极化曲线在电化学腐蚀中的应用

合集下载

第二章稳态极化曲线的测量和应用

第二章稳态极化曲线的测量和应用
强度等。
通过测量磁学 器件在不同磁 场下的稳态极 化曲线,可以 研究其磁滞回 线、磁矫顽力
等特性。
稳态极化曲线 还可以用来研 究磁学器件的 磁畴结构、磁 畴壁运动等微 观磁学现象。
磁学器件的稳 态极化曲线在 磁存储器、磁 传感器等领域 具有重要应用
价值。
在电感器型传感器件中的应 用
稳态极化曲线在电容器型传 感器件中的应用
温度:温度对稳态 极化曲线有显著影 响,温度升高会使 曲线向正电极电位 移动。
电解液浓度:电解 液浓度对稳态极化 曲线有较大影响, 浓度增大会使曲线 向负电极电位移动。
电极材料:不同电 极材料的稳态极化 曲线存在差异,因 为不同材料的电化 学性质不同。
电流密度:电流密 度对稳态极化曲线 有明显影响,电流 密度增大会使曲线 向上移动。
数据可视化:将处理后的数据绘 制成图表,便于观察和分析
误差来源:设备精度、环境因素、人为操作等 误差分析:对实验数据进行统计分析,识别误差来源 精度提高:采用高精度设备、优化实验条件、提高操作技能等 重复实验:对同一组数据进行多次测量,取平均值以减小误差
实验数据的获取 方式
数据处理的方法 和步骤
在电阻型传感器件中的应用
在其他类型传感器件中的应 用
经典理论模型定 义
稳态极化曲线的 数学表达式
稳态极化曲线与 电极电位的关系
经典理论模型的 适用范围和局限 性
简介:量子理论模型是稳态极化曲线理论模型的基础,它描述了电子在电场中的行为。
计算方法:基于量子力学原理,通过求解薛定谔方程来计算电子的能级和波函数,进一步 得到稳态极化曲线。
挑战与机遇:虽然新材料和新效应的探索为稳态极化曲线带来了新的机遇,但同时也面临着实 验技术、理论模型等方面的挑战。

试验12阴极阳极极化曲线的测定及应用

试验12阴极阳极极化曲线的测定及应用

湖南大学化学实验教学中心
四、实验步骤
1. 开启电脑,系统预热。 2. 电极处理:用金相砂纸将铁电极表面打磨 平整光亮,用蒸馏水清洗后滤纸吸干。每 次测量前都需要重复此步骤,电极处理得 好坏对测量结果影响很大。 3. 极化曲线测量。
湖南大学化学实验教学中心
五、实验注意事项
1. 测定前仔细阅读仪器说明书,了解仪器的 使用方法。 2. 电极表面一定要处理平整、光亮、干净, 不能有点蚀孔,这是该实验成败的关键。
其中:v-腐蚀速度(gm-2h-1);i-钝化电流密度(Am-2);M-Fe 的摩尔质量(gmol-1);F-法拉第常数(Cmol-1);n-发生1mol电极 反应得失电子的物质的量。 实验结果要求设计成表格形式给出。
湖南大学化学实验教学中心
七、思考题
1. 平衡电极电位、自腐蚀电位有何不同?
湖南大学化学实验教学中心
二、实验原理
湖南大学化学实验教学中心
二、化学实验教学中心
三、实验仪器与试剂
CS300电化学工作站1台;电解池1个;硫酸亚汞 电极或饱和甘汞电极(参比电极)、铁电极(研究 电极)、铂片电极(辅助电极)各1支。 0.10 mol/L、1.0 mol/L H2SO4溶液;1.0 mol/L 盐 酸;乌洛托品(缓蚀剂)
2. 写出作Fe阴极极化曲线时铁表面和铂片表面发生 的反应;写出作阳极极化曲线时Fe表面各极化电位 范围内可能的电极反应。 3. 分析H2SO4浓度对Fe钝化的影响。比较盐酸溶液 中加和不加乌洛托品 ,Fe电极上自腐蚀电流的大小。 Fe在盐酸中能否钝化,为什么?
湖南大学化学实验教学中心
八、其他事项说明
湖南大学化学实验教学中心
六、实验数据处理
1. 分别求出Fe电极在不同浓度的H2SO4溶液中的自腐蚀电 流密度、自腐蚀电位、钝化电流密度及钝化电位范围,分 析H2SO4浓度对Fe钝化的影响。 2. 分别计算Fe在HCl及含缓蚀剂的HCl介质中的自腐蚀电 流密度及按下式换算成腐蚀速率(v)。

极化曲线在电镀中的应用 PPT

极化曲线在电镀中的应用 PPT

•极化曲线与镀层质量的关系
区域Ⅲ:为高电流密度区域,电流密度超过了极限电流密度 。这时阴极开始析氢,镀层疏松,严重时出现烧焦现象。
•镀锌溶液的筛选
1一Zn0+NaOH
2一Zn0+NaOH+三乙醇胺+乙二 胺+六次甲基次胺+明胶 3一Zn0+KOH+三乙醇胺+KCl + 添加剂(环氧氯丙烷与六次甲基四胺 的反应物) 4一Zn0+NaCN +
•镀锌溶液的筛选
曲线3:使用复合添加剂 的镀液,在低电流密度
区,阴极极化便较大,
镀层获得细致结晶。 高电流密度,极化 作用减小,不存在极限 电流密度,工作电流范 围大大增加。
图2.几种碱性镀锌液的阴极极化曲线
•增加剂的影响
1-没有添加剂 2-添加硫脲
图3. 硫脲的影响
•增加剂的影响
0.25A/dm2以下时,添加硫脲极化度稍有增大; 0.25~2A/dm2,极化度反而减小; 2A/dm2以上,极化度又增大。 因而,欲在加硫脲的镀液内获得细致的镀层,必须
···
欢迎批评指正
2018/7/6
A
Cu2+浓度
+
镀 件
ee- Cu2+ e- Cu2+ e- Cu2+
0
Cu2+ Cu2+ Cu2+
Cu2+ Cu2+ Cu2+ Cu2+
距阴极的距离
Cu2+ Cu2+
A
Cu2+浓度
+
ee 镀e e Cu2+ 件 e- 2+ e- Cu

电化学腐蚀实验探索金属的腐蚀现象

电化学腐蚀实验探索金属的腐蚀现象

电化学腐蚀实验探索金属的腐蚀现象金属腐蚀一直是制约金属材料使用寿命和性能的主要问题。

为了深入理解金属腐蚀现象,电化学腐蚀实验成为一种重要的研究手段。

本文将探讨电化学腐蚀实验在揭示金属腐蚀本质方面的作用。

首先,我们需要了解电化学腐蚀的基本原理。

金属在电解质溶液中存在两种反应,即氧化反应和还原反应。

当金属表面存在缺陷引发了阳极反应时,金属就会发生腐蚀。

而电化学腐蚀实验通过模拟实际工况中的环境,制造特定的电化学条件,从而深入研究金属腐蚀机理。

在电化学腐蚀实验中,最常用的方法是极化曲线测量。

通过施加恒定电流或电压,观察电流或电压随时间的变化,可以获得极化曲线。

极化曲线是描述金属腐蚀行为的重要指标,包括阳极极化曲线和阴极极化曲线。

阳极极化曲线反映了金属的功率损失,而阴极极化曲线则反映了金属的保护性能。

除了极化曲线测量,电化学腐蚀实验还可以通过测量腐蚀电流密度、腐蚀速率和阻抗等参数来了解金属腐蚀的特征。

腐蚀电流密度是描述金属腐蚀速率的指标,一般通过电化学极化法测量得到。

腐蚀速率可以直接通过重量损失或体积损失来计算。

而阻抗则是评估金属膜层保护性能的重要参数,可通过交流阻抗谱法测量得到。

电化学腐蚀实验常常结合其他表征手段,如扫描电子显微镜(SEM)和能谱仪(EDS),来观察和分析金属腐蚀表面的微观结构和组成。

这些分析手段能够提供更详细的信息,揭示腐蚀过程中的细节变化。

通过电化学腐蚀实验,我们可以深入了解金属腐蚀的机制。

首先,我们可以研究金属腐蚀速率与环境条件的关系。

实验结果表明,环境中的温度、溶液酸碱度和氧浓度等都会对金属腐蚀速率产生影响。

此外,电化学实验还可以研究金属在不同金属耦合条件下的腐蚀行为。

例如,金属在不同电位下的腐蚀行为可以通过测量其极化曲线来研究。

这些实验结果为我们预测和控制金属腐蚀提供了重要的依据。

除了了解腐蚀机制,电化学腐蚀实验还可以通过设计和优化防腐蚀措施,从而减缓金属腐蚀过程。

例如,在电化学腐蚀实验中,我们可以通过添加抑制剂或电化学方法来提高金属的耐腐蚀性能。

化学检验工常见电化学涂层性能测试方法

化学检验工常见电化学涂层性能测试方法

化学检验工常见电化学涂层性能测试方法电化学涂层是一种常见的表面处理方法,可用于增加材料的耐腐蚀性能、改善导电性能等。

为了确保电化学涂层的质量,需要进行一系列的性能测试。

本文将介绍几种常见的电化学涂层性能测试方法。

1. 腐蚀性能测试电化学腐蚀测试是评估电化学涂层耐腐蚀性能的重要方法之一。

常用的测试方法包括极化曲线法和电化学阻抗谱法。

(1)极化曲线法极化曲线法是一种通过测量极化曲线来评估电化学涂层在腐蚀环境中的抗腐蚀性能的方法。

通过应用一定电位范围内的电流,可以观察到电流随电位的变化关系,从而评估涂层的耐腐蚀性能。

(2)电化学阻抗谱法电化学阻抗谱法是一种通过测量电化学阻抗谱曲线来评估电化学涂层耐腐蚀性能的方法。

该方法可以得到频率范围内的电阻和电容数值,通过分析这些数据可以评估涂层的耐腐蚀性能。

2. 导电性能测试导电性能是衡量电化学涂层质量的关键指标之一。

常用的测试方法有四探针法和电阻率测量法。

(1)四探针法四探针法是一种通过测量电阻来评估电化学涂层导电性能的方法。

在该方法中,四个探针被插入涂层中,通过测量电流和电阻的关系,可以计算涂层的电导率和电阻率。

(2)电阻率测量法电阻率测量法是一种通过测量涂层材料的电阻来评估导电性能的方法。

该方法使用导电传感器在涂层表面上测量电阻,通过计算电阻率可以评估涂层的导电性能。

3. 附着力测试附着力是评估电化学涂层质量的重要指标之一。

常用的测试方法包括划伤测试、拉伸测试和冲击测试。

(1)划伤测试划伤测试是一种通过使用硬度指针在涂层表面划伤,从而评估涂层与基材之间的附着力的方法。

通过观察划痕形状和痕迹深度,可以评估涂层的附着力。

(2)拉伸测试拉伸测试是一种通过施加拉伸力来评估涂层与基材之间的附着力的方法。

通过在涂层上施加力并测量力的变化,可以计算涂层与基材的附着力。

(3)冲击测试冲击测试是一种通过施加冲击力来评估涂层与基材之间的附着力的方法。

常用的冲击测试方法包括钢球落锤测试和冲击炮测试,通过观察涂层破损情况可以评估附着力。

实验二 铁的极化曲线的测定

实验二 铁的极化曲线的测定

实验二铁的极化曲线的测定实验二铁的极化曲线的测定一、实验目的1、掌握恒电位法测定电极极化曲线的原理和实验技术。

通过测定Fe在H2SO4、HCl溶液中的阴极极化、阳极极化曲线,求得Fe的自腐蚀电位,自腐蚀电流和钝化电势、钝化电流等参数。

2、了解Cl-离子,缓蚀剂等因素对铁电极极化的影响。

3、讨论极化曲线在金属腐蚀与防护中的应用。

二、实验原理1、铁的极化曲线:金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。

例如Fe →Fe2++2e (1)2H++2e →H2(2) Fe将不断被溶解,同时产生H2。

Fe电极和H2电极及H2SO4溶液构成了腐蚀原电池,其腐蚀反应为:Fe+2H+→ Fe2++H2(3)这就是Fe在酸性溶液中腐蚀的原因。

当电极不与外电路接通时,其净电流为零。

即I corr=I Fe=-I H≠0。

图1中ra为阴极极化曲线。

当对电极进行阴极极化,即加比Ecorr更负的电势,反应(1) 被抑制,反应(2)加速,电化学过程以H2析出为主,这种效应称为“阴极保护”。

塔菲尔(Tafel)半对数关系,即:图1中ab为阳极极化曲线。

当对电极进行阳极极化时,即加比Ecorr更正的电势,则反应(2) 被抑制,反应(1) 加速,电化学过程以Fe溶解为主。

符合公式:2、铁的钝化曲线:abc段是Fe的正常溶解,生成Fe2+,称为活化区。

cd段称为活化钝化过渡区。

de段的电流称为维钝电流,此段电极处于比较稳定的钝化区, Fe2+离子与溶液中的离子形成FeSO4沉淀层,阻滞了阳极反应,由于H+不易达到FeSO4层内部,使Fe表面的pH增大,Fe2O3、Fe3O4开始在Fe表面生成,形成了致密的氧化膜,极大地阻滞了Fe的溶解,因而出现钝化现象。

ef段称为过钝化区。

图3中W表示研究电极、C表示辅助电极、r表示参比电极。

参比电极和研究电极组成原电池,可确定研究电极的电位。

辅助电极与研究电极组成电解池,使研究电极处于极化状态。

腐蚀过程的极化曲线分析

极化曲线分析钢筋的腐蚀过程极化曲线分析钢筋的腐蚀过程摘要:为了确定混凝土中钢筋锈蚀速率的控制因素,运用腐蚀极化曲线图分析活化钢筋阴阳极极化曲线和腐蚀电流随环境相对湿度的变化规律,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程。

结果表明,有锈蚀产物存在时,锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程的阴极去极化剂,钢筋的总腐蚀电流为氧去极化和锈蚀产物去极化产生的腐蚀电流的加和。

钢筋的总腐蚀电流随着环境相对湿度的提高而增大,和氧在混凝土中的扩散速率的变化趋势截然相反,从而证明氧仅是混凝土内钢筋开始的锈蚀的必备条件,但却不是混凝中钢筋锈蚀过程控制素。

关键词:混凝土;钢筋;极化曲线;氧;腐蚀产物混凝土中钢筋的锈蚀是一个非常复杂的电化学过程,目前国内外学者在建立钢筋锈蚀速率模型时,普遍借鉴了金属腐蚀学的研究成果,假定混凝土中钢筋的锈蚀速率受氧扩散速率所控制[1-7],这种假定的正确和合理性直接决定了由此建立的理论模型的适用程度.由于金属腐蚀学研究的对象,大都是金属处于溶液、水或土壤中,整个腐蚀过程受氧扩散控制已为无数的研究所证实。

然而大气环境混凝土中钢筋的腐蚀和前几种不同,目前已有的研究发现钢筋的锈蚀速率随混凝土湿含量增大而增大,直至混凝土饱水,钢筋锈蚀速率也没有出现下降[8-9],和混凝土中氧扩散速率的变化趋势[10]截然相反,这是上述假定所无法解释的.姬永生等[11]通过试验研究和钢筋锈蚀产物物相组成的变化分析证明锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程阴极反应的新的去极化剂,传统的氧作为单一阴极去极化剂的锈蚀机理面临着严峻的挑战。

因此,探究高湿供氧困难情况下混凝土内钢筋仍高速锈蚀的内在机理,对于建立正确、合理钢筋锈蚀速率模型具有重要的意义。

腐蚀极化曲线图是进行金属腐蚀机理分析的重要工具之一。

本文在文献[11]研究的基础上,运用腐蚀极化曲线图全面解释混凝土中钢筋锈蚀过程,探究混凝土由干燥到饱水变化过程混凝土内钢筋锈蚀速率变化的内在机理,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程,为预测钢筋混凝土的使用寿命奠定基础。

极化曲线腐蚀电流与腐蚀电位

极化曲线腐蚀电流与腐蚀电位介绍极化曲线是研究腐蚀电流与腐蚀电位之间关系的重要工具。

本文将从极化曲线的定义、测量方法以及与腐蚀电流、腐蚀电位的关系等方面进行详细探讨。

一、极化曲线的定义极化曲线是指在某一刺激作用下,随着刺激量的变化,所得到的反应物性质与刺激量间的关系曲线。

在腐蚀研究中,极化曲线描述的是电流与电位之间的关系。

二、极化曲线的测量方法1. 三电极系统为了测量极化曲线,通常使用一个工作电极、一个参比电极和一个对电极组成的三电极系统。

工作电极是被测样品,参比电极提供参比电位,对电极则是为了维持电路的稳定性。

2. 实验条件在测量极化曲线时,需要控制一些实验条件,比如溶液的组成、温度、电极表面的状态等。

这些条件的变化会对极化曲线产生影响,所以在测量过程中要保持这些条件的稳定性。

3. 电位扫描在测量极化曲线时,常用的方法是通过改变工作电极的电位来扫描整个电位范围。

通过记录工作电极的电流响应,可以得到不同电位下的腐蚀电流。

三、极化曲线与腐蚀电流的关系极化曲线中的腐蚀电流对应着电位上的表面腐蚀速率。

当电位越正时,腐蚀电流也越大,表示腐蚀速率增加。

而当电位越负时,腐蚀电流较小,腐蚀速率减小。

1. 极化曲线的形状极化曲线的形状可以反映出腐蚀行为的特点。

常见的极化曲线形状有Tafel曲线、线性极化曲线和非线性极化曲线等。

2. 极化曲线的参数极化曲线可以通过一些参数来描述。

常见的参数有Tafel斜率、交流阻抗和腐蚀电位等。

这些参数可以用来研究腐蚀行为及其机制。

3. 极化曲线的应用极化曲线在腐蚀研究和工程实践中有着重要的应用。

通过分析极化曲线,可以评估材料的腐蚀性能、预测腐蚀速率以及设计腐蚀防护措施等。

四、腐蚀电位与腐蚀电流的关系腐蚀电位是触发腐蚀过程的电位,而腐蚀电流是腐蚀过程中产生的电流。

腐蚀电位与腐蚀电流之间有一定的关系。

1. 过电位理论过电位理论是解释腐蚀电位与腐蚀电流关系的一种理论模型。

根据该理论,腐蚀过程中的电位是由电化学反应的阻抗决定的,而腐蚀电流则是由电化学反应的速率决定的。

阴极极化曲线的测定实验报告

阴极极化曲线的测定实验报告一、实验目的本实验旨在通过测定阴极极化曲线,掌握电化学腐蚀的基本概念和原理,了解阴极保护的方法和应用。

二、实验原理1. 电化学腐蚀电化学腐蚀是指金属在电解质溶液中发生的氧化还原反应,导致金属表面受到侵蚀和破坏的过程。

其主要原因是金属表面与溶液中存在的氧、水等物质发生氧化还原反应,形成氧化物或氢离子等产物,导致金属表面失去原有的结构和功能。

2. 阴极保护阴极保护是指通过在金属表面制造一定电位差,使其成为阴极而得到保护。

常用的阴极保护方法有阳极保护、外加电位法和牺牲阳极法。

3. 阴极极化曲线阴极极化曲线是指在一定条件下,测量阴极电位与对数电流密度之间关系得到的曲线。

该曲线可以反映出金属在特定条件下的耐蚀性和防护效果,是电化学腐蚀研究的重要工具之一。

三、实验步骤1. 准备工作(1)清洗试样:将试样用去离子水清洗干净,然后用酒精擦拭干净。

(2)制备电解质:取适量氯化钠和硫酸铜溶解于去离子水中,调节pH值至7左右。

(3)连接电路:将试样与电极连接好,接入电路中。

2. 测定阴极极化曲线(1)先进行开路电位测定,在无外加电压的情况下记录试样的开路电位。

(2)按照一定速率施加外加电压,记录不同外加电压下的阴极电位和对数电流密度。

(3)根据测得的数据绘制阴极极化曲线。

四、实验结果分析通过实验测定得到的阴极极化曲线可以反映出不同条件下金属表面的耐蚀性和防护效果。

一般来说,当阴极保护效果越好时,阴极极化曲线越平稳。

而当金属表面存在缺陷或者阴极保护效果不佳时,曲线会出现明显的波动和突变。

因此,通过对阴极极化曲线的测定和分析,可以评估金属表面的耐蚀性和防护效果,并选择合适的防腐措施进行保护。

五、实验注意事项1. 实验过程中应注意安全,避免触电和化学品溅出。

2. 试样应保持干燥清洁,避免污染和氧化。

3. 电解质的制备应按照一定比例和方法进行,pH值应控制在适宜范围内。

4. 测量数据时应注意记录准确,并进行有效处理和分析。

动电位极化曲线 计算腐蚀速率

主题:动电位极化曲线计算腐蚀速率目录1. 动电位极化曲线的概念及原理2. 腐蚀速率的计算方法3. 实际案例分析4. 结论与展望1. 动电位极化曲线的概念及原理动电位极化曲线是一种常用的腐蚀分析方法,它通过测定金属在一定电位范围内的极化曲线,来研究金属的腐蚀行为。

在动电位极化曲线中,横轴表示电位,纵轴表示电流密度。

通过测定金属在极化曲线上的拐点,可以得到金属的腐蚀电位和腐蚀电流密度,进而计算腐蚀速率。

动电位极化曲线的测定可以在自然环境下进行,也可以在实验室中通过电化学方法进行。

通过对动电位极化曲线的分析,可以了解金属在具体环境中的腐蚀行为,为腐蚀预防提供重要参考。

2. 腐蚀速率的计算方法腐蚀速率是描述金属在一定环境条件下腐蚀程度的重要指标。

根据动电位极化曲线的测定结果,可以采用以下方法来计算金属的腐蚀速率。

(1)泊松方程法泊松方程法是一种常用的计算腐蚀速率的方法。

它通过测定金属在不同电位下的动电位极化曲线,并利用泊松方程建立腐蚀速率和电流密度之间的关系,来计算腐蚀速率。

(2)球形极化曲线法球形极化曲线法是一种基于动电位极化曲线的计算腐蚀速率的方法。

它利用金属在球形电极下的动电位极化曲线,通过对曲线的分析,来计算金属的腐蚀速率。

(3)Tafel斜率法Tafel斜率法是一种通过测定金属在不同电位下的动电位极化曲线,利用Tafel斜率和Tafel方程来计算腐蚀速率的方法。

通过对Tafel斜率和Tafel方程的运用,可以较准确地计算金属的腐蚀速率。

3. 实际案例分析以某海洋评台上使用的钢结构为例进行分析,该钢结构在海水中进行了腐蚀测试,得到了相应的动电位极化曲线。

通过对曲线的测定和分析,得到了钢结构在海水中的腐蚀电位和腐蚀电流密度。

根据腐蚀电位和腐蚀电流密度,可以利用上述方法计算钢结构在海水中的腐蚀速率。

通过实际数据的分析和计算,可以较准确地了解钢结构在海水中的腐蚀状况,为相关腐蚀防护措施的制定提供重要参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极化曲线在电化学腐蚀中的应用娄浩(班级:材料化学13-1 学号:120133202059) 关键词:电化学腐蚀;极化;极化曲线;极化腐蚀图据工业发达国家统计,每年由于腐蚀造成的损失约占国民生产总值的l~4%,世界钢铁年产量约有十分之一因腐蚀而报废,因此研究金属腐蚀对于国民经济发展和能源的合理利用具有重大意义。

其中电化学腐蚀是金属腐蚀的一种最普遍的形式。

论文分析了电化学腐蚀的机理以及极化曲线的理论基础。

利用测量极化曲线的方法,研究金属腐蚀过程,已经得到广泛的应用。

1.金属腐蚀的电化学原理金属腐蚀学是研究金属材料在其周围环境作用下发生破坏以及如何减缓或防止这种破坏的一门科学[1]。

通常把金属腐蚀定义为:金属与周围环境(介质)之间发生化学或电化学而引起的破坏或变质。

所以,可将腐蚀分为化学腐蚀和电化学腐蚀[2]。

化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。

其反应的特点是金属表面的原子与非电解质中的氧化剂直接发生氧化还原反应,形成腐蚀产物[3]。

腐蚀过程中电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。

电化学腐蚀是指金属表面与电子导电的介质(电解质)发生电化学反应而引起的破坏。

任何以电化学机理进行的腐蚀反应至少包含有一个阳极反应和一个阴极反应,并以流过金属内部的电子流和介质中的离子流形成回路[4]。

阳极反应是氧化过程,即金属离子从金属转移到介质中并放出电子;阴极反应为还原过程,即介质中的氧化剂组分吸收来自阳极的电子的过程。

例如,碳钢[5]在酸中腐蚀,在阳极区Fe被氧化成Fe2+所放出的电子自阳极Fe流至钢表面的阴极区(如Fe3C)上,与H+作用而还原成氢气,即阳极反应:Fe - 2e →Fe2+阴极反应:2H+ + 2e →H2总反应:Fe + 2H+ →Fe2+ + H2与化学腐蚀不同,电化学腐蚀的特点在于,它的腐蚀历程可分为两个相对独立并可同时进行的过程。

由于在被腐蚀的金属表面上存在着在空间或时间上分开的阳极区和阴极区,腐蚀反应过程中电子的传递可通过金属从阳极区流向阴极区,其结果必有电流产生[6]。

电化学腐蚀是最普遍、最常见的腐蚀。

金属在大气、海水、土壤和各种电解质溶液中的腐蚀都属此类。

2.腐蚀电池的电极过程2.1 阳极过程腐蚀电池中电位较负的金属为阳极,发生氧化反应。

因此,阳极过程就是阳极金属发生电化学溶解或阳极钝化的过程。

M n+·ne + mH2O→M n+·mH2O + ne即金属表面晶格中的金属阳离子,在极性水分子作用下进入溶液,变成水化阳离子;而电子在阴、阳极电位差的作用下移向阴极,将进一步促进上述阳极反应的进行。

对于完整晶体的阳极溶解总是开始于晶格的顶端或边缘[7]。

而工业金属常存在异相析出或非金属夹杂,它们会引起晶格畸变,能量增高,使该处的金属原子容易溶解到溶液中去。

同样,晶格缺陷,如位错的露头点,滑移台阶处,也容易溶解。

溶液中的某些组分也容易吸附到这些晶体缺陷处,起到加速或抑制阳极溶解的作用。

当吸附的溶液在组分能与金属离子生成吸附络合物时,可降低阳极溶解活化能,从而促进阳极过程;反之,若溶液组分在金属表面上形成吸附阻挡层时,将妨碍金属离子进入溶液,从而抑制阳极过程。

2.2 阴极过程腐蚀电池的阴极过程指电解质溶液中的氧化剂与金属阳极溶解后释放出来并转移到阴极区的电子相结合的反应过程。

电化学腐蚀的阴极去极化剂和阴极还原反应主要是H+和溶液中的氧的还原反应。

(1)氢离子还原反应或析氢反应2H+ + 2e→H2此反应是电位较负的金属在酸性介质中腐蚀时常见的阴极去极化反应。

Zn、Al、Fe等金属的电极电位低于氢的电极电位。

因此这些金属在酸性介质中的腐蚀将伴随着氢气的析出,叫做析氢腐蚀。

腐蚀速度受阴极过程控制,且与析氢过电位的大小有关。

(2)溶液中溶解氧的还原反应在中性或碱性溶液中,发生氧化还原反应,生成OH- 离子:O2 + 2H2O + 4e→4OH-(3)在酸性溶液中发生氧还原反应,生成水:O2 + 4H++ 4e→2H2O阴极过程为氧的还原反应的腐蚀,叫吸氧腐蚀。

这是最普遍的一种电化学腐蚀。

大多数金属在大气、土壤、海水和中性盐溶液中的腐蚀主要靠氧的阴极还原反应,其腐蚀速度通常受氧扩散控制[8]。

在含氧的酸性介质中腐蚀时有可能同时发生上述H+离子和O2的两种还原反应。

3.金属腐蚀的极化现象当电极上有净电流通过时,电极电位显著偏离了未通电时开路电位(平衡电位或非平衡的稳态电位),这种现象叫做电极的极化。

3.1 阳极极化阳极上有电流通过时,其电位向正方向移动,称为阳极极化。

产生阳极极化的原因是:(1)活化极化因为阳极过程是金属离子从基体转移到溶液中,并形成水化离子的过程。

如果金属离子进入溶液的反应速度小于电子由阳极通过导线流向阴极的速度,则阳极就会有过多的正电荷积累,改变双电层电荷分布及双电层间的电位差,使阳极电位向正向移动,由于反应需要一定的活化能,使阳极溶解反应的速度迟缓于电子移去的速度,由此引起的极化叫活化极化。

(2)浓差极化阳极溶解产生的金属离子,首先进入阳极表面附近的液层中,使与溶液深处产生浓差。

在此浓度梯度下金属离子向溶液深处扩散。

但由于扩散速度不够快,致使阳极附近金属离子的浓度逐渐增高,阻碍阳极的进一步溶解。

这犹如该电极插入高浓度金属离子的溶液中,因此电位变正,产生阳极极化。

(3)电阻极化当金属表面有氧化膜,或在腐蚀过程中形成膜时,金属离子通过这层膜进入溶液中,或者阳极反反应生成的水化离子通过膜中充满电解液的微孔时,都有很大电阻。

阳极电流在此膜中产生很大的电压降,从而使电位显著变正。

由此引起的极化叫做电阻极化。

阳极极化可减缓金属腐蚀。

阳极极化程度的大小,直接影响阳极过程进行的速度。

通常用极化曲线来判断极化程度的大小。

极化曲线是表示电极电位与通过的电流密度之间的关系曲线。

曲线的倾斜程度表示极化程度,叫做极化度。

曲线越陡,极化度就越大,表示电极过程受阻滞程度越大,进行越困难。

3.2 阴极极化阴极上有电流通过时,电位向负方向移动,这种现象叫做阴极极化。

阴极极化的原因有:(1)活化极化(电化学极化)由于阴极还原反应需达到一定的活化能才能进行,使阴极还原反应速度小于电子进入阴极的速度,因而电子在阴极积累,结果使阴极电位向负方向移动,产生了阴极极化。

这种阴极极化是由于阴极还原反应本身的迟缓性造成的,称为活化极化或电化学极化。

(2)浓差极化.由于阴极附近反应物或反应产物扩散速度的缓慢,可引起阴极浓差极化。

例如,溶液中的氧或氢离子到达阴极的速度小于阴极反应本身的速度,造成阴极表面附近氧或氢离子的缺乏,结果产生浓差极化,使阴极电位变负。

阴极极化表示阴极过程受到阻滞,使来自阳极的电子不能及时被吸收,因此阻碍金属腐蚀的进行。

反之,消除阴极极化的过程叫做阴极去极化。

阴极去极化的作用,使阴极过程顺利进行,因此可维持或加速腐蚀过程。

4.腐蚀极化图图2-4为一腐蚀电池。

开路时,测得阴、阳极的电位分别为Eoc和EoA。

然后用高阻值的可变电阻把二电极连接起来,依次使电阻R值由大变小,电流则由零逐渐变大,相应地测出各电流强度下的电极电位,绘出阴、阳极电位与电流强度的关系图,如图2-5就是腐蚀极化图。

由图可见,电流随电阻尼减小而增加,同时电流的增加引起电极极化:使阳极电位变正,阴极电位变负,从而使两极间的电位差变小。

由于足是任意调节的,R 减小对电流的影响远远超过电位差减小对电流的影响。

故总结果使电流趋于增大。

当包括电池内、外电阻在内的总电阻减小趋近于零时,电流达到最大值Imax 。

此时阴、阳极极化曲线将交于S 点[9]。

这时阴、阳极电位相等,即电位差为零。

但实际上得不到交点S 。

因为总电阻不可能等于零,即使两电极短路,外电阻等于零,仍有电池的内阻存在。

因此,电流只能接近于Imax 。

腐蚀极化图是一种电位—电流图,它是把表征腐蚀电池特征的阴、阳极极化曲线画在同一张图上构成的。

为了方便起见,常常忽略电位随电流变化的细节,将极化曲线画成直线形式。

这样可得到如图2-6所示的简化的腐蚀极化图,也称为Evans图。

图中阴、阳极的起始电位为阴极反应和阳极反应的平衡电位,分别以Eoc和EoA 表示。

若忽略溶液电阻,图中简化的极化曲线可交于一点S。

交点对应的电位,叫混合电位,处于两电极电位之间。

由于此阴、阳极反应构成了腐蚀过程,所以混合电位就是自腐蚀电位,简称为腐蚀电位,用Ecorr表示。

显然,腐蚀电位是一种不可逆的非平衡电位,可由实验测得。

图中与腐蚀电位对应的电流叫做腐蚀电流。

金属就是以此电流表示的速度不断地腐蚀着。

一般情况下,腐蚀电池中阴极和阳极面积是不相等的,但稳态下流过的电流强度是相等的,因此用E-I 极化图较为方便。

对于均匀腐蚀和局部腐蚀都适用。

在均匀腐蚀条件下,整个金属表面同时起阴极和阳极的作用,可以采用电位一电流密度极化图。

5.结论腐蚀极化图是研究电化学腐蚀的重要工具[10],用途很广。

利用极化图可以确定腐蚀的主要控制因素,解释腐蚀现象,分析腐蚀过程的性质和影响因素,判断添加剂的作用机理,以及用图解法计算多电极体系的腐蚀速度等。

可以说,极化图构成了电化学腐蚀的理论基础,是腐蚀科学最终的理论工具。

参考文献:[1]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993:1-6[2]李荻主编.电化学原理[M].北京:北京航空航天大学出版社,2002:56—61[3]杨辉,卢文庆编著.应用电化学[M].北京:科学出版社,2002:82—91[4]吴开源,王勇,赵卫民.金属结构的腐蚀与防护[M].山东东营:中国石油大学出版社,2004:14-17[5]俞蓉蓉,蔡志章主编.地下金属管道的腐蚀与防护[M].北京:石油工业出版社,1998:2-3[6]Christopher M.A.Brett and Maria Oliveira Brett.Electrochemistry-Principles,Methodsand Applications[M].UK:Oxford University Press,1993.102-106[7]张祖训,汪尔康编著.电化学原理和方法[M].北京:科学出版社,2000:34-40[8]J.Wang.Analytical Electrochemistry[M].(2nd Ed.),John Wiley & Sons,Inc.,2001:71-74[9]彭图治,王国顺主编.分析化学手册,第四分层,电分析化学[M].北京:化学工业出版社,1999:63-65[10]高小霞等著.电分析化学导论[M].北京:科学出版社,1986:86—89。

相关文档
最新文档