基因工程载体的条件

合集下载

基因工程导论

基因工程导论
3‘ … C-G-A-G-P OH-A-C-G-T-C-C-T-C … 5’
退火 4-7 ℃
5‘ … G-C-T-C-T-G-C-A G-G-A-G … 3’
3‘ … C-G-A-G A-C-G-T-C-C-T-C … 5’
OH
P
OH
H i n d III H i n d III 同一菌株中所含的多个不同的限制性核酸内切酶
Haemophilus influenzae d 嗜血流感杆菌d株 限制性核酸内切酶的命名 属名 种名 株名
限制性核酸内切酶
限制性核酸内切酶
II 型限制性核酸内切酶的基本特性
3‘ … C-G-A-G-A-C-G-G-C-C-T-C … 5’
ds-DNA结构: 切口, 缺口, 断口
缺口(gap) 切口(nick) 断口(cut)
3'HO P5'
3'HO P5'
DNA连接酶
DNA连接酶的基入型载体
取代型载体
噬菌体或病毒DNA
噬菌体或病毒DNA
大肠杆菌的 l 噬菌体DNA
l-DNA载体的构建:缩短长度 插入型载体
体外包装
插入位点
体外包装
插入片段
载体长度 37 kb
插入片段大小:
0 - 14 kb
(51 – 37)
噬菌体或病毒DNA
大肠杆菌的 l 噬菌体DNA
1973年 伯格-杰克森-考恩-鲍耶 DNA分子体外拼接
分子遗传学
1953年 沃森-克瑞克 DNA双螺旋结构 分子生物学
基因工程
标题
01
基因工程的基本条件
02
C 用于基因转移的受体菌或细胞
04
A 用于核酸操作的工具酶

基因工程的载体

基因工程的载体

常用抗生素的作用方式及抗性机理
抗生素名称 氨苄青霉素 (Amp) 氯霉素 (Cm) 卡那霉素 (Kan) 链霉素 (Sm) 四环素 (Tet) 作用方式 抗性机理 一种青霉素的衍生物,通过干扰 bla抗性基因编码的一种周质酶,即β-内 细菌胞壁合成之末端反应,而杀 酰胺酶,可特异的切割amp的β-内酰胺 死生长细胞。 环,从而失去杀菌效力。 一种抑菌剂,通过同核糖体50S 亚基的结合作用,干扰细胞蛋白 质的合成,并阻止肽键的形成。 cat抗性基因编码乙酰转移酶,特异地使 氯霉素乙酰化而失活
λ噬菌体载体
结构特点: ①线性双链DNA分子 ②具非必需区(约1/3长度) ③两端具12个核苷酸单链互补粘性末端 ④可在E.coli中大量繁殖 ⑤可克隆15Kb左右的外源DNA
(2)质粒的基本特性
1) 2) 3) 4) 5) 自主复制性 不相容性 可扩增性 可转移性 携带遗传标记 野生型的质粒DNA上往往携带一个或多个遗传 标记基因,这使得寄主生物产生正常生长非必需 的附加性状,包括:抗生素、抗抗生素、抗重金 属、产生细菌毒素等。对DNA重组分子的筛选具有 重要意义。
(3)质粒DNA的转移
质粒自主转移
导入
+
自主转移
+
无DNA转移
donor
H H
H
+
辅助转移
H
+
质粒的辅助转移
H
H
+
Notransfer
质粒的重组转移
R-重组DNA分子
重组

+
DNA 转移
R
+ R
(4)质粒的命名
人工组建的质粒 第一个字母是质粒的英文名字(Plasmid)的第一 个字符p, 用小写。后面有两个字母是大写,代表质 粒的发现者和实验室名称,再后面是质粒的编号。

2.2 基因工程所需的基本条件

2.2 基因工程所需的基本条件

常用抗菌素的抗性工作原理
i)氨苄青霉素(ampicillin,Amp)
青霉素的衍生物。 a)抑菌原理 通过干扰细菌细胞壁合成的末端反应, 杀死生长的细菌。 b)细菌抗性原理 Ampr基因编码-内酰胺酶,特异地切割氨 苄青霉素的-内酰胺环。
ii)氯霉素(chloromycetin,Cml)
a)抑菌原理
DNA连接酶类型:
(1)大肠杆菌连接酶
只能连接粘性末端
(2)T4噬菌体连接酶
不但能连接粘性末端;还能连接平末端
DNA连接的反应体系:

酶切纯化后的DNA片断 连接缓冲液 DNA连接酶
连接温度: 4~16C
(三)其他工具酶 工具酶 功 能
DNA聚合酶 DNA的合成,PCR 反转录酶 合成cDNA
2. 质粒的一般生物学特性 (1)分子小 (2)编码基因少 2—3个中等大小的蛋白质。 如抗生素抗性等,赋予细菌一些额外的特性(非 必须)。 (3)环形状 1—200 kb
双链环状DNA。
(4) 质粒的空间构型
① 共价闭合环状DNA (SC DNA)
呈超螺旋(SC)(super coil)
② 开环DNA( open circular, OC DNA)
指载体上人工合成的含有紧密排列的多种限制性 核酸内切酶的酶切位点的DNA片段。
(4)具有较小的分子量和较高的拷贝数
(5)插入外源基因的重组质粒较易导入宿主细胞并 复制和表达。
5. 质粒的选择标记
① 抗生素抗性标记 绝大多数质粒载体都是用抗生素抗性标记:
氨苄青霉素抗性(Ampr) 卡那霉素抗性 (Kanr) 四环素抗性 (Tetr) 链霉素抗性 (Strr) 氯霉素抗性 (Cmlr) ② 遗传标记 使受体菌发生遗传性状的改变的基因。 如LacZ’基因互补显色(α -互补)

4基因工程-载体

4基因工程-载体

4.质粒是基因工程的常用载体,下列关于它的说法正确的是( D )
A.具有环状结构的染色体,能够携带目的基因 DNA B.含蛋白质,从而能完成生命活动 C.是 RNA,能够指导蛋白质的合成 D.能够自我复制,从而保持连续性
—CTTAAG—
—G —CTTAA
EcoR I切点
AATTC— G—
碱基互补配对
(2)DNA 连接酶是基因操作的“分子缝合针”,其作用是把基于________
能力而黏合在一起但存在的切口封闭,进而才可能形成有意义的__重__组__D_N_A。 (某些)病毒
(3)逆转录酶也常被用于基因工程,其存在于________(生物)中,催化以
___m_R_N_A__为模板合成 DNA 的过程。
某些生化表型基因
在质粒作为载体时其上必须有至少一个标记基因存在。 即:限制酶切割位点不能破坏全部标记基因
a,b,c为酶切位点, a,c为限制酶Ⅰ切割位点;b为限制酶Ⅱ切割位点, (限制酶Ⅰ能切开限制酶Ⅱ的序列,限制酶Ⅱ不能切
开限制酶Ⅰ的序列) 选限制酶Ⅱ
则应选那种限制酶? 含有该质粒的细胞将来在什么培养基上能存活? 在什么培养基不能存活?
B.①④⑥
C.①③⑥⑦
D.②③⑥⑦
类型二 质粒结构和功能 例 2►目前基因工程所用的质粒载体主要是以天然细菌质粒的各种元件为基 础重新组建的人工质粒,pBR322 质粒是较早构建的质粒载体,其主要结构如下 图所示。
(1)构建人工质粒时要有抗性基因,以便于_筛___选__(_鉴__别___)目___的__基___因__是_______ _____________________________________否__导___入__受__体___细__胞__________。

第三章 第一节 基因工程(基因表达载体的构建)

第三章 第一节 基因工程(基因表达载体的构建)

4.为了增加菊花花色类型,研究者从其他植物中克隆出花色基因C (图1),拟将其与质粒(图2)重组,再借助农杆菌导入菊花中。下列 操作与实验目的不符的是( C )
A.用限制性核酸内切酶EcoR Ⅰ和连接酶构建重组质粒 B.用含C基因的农杆菌侵染菊花愈伤组织,将C基因导入细胞 C.在培养基中添加卡那霉素,筛选被转化的菊花细胞 D.用DNA分子杂交方法检测C基因是否整合到菊花染色体上
三、目的基因及其表达产物的检测鉴定
1.检测与鉴定的内容、方法
阅读教材98~99页的内容,根据表格提示的项目填写表格中缺 少的内容。
检测水平
分子水 DNA 平的检 RNA
测 蛋白质 个体水平的检测
检测内容
方法
结果显示
1.检测与鉴定的内容、方法
检测水平
检测内容
方法
结果显示
检测转基因生物的染色体 DNA分子杂交法(基因探针
3.对于动物来说,受体细胞一般是受精卵,因为受精卵的全 能性高,而高度分化的动物体细胞的全能性受到限制。
4.大肠杆菌和酵母菌在基因工程中都可以作为受体细胞,但 又有所不同。大肠杆菌为原核生物,而酵母菌为真核生物(具有 多种细胞器),所以酵母菌在用于生产需要加工和分泌的蛋白质 时比大肠杆菌有优势。 有内质网和高尔基体
2.病毒感染法 用病毒DNA与目的基因一起构建的载体,去感染受体动物细胞, 也能使目的基因导入动物细胞内。
(三)将目的基因导入微生物细胞 1.感受态细胞 经过适当的处理(如用Ca2+处理)后,细胞质膜对DNA的通透性会
发生改变,细胞变得容易接受外来的DNA,处于这种状态的细胞称为 感受态细胞。
2.过程
Ca2+处理微生物细胞
感受态细胞

基因工程基因工程的载体

基因工程基因工程的载体

2020/4/4
苏州科技学院生物系
叶亚新
第三章 基因工程的载体
作为基因工程载体的基本功能
1. 运送外源基因高效转入受体细胞 2. 为外源基因提供复制能力或整合能力 3. 为外源基因的扩增或表达提供条件
2020/4/4
苏州科技学院生物系
叶亚新
第三章 基因工程的载体
作为基因工程载体必须具备的基本条件
1)标记基因与宿主细胞 2)标记基因产物的作用机制: Apr 3)标记基因的结构与适用范围: 基因启动子, 翻译起始
序列, 密码子偏爱性
4)标记基因的结构变化对功能的影响: LacZ, GUS
4. 常用的遗传标记基因
1) 四环素抗性基因(Tcr)
Tetracycline 可结合在核糖体30s亚基中的一种蛋白 质分子上,抑制核糖体的转位过程。四环素抗性基因编码 一种399 AAs蛋白质,与细菌细胞膜结合,阻止四环素分 子进入细菌细胞。
第三章 基因工程的载体
载体:携带外源基因进入受体细胞的工具 用于基因工程的载体
•细菌质粒载体 •噬菌体λ衍生载体 •Cosmid载体 •Phagemid载体
•酵母质粒载体 •真核病毒载体 •Bacmid载体 •YAC载体
2020/4/4
苏州科技学院生物系
叶亚新
发展概况
1. 第一阶段(1977年前):天然质粒和重组质粒的利用,
2020/4/4
苏州科技学院生物系
叶亚新
2) 氨苄青霉素抗性基因(Apr)
Ampicillin可抑制细菌细胞膜上参与细胞壁合成酶类的活性。Apr 抗性基因编码一种分泌到细菌细胞周间质的酶,催化β—内酰胺环的 水解,使氨苄青霉素失活。
3) 氯霉素抗性基因(Cmr)

基因工程默写

基因工程1.基因工程是指按照人们的愿望,通过转基因等技术,赋予生物新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

从技术操作层面看,由于基因工程是在DNA 分子水平上进行设计和施工的,因此又叫作重组DNA技术。

2.1944年,艾弗里等人通过肺炎链球菌的转化实验,不仅证明了遗传物质是DNA,还证明了DNA可以在同种生物的不同个体之间转移3.1958年,梅塞尔森和斯塔尔用实验证明了DNA的半保留复制。

随后不久,克里克提出中心法则。

4.1953年,沃森和克里克建立了DNA双螺旋结构模型并提出了遗传物质自我复制的假说。

5.1967年,科学家发现,在细菌拟核DNA之外的质粒有自我复制能力,并可以在细菌细胞间转移。

6.1972年,伯格首先在体外进行了DNA改造的研究,成功地构建了第一个体外重组DNA 分子7.1973年,科学家证明质粒可以作为基因工程的载体,构建重组DNA,导入受体细胞,使外源基因在原核细胞中成功表达,并实现物种间的基因交流。

至此,基因工程正式问世。

8.1984年,我国科学家朱作言领导的团队培育出世界上第一条转基因鱼9.1983年,科学家采用农杆菌转化法培育出世界上第一例转基因烟草。

此后,基因工程进入了迅速发展的阶段。

10.1985年,穆里斯等人发明PCR,为获取目的基因提供了有效手段。

11.2013年,华人科学家张锋(1982—)及其团队首次报道利用最新的基因组编辑技术——CRISPR(成簇规律间隔短回文重复)技术编辑了哺乳动物基因组。

该技术可以实现对特定基因的定点插入、敲除或替换。

第1节重组DNA技术的基本工具1.切割DNA的工具是限制性内切核酸酶,又称限制酶,这类酶主要是从中分离纯化出来的。

它们能够的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的断开,产生两种形式的末端。

2.DNA连接酶分为两类,一类是,另一类是。

后者既可以缝合双链DNA片段互补的,又可以缝合双链DNA片段的,但连接后者的效率比较低。

2.1_基因工程载体-质粒载体_201209



抗菌素

b.蓝白斑试验(IPTG-Xgal 试验)
乳糖操纵子的天然诱导物是乳糖
乳糖类似物异丙基-β-D -硫代半乳糖苷 (IPTG) 有更强的诱导作用。 IPTG配合使用在基因工程可作蓝白斑筛选。
LacZ基因编码的乳糖苷酶 X-gal 蓝色吲哚产物
-半乳糖苷酶Xgal显色反应: -半乳糖苷酶能把无色的化合物 Xgal分解成半乳糖和一个深蓝色的 物质5-溴-4-氯靛蓝。 Xgal 半乳糖 5-溴-4-氯靛蓝
– 非接合型质粒 不能在天然条件下独立地发生接合作用 如Col、R的其它成员
• 值得注意的是,某些非接合型质粒(ColE1)在 接合型质粒的存在和协助下,也能发生DNA转移, 这个过程由 bom 和mob 基因决定
( 5)质粒DNA的构型:
SC型 共价闭合环形DNA(cccDNA) OC型 开环DNA(ocDNA) L 型 线性DNA(cDNA)
根据宿主细胞所含的拷贝数多少, 可将质粒分成:
• 严紧型
低拷贝数的质粒,每个宿主细 胞中仅含有1-2份的拷贝,称这类 质粒为“严紧型”复制控制的质 粒(stringent plasmid); 高拷贝数的质粒,每个宿主细 胞中可高达10-200份拷贝,这类 质粒被称为“松弛型”复制控制 的质粒(relaxed plasmid)。
• 松弛型
(4)可转移性
在天然条件下,大多质粒可通过 细菌接合作用从一种宿主细胞内转移 到另外一种宿主内。
大肠杆菌接合(conjunction)
如:F质粒(性质粒、或F因子)
质粒迁移
• 革兰氏阴性菌的质粒可分成两大类:
– 接合型质粒 能在天然条件下自发地从一个细胞转移到 另一个细胞(接合作用),如F、Col、R质粒等

基因工程知识点总结

基因工程知识点总结一、基因工程的概念基因工程,又称基因拼接技术或 DNA 重组技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

简单来说,基因工程就是在分子水平上对基因进行操作的复杂技术。

二、基因工程的工具(一)“分子手术刀”——限制性核酸内切酶(限制酶)1、来源:主要从原核生物中分离纯化出来。

2、特点:能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

3、作用结果:产生黏性末端或平末端。

(二)“分子缝合针”——DNA 连接酶1、分类:E·coli DNA 连接酶和 T4DNA 连接酶。

2、作用:将两个具有相同末端的 DNA 片段连接起来。

(三)“分子运输车”——载体1、作用:将目的基因送入受体细胞。

2、具备条件:能在受体细胞中复制并稳定保存。

具有一至多个限制酶切点,供外源 DNA 片段插入。

具有标记基因,便于筛选。

3、种类:质粒、λ噬菌体的衍生物、动植物病毒等。

其中质粒是基因工程中最常用的载体。

三、基因工程的基本操作程序(一)目的基因的获取1、从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。

基因组文库包含了一种生物的全部基因;cDNA 文库只包含了一种生物的部分基因,是由 mRNA 反转录得到的 DNA 组成。

2、利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。

原理:DNA 双链复制。

条件:模板 DNA、引物、四种脱氧核苷酸、热稳定 DNA 聚合酶(Taq 酶)等。

3、人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。

(二)基因表达载体的构建(核心步骤)1、目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。

基因工程知识点全

第一章基因工程概述1.什么是基因工程,基因工程的基本流程基因工程Genetic engineering原称遗传工程;从狭义上讲,基因工程是指将一种或多种生物体供体的基因与载体在体外进行拼接重组,然后转入另一种生物体受体内,使之按照人们的意愿遗传并表达出新的性状;因此,供体、受体和载体称为基因工程的三大要素;1.分离目的基因2.限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5.选择、筛选含目的基因的克隆6.培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件➢具有对受体细胞的可转移性或亲和性;➢具有与特定受体细胞相适应的复制位点或整合位点;➢具有多种单一的核酸内切酶识别切割位点;➢具有合适的筛选标记;➢分子量小,拷贝数多;➢具有安全性;2. 质粒载体有什么特征,有哪些主要类型1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建1删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量;一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定;2灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数3加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞;4在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头Polylinker,便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入;5根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件;4. 什么是人工染色体载体将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体5. 什么是穿梭载体人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体;6.入-噬菌体载体及构建-DNA为线状双链DNA分子,长度为,在分子两端各有12个碱基的单链互补粘性末端;➢1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点➢引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性➢灭活某些与裂解周期有关基因;➢使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现象的发生;➢加装选择标记,便于重组体的检测单链噬菌体DNA载体➢过定点诱变技术封闭重复的重要限制性酶切口;➢引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列lacZ’的乳糖操纵子片段lac、组氨酸操纵子片段his以及抗生素抗性基因等;➢将人工合成的多克隆位点接头片段插在 lacZ’标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体 DNA 的混浊噬菌斑呈蓝色;➢4在多克隆位点接头片段的两侧区域改为统一的 DNA 测序引物序列,使得重组 DNA 分子的单链形式经分离纯化后,可直接进行测序反应;8. II类限制性内切核酸酶的特点限制性核酸内切酶 Restriction endonucleases是一类能在特异位点上催化双链DNA 分子的断裂,产生相应的限制性片段的核酸水解酶;➢识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成的特定序列靶序列;➢识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构;➢切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称可形成粘性末端或平末端的DNA分子;同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶;同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶Isocandamers:识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶;9.甲基化酶Ⅱ类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识别序列内使某位碱基甲基化,从而封闭该酶切口;甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口➢甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内切酶的切割;➢甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点;连接酶连接作用的特点:①DNA连接酶需要一条DNA链的3’末端有一个游离的羟基-OH,另一条DNA链的5’末端有一个磷酸基-P的情况下,只有在这种情况下,才能发挥连接DNA分子的作用;②只有当3’-OH和5’-P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键;③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是双螺旋DNA分子的一部分;④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口nick,而不能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口gap;⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连接反应时,还需要提供一种能源分子NAD+或ATP11.大肠杆菌 DNA聚合酶和Klenow大片段各有什么作用DNA聚合酶作用的特点:➢要有底物4种dNTP为前体催化合成DNA;➢接受模板指导;➢需要有引物3’羟基的存在;➢不能起始合成新的DNA链;➢催化dNTP加到生长中的DNA链3’-OH末端;➢催化DNA的合成方向是5’→3’;Klenow酶的基本性质:➢大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个氨基酸残基片段,即Klenow酶;分子量为76kDa;➢Klenow酶仍拥有5’→3’的DNA聚合酶活性和5’→3’的核酸外切酶活性,但失去了5’→3’的核酸外切酶活性;Klenow酶的基本用途:➢修复由限制性核酸内切酶造成的 3’凹端,使之成为平头末端;➢以含有同位素的脱氧核苷酸为底物,对DNA片段进行标记;➢用于催化 cDNA 第二链的合成;➢用于双脱氧末端终止法测定 DNA 的序列;聚合酶T4-DNA聚合酶酶的基本特性:➢有3’→5’的核酸外切酶活性和5’→3’的DNA聚合酶活性;➢在无dNTP时,可以从任何3’-OH端外切;➢在只有一种dNTP时,外切至互补核苷酸;➢在四种dNTP均存在时,聚合活性占主导地位;T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的3’粘性末端13. 影响连接效率的因素有:➢温度最主要的因素离子浓度➢ATP的浓度 10μM - 1μM➢连接酶浓度平末端较粘性末端要求高➢反应时间通常连接过夜➢插入片段和载体片段的摩尔比➢DNA末端性质➢DNA片段的大小14.如何将不同DNA分子末端进行连接1.相同粘性末端的连接如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA分子 2.平头末端的连接T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用;3.不用粘性末端的连接3’端的粘性末端用T4-DNA聚合酶切平5’端的粘性末端用klenow酶补平,或者用S1核酸酶切平最后用T4-DNA连接酶进行平末端连接15. 碱性磷酸酶有什么作用1.该酶用于载体 DNA的5’末端除磷操作,以提高重组效率;2.用于外源DNA片段的5’端除磷,则可有效防止外源 DNA 片段之间的连接;16. 末端脱氧核苷酸转移酶有哪些作用➢给载体或目的DNA加上互补的同聚物尾;➢DNA片段3’末端的同位素标记;17. 2、细菌转化的步骤:∙感受态的形成;感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、切割及加工;感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质如细菌溶素的合成,使细菌胞壁部分溶解,局部暴露出细胞膜上的 DNA 结合蛋白和核酸酶等;∙转化因子的结合;受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA结构特异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上;∙转化因子的吸收;双链 DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中;∙整合复合物前体的形成;进入受体细胞的单链 DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,并将其引导至受体菌染色体DNA处;∙转化因子单链DNA的整合;供体单链DNA片段通过同源重组,置换受体染色体DNA的同源区域,形成异源杂合双链 DNA结构;+诱导转化原理:①在0℃的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态;②Ca2+能与加入的DNA分子结合,形成抗DNA酶DNase的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上;当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道;③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细胞,可以提高DNA的转化效率;∙但该法要求条件高,对外界污染物极为敏感,通常很少采用;介导细菌的原生质体转化∙PEG是乙二醇的多聚物, 存在不同分子量的多聚体,它可改变各类细胞的膜结构, 使两细胞相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两细胞的胞质沟通成为可能,从而造成细胞之间发生融合;20.电穿孔法是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法;P52 接合转化,入噬菌体感染未归纳21.转化率的影响因素.载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同;载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体; 插入片段大小:对质粒载体而言,插入片段越大,转化效率越低;重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响22.转化细胞的扩增转化细胞的扩增操作:指转化完成之后细胞的短时间培养;在实验时,扩增操作往往与转化操作偶联在一起,如:∙Ca2+诱导转化后的37℃培养一个小时∙原生质体转化后的再生过程∙λ噬菌体转染后的30℃培养等,均属扩增操作扩增操作的目的∙增殖转化细胞,使得有足够数量的转化细胞用于筛选程序;∙扩增和表达载体分子上的标记基因,便于筛选;∙表达外源基因,便于筛选和鉴定;23.抗药性筛选法这是利用载体DNA分子上的抗药性选择标记进行的筛选方法;抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcr将外源DNA片段插在BamHI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcs抗药性筛选法的基本操作:先将转化液涂布含有Ap的平板再将Ap平板上的转化子影印至含有Tc的平板上在Ap平板上生长,但在Tc平板上不长的转化子即为重组子 P56抗药性标记插入失活选择法∙经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子;为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选;如果外源基因插入在载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性重组子;24. 什么是蓝白斑筛选法这种方法是根据组织化学的原理来筛选重组体;主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷X-gal平板上形成浅蓝色的噬菌斑;外源基因插人lac或lac基因部分被取代后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 X-gal平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑;筛选法利用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR,通过对PCR产物的电泳分析,确定目的基因是否插入到载体中;由于在载体DNA分子中,外源DNA插入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子;第三章基因工程的常规技术1. 探针有哪些类型探针标记有哪些方法类型:同源或部分同源探针cDNA探针人工合成的寡核苷酸探针标记方法:①5’端标记法②反转录标记法③缺刻前移标记法④ABC标记法4.什么是ABC荧光显色酶标记法ABC 标记法;∙A为Avidin生物素抗性蛋白,每个Avidin分子可结合3 - 4个生物素分子;∙B为Biotin生物素,每个Biotin分子可结合2个Avidin分子;∙C为Complex,首先将Biotin共价结合在探针分子上,荧光胺标记在Avidin上,两者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光;如果将某一生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术5.亚克隆法∙亚克隆:是将克隆片段进一步片段化后再次进行的克隆;∙一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子;此时,该重组分子中的无关DNA区域以被大量删除;6. 菌落嗜菌斑原位杂交的基本原理、流程∙该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落;∙操作步骤:∙①菌落生长∙②转移到NC膜上∙③DNA释放和变性∙变成单链DNA:∙ 10%SDS NaOH∙④中和 Tris-HCl pH∙⑤固定 80 ℃ 120’∙⑥杂交包括预杂交,加探针DNA杂交∙⑦放射自显影∙⑧对照比较,选出重组克隆7.鸟枪法∙鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的 DNA 片段,分别连接到载体 DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子;鸟枪法制备目的基因的主要步骤∙①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端;原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达100Kb以上;全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切:片段长度可控,含有粘性末端,目的基因完整;∙②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体;∙③重组DNA分子导入受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞;∙④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法筛选模型的建立;∙⑤目的基因的定位利用鸟枪法获得的期望重组子只是含有目的基因的 DNA 片段,必须通过次级克隆或插入灭活,在已克隆的 DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列;法酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因;这种方法以目的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA,即cDNA,然后在DNA聚合酶的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA克隆; 的分离纯化绝大多数的真核生物mRNA在其3’端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱即可分离10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;过程:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火复性:模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍;11. 什么是基因组文库其构建方法是怎样的是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库;基因组文库构建的一般步骤①载体的选择和制备;②高纯度、大分子量基因组 DNA 的提取;③基因组 DNA 的部分酶切与分级分离;④载体与DNA片段的连接;⑤转化或侵染宿主细胞;⑥筛选鉴定基因组及保存;12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA文库应具备下列条件:∙重组克隆的总数不宜过大,以减轻筛选工作的压力∙载体的装载量最好大于基因的长度,避免基因被分隔克隆;∙克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序;∙克隆片段易于从载体分子上完整卸下;∙重组克隆能稳定保存、扩增、筛选;基因文库的构建通常采用鸟枪法和cDNA法13.外源DNA片段的切割原则片段之间要有一定的重叠序列片段大小要均一文库构建的步骤∙细胞总RNA的提取和mRNA的分离∙第一链cDNA合成∙第二链cDNA合成∙双链cDNA的分级分离∙双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖∙重组体的筛选与鉴定第四章基因在大肠杆菌、酵母的高效表达1. 启动子∙启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20~300个碱基,是控制基因转录的重要调控元件;在一定条件下mRNA的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达;∙启动子的特征:①序列特异性②方向性③位置特性④种属特异性2.启动子类型∙组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异;∙组织特异启动子:又称器官特异性启动子;在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性;∙诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平;目前已经分离了光诱导表达基因启动子、热诱导表达基因启动子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子等;3.终止子终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA的一部分,并形成特殊的二级结构,由此终止基因的转录;序列SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从起始密码子处开始5.密码子不同生物对密码子的偏爱性1.生物体基因组中的碱基含量2.密码子与反密码子的相互作用的自由能3.细胞内tRNA的含量6. 密码子偏爱性对外源基因表达的影响∙由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择;一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:∙外源基因全合成∙同步表达相关tRNA编码基因7. 包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体8. 包涵体的形成机理∙①折叠状态的蛋白质集聚作用;∙②非折叠状态的蛋白质集聚作用∙③蛋白折叠中间体的集聚作用;9. 包涵体的分离检测∙包涵体的分离主要包括菌体破碎、离心收集以及清洗三大操作步骤;10. 分泌型目的蛋白表达系统的构建∙包括大肠杆菌在内的绝大多数革兰氏阴性菌不能将蛋白质直接分泌到胞外,但有些革兰氏阴性菌能将细菌的抗菌蛋白细菌素分泌到培养基中,这一过程严格依赖于细菌素释放蛋白,它激活定位于内膜上的磷酸酯酶A,导致细菌内外膜的通透性增大∙因此,只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞;此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌;11融合蛋白表达质粒的构建原则:∙受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因工程载体的条件
基因工程载体是指能够承载外源DNA并将其转化为宿主细胞所需的DNA分子。

在基因工程中,选择合适的载体非常重要,因为它直接影响到外源DNA的稳定性、表达效率和功能实现。

下面将从四个方面介绍基因工程载体的条件。

一、大小和复制数
合适的基因工程载体应该具有适当的大小和复制数。

一般来说,载体的大小应该足够小,以便于操作、转染和扩增。

同时,复制数也应该适中,既不能过低影响表达效率,也不能过高导致毒性或不稳定性。

二、选择标记
在基因工程中,通常需要对转染细胞进行筛选和鉴定。

这时候就需要选择合适的标记来标识转染细胞。

例如,在哺乳动物细胞中可以使用荧光蛋白等标记来鉴定转染效果。

三、启动子和选择子
启动子是调控外源DNA表达的关键元件之一,在选择载体时需要考虑
启动子是否与宿主细胞相容,并且能够实现高效表达。

同时还需要考
虑到选择子对于宿主细胞的毒性和选择效率,以便于筛选出稳定的转
染细胞。

四、多克隆位点和限制酶切位点
多克隆位点和限制酶切位点是基因工程中常用的操作元件。

选择合适
的载体应该具有多个克隆位点,方便进行多个外源DNA的插入和替换。

同时,也需要考虑到载体是否具有足够的限制酶切位点,以便于进行DNA重组和修饰。

综上所述,基因工程载体选择需要考虑其大小、复制数、标记、启动子、选择子、多克隆位点和限制酶切位点等因素。

只有选择合适的载
体才能够实现高效稳定的外源DNA表达,并且为基因工程研究提供可靠的实验手段。

相关文档
最新文档