(2021年整理)高考数学公式总结
高考数学公式总结

高考数学常用公式汇总一、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
注:减一个真子集,减一个空集二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac ab 4422, 二、 三角函数3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
(正负看原来的三角比)函数Bx A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是Tf 1=,相位是ϕω+x ,初相是ϕ; 13、在△ABC 中:-tanC B)+tan(A -cosC B)+cos(A sinC =B)+sin(A ==三、数列1、等差数列的通项公式是d n a a n )1(1-+=, 2)(1n n a a n S +=2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、若m 、n 、p 、q ∈N ,且q p n m +=+,那么: 当数列{}n a 是等差数列时,有q p n m a a a a +=+; 当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。
四、 排列组合1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类加;乘法分步,步步乘。
2、排列数公式是:m n A =)1()1(+--m n n n =!!)(m n n -;组合数公式是:m n C =!m A mn 组合数性质:mn C =mn nC - m n C +1-m n C =mn C 1+五、解析几何1、 A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、 若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P 成定比λ,则: =λλ++121x x =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC的重心G的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,。
数学高考复习公式记忆口诀大全

数学高考复习公式记忆口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。
?nbsp;变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
高考数学必备的重要公式归纳大全

高考数学必备的重要公式归纳大全进入高三,我们必须对自己所学的各科知识的有个全面的把握,作为高三学生熟记数学的每个公式,为你为期不久的高考作好准备。
下面是为大家整理的关于高考数学必备的重要公式归纳,希望对您有所帮助!高考数学万能公式概率公式定义:p(A)=m/n,全概率公式(贝页斯公式)某事件A是有B,C,D三种因素造成的`,求这一事件发生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率诱导公式弧度制下的角的表示:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)sec(2kπ+α)=secα (k∈Z)csc(2kπ+α)=cscα (k∈Z) 角度制下的角的表示: sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan (α+k·360°)=tan α(k∈Z)cot(α+k·360°)=cotα (k∈Z)sec(α+k·360°)=secα (k∈Z)csc(α+k·360°)=cscα (k∈Z)对数的基本性质如果a0,且a≠1,M0,N0,那么:1.a^log(a)(b)=b2.log(a)(a)=13.log(a)(MN)=log(a)(M)+log(a)(N);4.log(a)(M÷N)=log(a)(M)-log(a)(N);5.log(a)(M^n)=nlog(a)(M)6.log(a)[M^(1/n)]=log(a)(M)/n 定积分形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。
新高考数学公式知识点汇总

新高考数学公式知识点汇总在新高考改革背景下,学生们在数学考试中将会遇到更加注重能力培养和实际运用的题目。
而数学公式作为数学学习的重要基础,对于学生而言也是必备的知识点。
下面将为大家整理一份新高考数学公式的知识点汇总,希望能够对大家的学习有所帮助。
一、平面解析几何公式平面解析几何公式是数学中的重要内容,建立在笛卡尔坐标系的基础上,主要用于描述平面上的几何关系。
1. 点到直线的距离公式设直线的方程为Ax+By+C=0,点的坐标为(x0, y0),则点到直线的距离为:d = |Ax0 + By0 + C| / √(A^2 + B^2)2. 直线的斜率公式设直线上两点的坐标分别为(x1, y1)和(x2, y2),则直线的斜率为:k = (y2 - y1) / (x2 - x1)3. 直线的点斜式和斜截式设直线通过点(x0, y0),斜率为k,则直线的点斜式和斜截式分别为:点斜式:y - y0 = k(x - x0)斜截式:y = kx + b二、立体几何公式立体几何公式主要涉及到空间中的几何图形的计算,是解决空间几何问题的基础。
1. 球体积公式设球体半径为r,则球体积为:V = (4/3)πr^32. 圆柱体体积公式设圆柱体的底面半径为r,高为h,则圆柱体体积为:V = πr^2h3. 圆锥体体积公式设圆锥体的底面半径为r,高为h,则圆锥体体积为:V = (1/3)πr^2h三、数列与级数公式数列与级数是数学中的重要概念,它们有着广泛的应用,特别是在数学建模等领域。
1. 等差数列通项公式设等差数列的首项为a1,公差为d,则第n项为:an = a1 + (n-1)d2. 等差数列求和公式设等差数列的首项为a1,末项为an,项数为n,则等差数列的和为:Sn = (n/2)(a1 + an)3. 等比数列通项公式设等比数列的首项为a1,公比为q,则第n项为:an = a1 * q^(n-1)四、微积分基本公式微积分是数学中的重要分支,研究函数的变化规律和求解曲线下的面积等问题。
高考数学必背公式整理(衡水中学高中数学组)

高考数学必背公式整理(衡水中学高中数学组)以下是高考数学必背的公式整理(衡水中学高中数学组):1.一次函数的定义式:y = kx + b;-斜率公式:k = (y₂ - y₁) / (x₂ - x₁);-截距公式:b = y - kx;2.二次函数的标准式:y = ax² + bx + c;-顶点坐标公式:x = -b / (2a),y = -(Δ) / (4a);(Δ表示判别式)-开口方向:a > 0(开口向上),a < 0(开口向下);-判别式:Δ = b² - 4ac;- x与y轴交点:x₁ + x₂ = -b / a,x₁ * x₂ = c / a;3.直线的斜截式:y = kx + b;-斜率公式:k = tanθ,θ为直线与x轴的夹角;-截距公式:b = y - kx;-直线的两点式:(x - x₁) / (x₂ - x₁) = (y - y₁) / (y₂ - y₁);4.三角函数的基本关系:-正弦定理:a / sinA = b / sinB = c / sinC;-余弦定理:a² = b² + c² - 2bc * cosA;-正弦函数:sinA = a / c,正弦值的取值范围[-1, 1];-余弦函数:cosA = b / c,余弦值的取值范围[-1, 1];-直角三角形中,cosA = sin(90° - A);5.数列与数学归纳法:-等差数列通项公式:an = a₁ + (n - 1)d;-等差数列前n项和公式:Sn = (a₁ + an) * n / 2;-等比数列通项公式:an = a₁ * q^(n - 1);-等比数列前n项和公式:Sn = (a₁ * (1 - q^n)) / (1 - q);这里只列举了一些高考必备的数学公式,但数学的知识体系非常广泛深厚,其中还包括一元二次方程的求解、函数的性质与图像、立体几何的计算等等,这些需要学生掌握并灵活运用。
高中高考数学公式大全

高中高考数学公式大全1.代数公式- 二次方程根公式:若ax^2+bx+c=0 (a≠0),则 x=(-b±√(b^2-4ac))/(2a)。
-二次三项全解公式:若知二次三项完全分解为(x-a)(x-b)(x-c)=0,则x=a,b,c。
- 余弦和公式:cos(A±B)=cosAcosB∓sinAsinB。
- 余弦差公式:cos(A-B)=cosAcosB+sinAsinB。
- 正弦和公式:sin(A±B) = sinAcosB±cosAsinB。
- 正弦差公式:sin(A-B) = sinAcosB-cosAsinB。
- 二项式定理:(a+b)^n = C(n,0)a^n b^0+C(n,1)a^(n-1)b+C(n,2)a^n^(n-2)b^2+…+C(n,n)na^0 b^n。
2.几何公式-长方形面积公式:面积=长×宽。
-正方形面积公式:面积=边长×边长。
-圆面积公式:面积=πr^2-平行四边形面积公式:面积=底边×高。
-梯形面积公式:面积=(上底+下底)×高÷2-三角形面积公式:面积=底边×高÷2- 三角形余弦定理:c^2 = a^2 + b^2 - 2abcosC。
- 三角形正弦定理:sinA/a = sinB/b = sinC/c。
- 三角形正弦面积公式:面积 = (1/2)abSinC。
-三角形内切圆半径公式:r=面积/半周长。
3.数列和数列项公式-等差数列通项公式:an = a1 + (n-1)d。
-等差数列前n项和公式:Sn = (n/2)(a1 + an)。
-等差数列等差公式:dn = an+1 - an。
-等差数列求和公式:Sn=(2a1+(n-1)d)n/2-等比数列通项公式:an = a1 * q^(n-1)。
-等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
2021年高考数学总复习核心突破第5章三角函数5.6倍角公式课件
【答案】A
2.下列各式中错误
..的是 (
)
B.tan2α=
−
A.sin2α=2sinαcosα
2
C.cos2α=2cos α+1
2
2
D.cos2α=cos α-sin α
【答案】C
3.已知
cosα=-,且
4.若 tanA=2,则
α 为钝角,则 sin2α= -
tan(2A- )=
cos2α=
(二)根底训练
2
1.计算:2cos -1=
2
2
2.计算:cos -sin =
.
.
3.计算:sin15°cos15°=
°
4.计算:
=
− °
.
.
ห้องสมุดไป่ตู้
二、探究提高
【例 1】 化简(+)(−).
=
=tan2α.
−
【解】 原式=
【例 2】 若 sinα=,α 为钝角,求 tan2α.
【解】
由 sin2α+cos2α=1,sinα= 且 α 为钝角,则 cosα=- .
∴sin2α=2sinαcosα=2··(-)=-,
所以 sinα=.
所以 cos(α+ )=cosα·cos -sinα·sin ,
=-· -· =- .
即所求
cos(α+ )=- .
【口袋书】高考数学公式手册_2021
高中数学常用公式及常用结论1.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R⇔= 2.集合12{,,,}n a a a 的子集个数共有2n个;真子集有12-n 个;非空子集有2n–1个;非空的真子集有2n –2个.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒pp 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p4.全称命题、特称命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M 中任意一个x ,有p (x )成立∀x ∈M ,p (x )∃x 0∈M ,綈p (x 0)特称命题存在M 中的一个x 0,使p (x 0)成立∃x 0∈M ,p (x 0)∀x ∈M ,綈p (x )5.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.7.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.8.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.9.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -=的图象关于直线2ba x +=对称.10.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.11.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.12.几个常见的函数方程(1)正比例函数()f x cx =(2)指数函数()xf x a =(3)对数函数()log a f x x =(4)幂函数()f x x α=,.(5)余弦函数()cos f x x =,正弦函数()sin g x x =13.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2))()(a x f x f +-=,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;14.分数指数幂(1)m na=0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).15.根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.16.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.17.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).18.对数的四则运算法则若a >0,a≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N=-;(3)log log ()n a a M n M n R =∈.19.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.20.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.21.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩(数列{}n a 的前n 项的和为12n n s a a a =+++ ).22.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d-=+23.等比数列的通项公式1*11()n nn a a a qq n N q-==⋅∈;211()22d n a d n =+-其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.24.常见三角不等式(1)若(0,2x π∈,则sin tan x x x <<.(2)若(0,)2x π∈,则1sin cos x x <+≤.25.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin 26.正弦、余弦的诱导公式公式一二三四五六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcosα-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀函数名不变,符号看象限函数名改变,符号看象限27.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).28.二倍角公式αααcos sin 22sin =.2222cos 2cos sin 2cos 112sin ααααα=-=-=-(升幂公式)cos 2α=1+cos 2α2;sin 2α=1-cos 2α2;(降幂公式)22tan tan 21tan ααα=-.29.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.30.正弦定理2sin sin sin a b cR A B C===.31.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.32.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.33.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+.34.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.35.a 与b 的数量积(或内积)a ·b =|a ||b |cosθ.36.a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cosθ的乘积.37.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).平面两点间的距离公式,A B d=||AB ==(A 11(,)x y ,B 22(,)x y ).向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.38.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.39.三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.40.基本不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).注:已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .41.含有绝对值的不等式当a>0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.42.指数不等式与对数不等式(1)当1a >时:()()()()f x g x aa f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时:()()()()f x g x aa f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩43..斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).44.直线的五种方程(1)点斜式11()y y k x x -=-(直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式0Ax By C ++=(其中A 、B 不同时为0).45.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=;46.常用直线系方程(1)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(2)垂直直线系方程:与直线0Ax By C ++=(A≠0,B≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.47.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).48.圆的方程(1)圆的标准方程222()()x a y b r -+-=.(2)圆的一般方程220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程cos sin x a r y b r θθ=+⎧⎨=+⎩.即三角换元49.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.50.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.51.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,dO O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .52.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时,0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±.53.椭圆的概念平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c <2a ,其中a >0,c >0,且a ,c 为常数.椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点顶点坐标A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系a2=b2+c2椭圆的切线方程(1)椭圆22221(0)x y a ba b+=>>上一点00(,)P x y处的切线方程是00221x x y ya b+=.(2)过椭圆22221(0)x y a ba b+=>>外一点00(,)P x y所引两条切线的切点弦方程是54.双曲线的概念平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c>2a,其中a,c为常数且a>0,c>0.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y =±b a xy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ,线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是55.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线的标准方程和几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长px x px p x CD ++=+++=212122.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .56.直线与圆锥曲线相交的弦长公式|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]k 为直线斜率).57.(1)线面平行的判定定理和性质定理(2)面面平行的判定定理和性质定理(3(458.共线向量定理对空间任意两个向量a 、b (b ≠0),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.59.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.60.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++ .61.空间向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则(1)a +b =112233(,,)a b a b a b +++;(2)a -b =112233(,,)a b a b a b ---;(3)λa =123(,,)a a a λλλ(λ∈R);(4)a ·b =112233a b a b a b ++;62.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-=212121(,,)x x y y z z ---.63.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r ⇔1212120x x y y z z ++=.64.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉.65.(1)异面直线所成角cos |cos ,|a b θ=r r =||||||a b a b ⋅⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)(2)直线l 与平面α所成角sin cos l nl nθϕ⋅==(其中直线l 的方向向量为l ,平面α的法向量为n,l 与α所成的角为θ,l 与n 的夹角为ϕ)(3).二面角l αβ--的平面角1212co s n n n n θ⋅=(其中1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为)66.(1)空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d=||AB ==.(2).异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).(3)点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).67.球的半径是R ,则其体积343V R π=,其表面积24S R π=.68.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.69.柱体、锥体的体积sh V =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).70.分类计数原理(加法原理)12nN m m m =+++ .分步计数原理(乘法原理)71.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.72.组合数公式m n C=m n m m A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).73.组合数的两个性质(1)mn C =mn nC -;(2)m n C +1-m nC =m n C 1+.注:规定10=n C .(3)nnn rn n n n C C C C C 2210=++++++ .(4)1425312-+++=+++n n n n n n n C C C C C C .(5)1321232-=++++n nn n n n n nC C C C .74.排列数与组合数的关系12nN m m m =⨯⨯⨯m m n nA m C =⋅!.75.二项式定理nn n r r n r n n n n n nn nb C b a C b a C b aC a C b a ++++++=+--- 22211)(;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,, =.76.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n k n n P k C P P -=-77.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥= ;(2)121P P ++= .78.数学期望1122n n E x P x P x P ξ=++++数学期望的性质(1)()()E a b aE b ξξ+=+.(2)若ξ~(,)B n p ,则E np ξ=.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+标准差σξ=ξD .方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.79.正态分布密度函数()()()2226,,x f x x μ--=∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.80.回归直线方程y a bx =+,其中()()()112211nni i i ii i n ni i i i x x y y x y nx yb x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑.81.相关系数|r|≤1,且|r|越接近于1,相关关系越强;|r|越接近于0,相关关系越弱.82.)(x f 在0x 处的导数(或变化率或微商)00000()()()limlimx x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆.83.函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.84.几种常见函数的导数(1)0='C (C 为常数).(2)'1()()n n x nxn Q -=∈.(3)x x cos )(sin ='.(4)x x sin )(cos -='.(5)x x 1)(ln =';e a x xa log 1)(log ='.(6)x x e e =')(;a a a xx ln )(='.85.导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠.86.复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u xy y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.87.判别)(0x f 是极大(小)值的方法当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值;(2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.88.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)89.复数z a bi =+的模(或绝对值)||z =||a bi +.90.复数的四则运算法则(1)()()()()a bi c di a c b d i +++=+++;(2)()()()()a bi c di a c b d i +-+=-+-;(3)()()()()a bi c di ac bd bc ad i ++=-++;(4)2222()()(0)ac bd bc ada bi c di c di c d c d +-+÷+=++≠++.。
2021数学高考知识点归纳总结
2021数学高考知识点归纳总结2021数学高考知识点归纳总结高三学生在备考高考数学的时候经常出现问题,既浪费了时间又浪费了精力。
为了帮助高三学生有效复习,下面给大家带来数学高考知识点归纳总结,一起来看看吧!高考数学备考知识点【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
_译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高三年级数学必考知识点【一】一、柱、锥、台、球的结构特征结构特征图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.二、简单组合体的结构特征三、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
高考数学公式理科总结
高考数学公式理科总结高考数学公式理科总结数学作为高考的一门科目,深受大多数理科生的青睐。
因为无论是数学的思维锻炼还是需要掌握的数学公式,都是高考备考不可或缺的一部分。
今天,我们就来总结一下理科数学中常用的数学公式及其应用。
一、代数部分1.一元二次方程公式:ax²+bx+c=0,求根公式为x=(-b±√b²-4ac)/2a。
应用:用于求解一元二次方程,例如求解公路修建所需要的材料和成本等。
2.等比数列公式:an=a1q^(n-1)(其中a1为首项,q为公比,an为第n项)。
应用:用于解决各种与成长或增长相关的问题,如人口增长、利润的增长等。
3.排列组合公式:排列公式为A(n,m)=n!/(n-m)!,组合公式为C(n,m)=n!/m!(n-m)!。
应用:用于处理不同的复杂问题,例如排列组合问题、选择问题、不重复随机抽样问题等。
二、几何部分1.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
应用:用于三角函数问题,例如角度求解、三角函数值等。
2.圆公式:圆的面积公式为A=πr²,圆的周长公式为C=2πr。
应用:用于解决圆形问题,例如圆周运动、圆的切线、圆的切点等。
3.立体几何公式:三棱锥表面积公式为S=ab+a√(a²+b²+c²-2abcosA),三棱锥体积公式为V=1/3abh。
应用:用于解决空间几何问题,例如三棱锥表面积和体积的计算等。
三、概率统计部分1.样本调查公式:样本调查中常用的统计量有平均数、中位数、众数、方差、标准差、相关系数、回归方程等。
应用:用于处理随机事件、样本调查、统计数据等问题。
2.基本概率公式:P(A)=m/n,其中m表示事件A的样本点个数,n表示整个样本点个数。
应用:用于基本的统计概率问题,例如计算事件发生的概率等。
3.正态分布公式:正态分布的概率密度函数为f(x)=1/σ√2πexp(-(x-μ)²/(2σ²))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学公式总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学公式总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学公式总结的全部内容。
高考数学常用公式汇总一、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
注:减一个真子集,减一个空集二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422, 二、三角函数3、诱导公式可用十个字概括为:奇变偶不变,符号看象限.(正负看原来的三角比)函数Bx A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是Tf 1=,相位是ϕω+x ,初相是ϕ; 13、在△ABC 中:-tanC B)+tan(A -cosC B)+cos(A sinC =B)+sin(A ==三、数列1、等差数列的通项公式是d n a a n )1(1-+=, 2)(1n n a a n S += 2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n3、若m 、n 、p 、q ∈N,且q p n m +=+,那么: 当数列{}n a 是等差数列时,有q p n m a a a a +=+; 当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。
四、排列组合1、 加法原理、乘法原理各适用于什么情形?有什么特点?加法分类,类类加;乘法分步,步步乘.2、排列数公式是:m n A =)1()1(+--m n n n =!!)(m n n -;组合数公式是:m n C =!m A mn组合数性质:m n C =m n n C - m n C +1-m n C =m n C 1+五、解析几何1、 A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、 若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P成定比λ,则: x =λλ++121x x y =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,.6、 求直线斜率的定义式为k=αtan ,两点式为k=1212x x y y --。
7、直线方程的几种形式:点斜式:)(00x x k y y -=-, 斜截式:b kx y += 两点式:121121x x x x y y y y --=--, 截距式:1=+bya x一般式:0=++C By Ax直线222111b x k y l b x k y l +=+=:,:,则从直线1l 到直线2l 的角θ满足:21121tan k k k k +-=θ直线1l 与2l 的夹角θ满足:21121tan k k k k +-=θ8、 点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=10、两条平行直线002211=++=++C By Ax l C By Ax l :,:距离是2221BA C C d +-=11、圆的标准方程是:222)()(r b y a x =-+-圆的一般方程是:)04(02222>-+=++++F E D F Ey Dx y x12、圆),(00222y x P r y x 的以=+为切点的切线方程是200r y y x x =+此点在曲线上14、研究圆与直线的位置关系最常用的方法有两种,即:①判别式法:Δ〉0,Δ=0,Δ〈0,等价于直线与圆相交、相切、相离;②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。
15、抛物线标准方程的四种形式是:,,px y px y 2222-==。
,py x py x 2222-==16、抛物线px y 22=的焦点坐标是:⎪⎭⎫⎝⎛02,p ,准线方程是:2p x -=。
过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是:p 2。
17、椭圆标准方程的两种形式是:12222=+b y a x 和12222=+bx a y )0(>>b a .18、椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是ace =,其中222b a c -=.19、双曲线标准方程的两种形式是:12222=-b y a x 和12222=-bx a y )00(>>b a ,.20、双曲线12222=-b y a x 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是ace =, 渐近线方程是02222=-by a x 。
其中222b a c +=。
21、与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x )0(≠λ。
22、若直线b kx y +=与圆锥曲线交于两点A(x 1,y 1),B (x 2,y 2),则弦长为2212))(1(x x k AB -+=;六、参数方程1、圆心在点)(b a C ,,半径为r 的圆的参数方程是:⎩⎨⎧+=+=)(sin cos 是参数αααr b y r a x 。
2、横椭圆的参数方程是:⎩⎨⎧==)(sin cos 是参数αααb y a x七、简易逻辑1. 可以判断真假的语句叫做命题。
2.3. 逻辑连接词有“或"、“且”和“非”。
4.5. p 、q 形式的复合命题的真值表:6. 命题的四种形式及其相互关系互否 否 否 否 否 否 互 逆 原命题与逆否命题同真同假;逆命题与否命题同真同假。
九、 平面向量1.运算性质:()()a a a cb ac b a a b b a =+=+++=+++=+00,, 2.坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.3.实数与向量的积的运算律:()()→→→→→→→→→+=⎪⎭⎫⎝⎛++=+=⎪⎭⎫ ⎝⎛b a b a a a a a a λλλμλμλλμμλ,, 设()y x a ,=→,则λ()()y x y x a λλλ,,==→,4.平面向量的数量积:定义:()01800cos ≤≤⋅=⋅→→→→θθb a b a 00=⋅→→a .注意向量夹角可为钝角运算律:⎪⎭⎫⎝⎛⋅=⎪⎭⎫ ⎝⎛⋅=⋅⎪⎭⎫ ⎝⎛⋅=⋅→→→→→→→→→→b a b a b a a b b a λλλ,→→→→→→→⋅+⋅=⋅⎪⎭⎫ ⎝⎛+c b c a c b a坐标运算:设()()2211,,,y x b y x a ==→→ ,则2121y y x x b a +=⋅→→5。
重要定理、公式:(1) 平面向量的基本定理如果→1e 和→2e 是同一平面内的两个不共线向量 ,那么对该平面内的任一向量→a ,有且只有一对实数 21,λλ ,使→→→+=2211e e a λλ(2) 两个向量平行的充要条件→→→→=⇔b a b a λ// )(R ∈λ ⇔→→b a // 01221=-y x y x(3) 两个非零向量垂直的充要条件0=⋅⇔⊥→→→→b a b a 02121=+⇔⊥→→y y x x b a(4) 线段的定比分点坐标公式设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且→→=21PP P P λ ,则⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x(5) 平移公式如果点 P (x ,y )按向量()k h a ,=→平移至P ′(x ′,y ′),则⎪⎩⎪⎨⎧+=+=.,''k y y h x x 新=旧+旧十、 概率(1)若事件A 、B 为互斥事件,则P(A+B)=P (A )+P (B )(2)若事件A 、B 为相互独立事件,则P (A ·B )=P(A )·P (B )(3)若事件A 、B 为对立事件,则()()A P A p -=1 (4)如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事恰好发生K 次的概率 ()()k n kk n n p p C K P --=1十一、文科导数(1)函数()x f y =在点0x 处的导数的几何意义,就是曲线()x f y =在点P (0x ,f (0x ))处的切线的斜率.(2)几个重要函数的导数①0'=C ,(C 为常数)②()()Q n nx x n n ∈=-1'(3)导数应用①使()x f '〉0的区间为增区间,使()x f '<0的区间为减区间。
②函数...()x f 求极值的步骤: ⅰ.求导数()x f 'ⅱ。
求方程()x f '=0的根n x x x ,,,21 ⅲ.研究单调性判断极大或极小值 ③闭区间求最值ⅰ。
求极值ⅱ。
求端点函数值,比大小。