数列的找规律

合集下载

数字找规律的方法

数字找规律的方法

数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。

1、等差数列的常规公式。

设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。

[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13 [解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

[例3] 2/3,3/4,4/5,5/6,6/7,() A、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。

故选D。

4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()。

A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。

5、等比数列的常规公式。

设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。

[例5] 12,4,4/3,4/9,() A、2/9 B、1/9 C、1/27 D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。

小学三年级数学找规律的题型附解析+同步练习孩子必须掌握

小学三年级数学找规律的题型附解析+同步练习孩子必须掌握

“按照一定次序排列起来的一列数,叫做数列。

如自然数列:1、2、3、4……;双数列:2、4、6、8……。

我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

例1 在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()【解析】(1)在数列3,6,9,12,(),()中,前一个数加上3就等于后一个数,相邻两个数的差都是3,根据这一规律,可以确定()里分别填15和18;(2)在数列1,2,4,7,11,(),()中,第一个数增加1等于第二个数,第二个数增加2等于第三个数,也就是相邻两个数的差依次是1,2,3,4……这样下一个数应为11增加5,所以应填16;再下一个数应比16大6,填22。

(3)在数列2,6,18,54,(),()中,后一个数是前一个数的3倍,根据这一规律可知道()里应分别填162和486。

例2 先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),();(2)21,4,18,5,15,6,(),();【解析】(1)在15,2,12,2,9,2,(),()中隔着看,第一个数减3是第三个数,第三个数减3是第五个数,第二、四、六的数不变。

根据这一规律,可以确定括号里分别应填6、2;(2)在21,4,18,5,15,6,(),()中,隔着看第一个数减3为第三个数,第三个数减3为第五个数。

第二个数增加1为第四个数,第四个数增加1是第六个数。

根据这一规律,可以确定括号里分别应填12和7。

专项练习。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

精心整理图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:n 个n 位的例:4=6n -2例1(1(2例2共有(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。

妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。

(1)请你利用这个几何图形求的值为。

(2)请你利用图b,再设计一个能求的值的几何图形。

【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。

三年级奥数找规律

三年级奥数找规律

斐波那契的兔子(数列)知识图谱斐波那契的兔子知识精讲一.数列1.定义:按一定顺序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,……,第n项(末项).二.常见的数列1.兔子数列(斐波那契数列):从第3项开始,每一项都等于前两项之和的数列.2.等差数列:从第二项起,每一项与它的前一项的差等于同一个数的数列.3.等比数列:从第二项起,每一项除以它的前一项的商等于同一个数的数列.三点剖析本讲主要培养学生的综合创新能力,其次还会注重培养学生的运算能力、观察推理能力和实践应用能力.本讲内容是在整数基本计算与找规律的基础上,进一步了解一列数中数与数之间的关系和规律.后续课程还会学习一些简单数列的计算.课堂引入例题1、 最近,唐小果在家附近的小公园里,总能看见好多小兔子,唐小果就想了解一下兔子繁殖.在上网浏览时遇到了这样一个问题:假设每生产一对兔子必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活.那么有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月就可以再生小兔子,那么过三个月后,有多少对兔子?过半年后?9个月呢?带着这个问题,小果就去找她的小伙伴了……聪明的你,知道半年后有多少兔子吗?例题2、 写出课堂引入中每个月的兔子数量组成的这列数,观察有什么特点?兔子数列等例题1、 斐波那契数列(Fibonacci sequence ),又称黄金分割数列、因数学家列昂那多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对兔子.如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔子的对数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对.……以此类推我们利用表格找一找规律:这个是可以用枚举数出来的吧~第一个月,会新出生一对小兔子,所以总共有2对兔子.第二个月,原来的兔子会再生产一对小兔子,而第一个月出生的小兔子还不能生产,所以总共有3对小兔子.那第三个月,原来的兔子会再生产一对小兔子,第一个月出生的小兔子也可以再生产一对小兔子,但第二个月出生的小兔子,还不能生产,所以总共有5对兔子. 这不就是“斐波那契的兔子问题”吗?经过月数 0 1 2 3 4 5 6 7 … 幼崽对数 1 0 1 1 2 3 5 8 … 成兔对数 0 1 1 2 3 5 813… 总体对数11235813 21…幼崽对数=前一个月成年兔子对数;成年兔子对数=前一个月成年兔子对数+前一个月幼崽对数;总体对数=本月成年兔子对数+本月幼崽对数;我们不难发现幼崽对数、成兔对数、总体对数都构成一个数列.(1)一年后,幼崽对数、成兔对数、总体对数各是多少个?15个月之后呢?(2)相邻两个月之间兔子对数的差是多少呢?(3)兔子对数有什么规律吗?试着自己总结一下.例题2、一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.古希腊著名科学家毕达哥拉斯把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,像这样的数称为三角形数.……仔细观察哦~13610(1)第8个图形中有多少个石子?第15个呢?(2)相邻两个图形的石子数有什么关系吗?这列数有什么规律吗?例题3、中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…………(1)第10行有几个数?分别是多少?(2)杨辉三角有什么特点?相邻两行有什么关系吗?随练1、斐波那契数列在自然科学的其他分支,有许多应用.例如:树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”.这个规律,就是生物学上著名的“鲁德维格定律”.观察下图,第一年、第二年、第三年、第四年……第八年各有多少分枝?这些数之间有什么规律?等差等比数列例题1、根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……(1)第8个格子上放了几粒麦子?第10个格子呢?(2)前5个格子一共放了多少粒麦子?前8个格子呢?(3)这组数列中,相邻两个数有什么规律吗?例题2、数列在生活中也有很多的应用,被用于解决实际问题.如:(1)一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下,塔群坐西面东,依山临水,塔基下曾出土西夏文题记的帛书和佛祯,可能建于西夏时期是喇嘛式实心塔群.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,总计一百零八座,形成总体平面呈三角形的巨大塔群,因塔数而得名.那么,按照这样的规律,第15行有多少个佛塔?第20行呢?(2)在校技能节比赛中,值周班的同学负责收集同学们喝完水的矿泉水瓶.学校8点开场比赛,每一个小时清点一次收集到的矿泉水瓶,9点钟共收到了120个,10点钟收到了240个,11点钟收到了480个,按这个规律,到下午1点钟,共收到了多少个矿泉水瓶?(3)学校礼堂共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,问第20排有多少个座位?第10排呢?第1排呢?数列在生活中的应用真不少呢!例题3、二分裂一般指生殖方式,无丝分裂、有丝分裂、减数分裂是真核有性生殖的细胞的分裂方式,原核生物如细菌以无性或者遗传重组二种方式繁殖,最主要的方式是以二分裂这种无性繁殖的方式:一个细菌细胞壁横向分裂,形成两个子代细胞.(1)开始有一个细菌,假设一个细菌分裂成两个子代细胞需要30秒,3分钟后有多少个细胞?(2)一个生物瓶中装有1个细菌,假设一个细菌分裂成两个子代细胞需要10秒,半小时后,整个瓶中都是细菌,那么什么时候生物瓶中有半瓶的细菌细胞?仔细观察题目,看清要求哦~随练1、下图是用火柴棒拼出的一列图形,依次类推,则第十个图形中的火柴棒的根数有________根,第n个图形中的火柴棒的根数有________根.随练2、如图一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一个,最上面一层放30根钢管,求这个V形架上共放着多少根钢管?易错纠改例题1、将一条长方形的纸条对折一次可以得到1条折痕,保持折痕平行时对折两次可以得到3条折痕,对折三次可以得到7条折痕,对折四次可以得到15条折痕,对折十次可以得到多少条折痕?我拿张纸来试一试不就知道了吗?我还是找找它们之间的规律吧?1、3、7、15……下一个是不是29呢?聪明的你知道是多少吗?拓展1、分析并口述题目的做题思路及方法.找规律填数:0,3,8,15,24,(),48,63.2、一根绳子弯成如图形状,当用剪刀沿一条虚线剪断时,绳子被剪成5段;沿两条虚线剪断时,绳子被剪成9段;沿三条虚线剪断时,绳子被剪成13段;以此方法,沿10条虚线剪断时,绳子被剪成多少段?(1)(2)(3)3、下面是由大小相同的小正方体木块叠放而成的图形,第一个图中有1个木块,第二个图中有6个木块,第三个图中有15个木块,第四个图中有28个木块,按照这样的规律摆放下去,则第七个图中小木块的个数是多少?4、下面是按规律排成的一列数,从左向右数第九个数是多少?3,5,9,17,33,65,……5、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)2,5,8,11,(),17,20.(2)19,17,15,13,(),9,7.(3)1,3,9,27,(),243.(4)64,32,16,8,(),2.(5)1,1,2,3,5,8,()21,34.(6)1,3,4,7,11,18,(),47.(7)1,3,6,10,(),21,28,36,().(8)1,2,6,24,120,(),5040.6、小明上楼梯,每次走一个台阶或两个台阶现在他要上一段楼梯,有12个台阶,有多少种方法呢?(可以先看台阶有1、2、3、4个……会有多少种方法)7、一条直线上一个点可以构成0条线段,两个点可以构成1条线段,三个点可以构成3条线段,四个点可以构成6条线段,以此类推15个不同的点可以构成多少条线段?。

初中规律题万能公式

初中规律题万能公式

初中规律题万能公式
找规律的万能公式为:Y=1/2(N(N+1)),找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,找出的规律,通常包序列号,所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

规律,亦称法则,是客观事物发展过程中的本质联系,具有普遍性的形式。

规律和本质是同等程度的概念。

客观性规律:它是客观的,既不能创造,也不能消灭;不管人们承认不承认,规律总是以其铁的必然性起着作用。

找规律方法:
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:
一、基本方法——看增幅。

(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

找规律

找规律

3.观察一列数 2, 4, 8,16, 32,64,128,256, 512,1028,…,
发现从第二项开始,每一项与前一项之比是一个常数,这个 常数是 2 ;
用你所发现的规律确定22018的个位数字是
4
.
解:每一项与前一项之比是一个常数,这个常数是2,
式子末尾数字以2、4、8、6这4个一循环, 2018÷4=504…2,所以22018的末位数字是4.
38 40 37x -39x 第19个单项式是___,第20个单项式是 ___, n+1(2n-1)x2n (-1) 第n个单项式是_______ . 2+1 (n-1) 9.观察一组数据1,2,5,10,17,26, …第n个数是___ .
谢谢观赏
正方形点变边变(平方规律)+1
正方形框的点数分别是1,4,9,16.规律是n2
3a 2c 4 5a 5c 9 7a 8c16 9a11c 25 , , , ,… 6.有一列代数式: 5 9 13 b 2b 3b 4b
c n 1 (2n 1)a 第n项为( (1) nb4 n3
3n 1 ( n 1) 2
.
4. 将一张长方形的纸对折,如图所示可得到一条折痕,继 续对折,对折时每次折痕与上次的折痕保持平行,连续 对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n次,可以得到 (2n-1) 条折痕.
纸变2痕是1 对折n次痕是2n-1
纸变4痕是3
纸变8痕是7
5.图中圆圈的个数( n2+1 )

解析:代数式分为符号、分子、分母三部分分别入手 分母分为:系数、字母 的指数
c 、c 的指数
7.观察一列单项式:0,3x2,-8x3,15x4,- 24x5…按此规律写出 第10个单项式是___,第 n个单项式是______ 99x10 (-1)n(n2-1)xn 。 8.观察一列单项式:x2,-3x4,5x6,-7x8, …按此规律写出

初中数学找规律题(有答案)

初中数学找规律题(有答案)“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律.找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n—1)b,其中a为数列的第一位数,b为增幅,(n—1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8。

(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,……。

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。

图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。

图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。

数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。

图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。

综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。

解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。

•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。

•联想:将题目与以前学过的知识联系起来,寻找解题思路。

•归纳:根据观察和比较的结果,归纳出一般性的规律。

•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。

注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。

•遇到困难时,可以尝试从不同的角度去观察和分析。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)初一数学规律题应用知识汇总有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

因此,将变量和序列号放在一起比较,就更容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例如,对于数列4、10、16、22、28……,求第n位数。

我们可以发现,从第二位数开始,每位数都比前一位数增加6,增幅都是6.因此,第n位数是4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

例如,古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它们之间有一定的规律性。

要求第24个三角形数与第22个三角形数的差,我们可以通过求出第24个和第22个三角形数的值,再相减得到答案。

除了基本方法外,还可以用分析观察的方法求解。

例如,在一个面积为S的等边三角形中,我们将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形。

当n=5时,共向外作出了4个小等边三角形;当n=k时,共向外作出了k-2个小等边三角形。

中考规律类试题在素材选取、文字表述、题型设计等方面都别具一格,旨在考察学生的创新意识与实践能力。

数字找规律的方法

数字找规律的方法数字规律第一种-等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。

1、等差数列的常规公式。

设等差数列的首项为a1,公差为d,则等差数列的通项公式为an二a1+(n-1)d (n为自然数)。

[例,3,5,7,9,()A.7 B.8 C.11 D.13[解析]这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列•[例2] 2, 5, 10, 17, 26, (), 50 A.35 B.33 C.37 D.36[解析]相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

A、、、、[解析]数列分母依次为3,4,5,6,7 ;分子依次为2,3,4 5 5,6,故括号应为。

故选D °4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()A 1921B、19 23C、21 23D、27 30[解析]相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

第二种-等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。

5、等比数列的常规公式。

设等比数列的首项为a1,公比为q (q不等于0), 则等比数列的通项公式为an=a1q n-1 (n为自然数)。

[例5] 12,4,,,()A、、[解析]很明显,这是一个典型的等比数列,公比为。

故选D。

6、二级等比数列。

是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理数列的找规律:
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第
位的增幅是:3+2×(n-2)=2n-1,总增幅为:
[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+n2-1=n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.
2n、3n,或2n、3n有关.
例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:
A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、
(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题
四、练习题
例1:一道初中数学找规律题
0,3,8,15,24,······
2,5,10,17,26,·····
0,6,16,30,48······
(1)第一组有什么规律?
(2)第二、三组分别跟第一组有什么关系?。

相关文档
最新文档