分12分)已知定义在]2,6[ππ-∈x 上的函数f (x)sin(2x)=π-.(1)求)(x f 的最小正周期与单调递增区间;(2)若方程a x f =)(只有一解,求实数a 的取值范围.解:(1)化简得x x f 2sin )(= ……………1分 最小正周期为T =π……………3分 其递增区间满足ππππk x k 22222+≤≤+-,Z k ∈………①…………5分又定义域为ππππ≤≤-⇒-∈x x 23]2,6[…………② 由①②知递增区间应满足:46223ππππ≤≤-⇒≤≤-x x故所求递增区间为]4,6[ππ-…………6分(2)在同一坐标系中作出x X y 2sin sin ==与a y =的图象,方程只有一解⇔两函数图象只能有一个交点, 所以a 的取值范围是:}1{)0,23[ -∈a ………12分 19、(本小题满分13分)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2.(1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求22sin 2sin cos 1tan ++αααα的值.解:(1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3),∴AC →2=(cos a -3)2+sin 2α=10-6cos α,BC →2=cos 2α+(sin α-3)2=10-6sin α, 由|AC →|=|BC →|,可得AC →2=BC →2,即10-6cos α=10-6sin α,得sin α=cos α. …………4分 又∵α∈⎝⎛⎭⎫π2,3π2,∴α=5π4.…………6分 (2)由AC →·BC →=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23.①…………8分又22sin 2sin cos 1tan ++αααα=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α. …………10分由①式两边分别平方,得1+2sin αcos α=49,∴2sin αcos α=-59.…………12分∴2sin 2α+sin 2α1+tan α=-59.…………13分20.(本小题满分13分)某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24) (小时)的函数,记作y =f (t ),下表是某天各时的浪高数据:(1) (2)依据规定,当海浪高度不少于1米时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的上午8时至晚上20时之间,有多少时间可供冲浪爱好者进行冲浪? 解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图如下:依据散点图,可以选用函数y =A sin(ωx +φ)+h 来近似描述这个海滨浴场的海浪高度y (米)与t 时间(小时)的函数关系.从表中数据和散点图可知,A =1.5-0.52=12,T =12,所以2πω=12,得ω=π6.又h =1.5+0.52=1,于是y =12sin ⎝⎛⎭⎫π6t +φ+1.由图可知,点(0,1.5)是“五点法”中的第二点,即π6×0+φ=π2,得φ=π2,从而y =12sin ⎝⎛⎭⎫π6t +π2+1,即y =12cos π6t +1. ……………6分 (2)由题意可知,当y ≥1时才对冲浪爱好者开放海滨浴场,所以12cos π6t +1≥1,……8分 即cos π6t ≥0,所以2k π-π2≤π6t ≤2k π+π2(k ∈Z),即12k -3≤t ≤12k +3(t ∈Z).……10分 而0≤t ≤24,所以0≤t ≤3或9≤t ≤15或21≤t ≤24. ……………12分故一天内的上午8时至晚上20时之间有6个小时可供冲浪爱好者进行冲浪,即上午9时至下午15时.……………13分21.(本小题满分13分)如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点,B P在单位圆上,且()55-B ,∠=AOB α (1)求4cos 3sin 5cos 3sin -+αααα的值; (2)设2(),63∠=≤≤=+AOP OQ OA OP ππθθ,四边形OAQP 的面积为S,2()(1)1=⋅--f OA OQ θ,求()f θ的最值及此时θ的值.解:(1)依题tan 2==-α,…………2分 4cos 3sin 43tan 43(2)105cos 3sin 53tan 53(2)---⨯-∴===-+++⨯-αααααα …………6分(2)由已知点P 的坐标为(cos ,sin )P θθ,又,=+=OQ OA OP OA OP ,∴四边形OAQP 为菱形∴2sin ∆==OAP S S θ ∵,∴∴∴……………10分……………13分。

湖南省株洲市南方中学高一数学《1

1.3.2 奇偶性 第二课时 函数奇偶性的性质
问题提出
1.奇函数、偶函数的定义分别是什么?
2.奇函数和偶函数的定义域、图象分别有 何特征?
3.函数的奇偶性有那些基本性质?
知识探究(一)
思考1:是否存在函数f(x)既是奇函数又是偶 函数?若存在,这样的函数有何特征?
f(x)=0 思考2:一个函数就奇偶性而言有哪几种可能 情形?
理论迁移
例1 已知f(x)是奇函数,且当 x 0时,
f (x)x2 3x
,求x 当0
时f(x)的解析
式.
f(x)x23x(x0)
例2 设函数 f(x)2x2mx3,已知 f (x 1) 是 偶函数,求实数m的值.
m=-4
例3 已知f(x)是定义在R上的奇函数,且对任
意实数x都有 f(x3)f(x)0,若当x[3,2]
时,f (x) 2x ,求 f ( 1 ) 的值.
2
f (1) 5
2
例4 已知f(x)是定义在R上的偶函数,且在
(, 0] 上是增函数,f(-2)=0,求不等式
x f (x)0的解集.
(2,0) (2,)
作业: P39习题1.3A组:6
B组:3
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

株洲市南方中学2015年春季期末考试试卷
高一数学

命题人:刘亚利 审题人:聂飞翔 时量: 120分钟
基础题(100分)
一、单选题(每题5分,共40分)
1.已知角α的顶点在原点,始边与x轴的非负半轴重合,终边经过点(-3,4),

cosα=( )

A.53 B. -53 C.54 D. -54
2.sin(-600)=( )

A.-23 B.23 C.-21 D.21

3.已知0<α<π,cosα =-53,则sin(α+π6)=( )

A.10334 B.10334 C.10334 D.10334
4.已知在△ABC中,a=8,B=600,A=450,则边b等于( )
A.42 B.34 C.46 D.332

5. 运行如图(1)的程序框图,则输出s的结果是( )
A.16 B.2524 C.34 D.1112
6. 同时抛掷两枚骰子,所得点数之和为5的概率为
( )

A.112 B.114 C.181 D.
9

1

7. 已知某地区中小学生人数和近视情况分别如图(2)和如图(3)所示,为了
了解该地区中小学生的近视形成原因,用分层抽样的方法抽取
2%

的学生进行调查,则样本容量和抽取的高中生近视人数分别为
( )

A.200,20 B.100,20 C.200,10 D.100,10

8. 如图(4)在平行四边形ABCD中,已知8,5ABAD,

3,2CPPDAPBP
,则ABAD的值是( )

图(2) 图(3)
图(1)
图(4)
A.18 B.20 C.22 D.24
二、填空题(每题5分,共20分)

9. 已知|a|=1,|b|=2,若a与b的夹角为45,则ab的值等于 。
10. 在△ABC中,∠A=1200,AB=5,AC=3,则BC= 。

11 .已知a=(1,k),b=(k, 4),若a与b平行,则实数k的值为 .
12. 在等差数列{an}中,若a4+a6=12,Sn是数列{an}的前n项和,则S9的值
为 。
三解答题(共40分)
13(本题满分8分)

已知f(x)=sinx+3cosx (x∈R)
(Ⅰ)求f(x)的最大值和最小值;(Ⅱ)求f(x)的单调增区间。
14(本题满分10分)

已知等差数列{an},a2=1,a4=3
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=na2(n∈N+),求数列{bn}的前n项和Tn。
15. (本题满分10分)
随机抽取100名学生,测得他们的身高
(单位:cm),按照区问[160,165),[165,
170),[170,175),[175,180),[180,185]
分组,得到样本身高的频率分布直方图(如
图(5)).
(Ⅰ)求频率分布直方图中x的值及身高在
170cm以上的学生人数;
(Ⅱ)将身高在[170,175],[175,180),[1
80,185]内的学生依次记为A,B,C三个组,
用分层抽样的方法从这三个组中抽取6人,要从6名学生中抽取2人,用列举法
计算B组中至少有1人被抽中的概率.
16(本题满分12分)

在△ABC中,角A、B、C对应的边分别为a、b、c,若AB→·AC→=BA→·BC→=1.
(Ⅰ)求证:A=B;(Ⅱ)求边c的大小;

(Ⅲ)若|AB→+AC→|=6,求△ABC的面积.
能力题(50分)
一、单选题(每题6分,共12分)
1、在△ABC中,内角A、B、C所对的边长分别是a、b、c,且边c的长为2,角

C为3,△ABC的面积为3,则a=( )

身高(cm)
0.01
0.02
0.04
0.07
x

160 165 170 175 180 185

频率/组

图(5)
A.1 B. 3 C.2 D.4
2、设点O在△ABC内部且满足,现将一粒豆子撒在△ABC中,则豆子落在△OAB
内的概率是( )

A.21 B.31 C.41 D. 32
二、填空题(每题6分,共12分)
3. 函数f(x)=cos2x+sinx的值域为 。
4.已知64个正数排成如下所示的8行8列,在符号

),,81,81(*Njijiaij
中,i表示该数所在行数,j表示该数所在
列数,已知每一行的数成等差数列,每一列的数成等比数列,并且
所有公比都为q,若2111a,124a,4132a

则ija= ;
三解答题(每题13分,共26分)
5.已知等差数列{an}中,公差d≠0,数列1ka,2ka3ka…nka…是等比数列,其中

1
k
=1,2k=7,3k=25.
(Ⅰ)求{nka}的通项公式(含参数d)及{nk}的通项公式;
(Ⅱ)若a1=9,bn=)2(loglog133nkkan(n∈N+),Sn数数列{bn}的前n项和,
求证:Sn<2n

6.如图(6)半⊙O的直径为2,A为直径MN延长线上一点,且OA=2,B为半
圆周上任一点,以AB为边作等边△ABC (A、B、C按顺时
针方向排列)问AOB为多少时,四边形OACB的面积最大?
这个最大面积是多少?

88838281
28232221
18131211
,,,,,,,,,,,,aaaa
aaaa

aaaa




O M N

C
B
A

图(6)

相关文档
最新文档