专题函数与导数综合题的解答(教师

专题函数与导数综合题的解答(教师
专题函数与导数综合题的解答(教师

专题 函数与导数综合题的解答

1.本专题在高考中的地位

导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,

所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度

从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 热点一 用导数研究函数的性质

函数是高中数学的重点内容,而函数的性质又是高考命题的热点,用导数研究函数的性质比用初等方法研究要方便得多,并且具有普遍的适用性.

例1(2012·高考北京卷)已知函数f(x)=ax 2

+1(a >0),g(x)=x 3

+bx.

(1)若曲线y =f(x)与曲线y =g(x)在它们的交点(1,c)处具有公共切线,求a ,b 的值; (2)当a 2

=4b 时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.

【审题】 (1)在交点(1,c)处有公共切线,隐含(1,c)为切点,可考虑f′(1)与g′(1).f(1)与g(1)的关系.

(2)构造函数h(x)=f(x)+g(x),求h′(x)>0,h′(x)<0的x 的范围,继而求(-∞,-1]上的最大值.

【转化】 (1)中题意转化为?

??

??

f′1=g′

1

f 1=

g 1.

(2)中转化为求h′(x)>0,h′(x)<0的解由极值求最值.

【解】 (1)f′(x)=2ax ,g′(x)=3x 2

+b ,

因为曲线y =f(x)与曲线y =g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f′(1)=g′(1).

即a +1=1+b ,且2a =3+b. 解得a =3,b =3.

(2)记h(x)=f(x)+g(x),当b =14a 2

时,

h(x)=x 3+ax 2

+14

a 2x +1,

h′(x)=3x 2

+2ax +14

a 2.

令h′(x)=0,得x 1=-a 2,x 2=-a

6.

a >0时,h(x)与h′(x)的变化情况如下:

所以函数h(x)的单调递增区间为? ????-∞,-2和? ????-6,+∞;

单调递减区间为? ????-a

2,-a 6.

当-a

2

≥-1,即0<a≤2时,

函数h(x)在区间(-∞,-1]上单调递增,h(x)在区间(-∞,-1]上的最大值为h(-1)=a -14

a 2

.

当-a 2<-1,且-a

6

≥-1,即2<a≤6时,

函数h(x)在区间? ????-∞,-a 2上单调递增,在区间? ??

??-a 2,-1上单调递减,h(x)在区间

(-∞,-1]上的最大值为h ? ??

??-a 2=1. 当-a

6

<-1,即a >6时,

所以h(x)在区间(-∞,-1]上的最大值为h ? ??

??-a 2=1. 函数h(x)在区间(-∞,-a 2)上单调递增,在区间? ????-a

2

,-a 6上单调递减,在区间

? ????-a 6,-1上单调递增,又因为h ? ??

??-a 2-h(-1)=1-a +14a 2=14(a -2)2>0,

【反思】 本题考查了导数的运算性质,导数的几何意义,利用导数研究函数的单调性及最值的方法.利用列表法,研究h′(x)的正负及单调区间一目了然.求最值时,要考虑极值点,-92,-9

6

与区间(-∞,-1]的关系,所以分类讨论来确定最值.

热点二 导数、函数与不等式

用导数的方法研究与函数有关的不等式问题,是巧妙地构造函数,然后这个函数的单调性、极值、最值及特殊点的函数值,结合不等式的性质来解决.

例2(2012·高考辽宁卷)设f(x)=ln x +x -1,证明:

(1)当x >1时,f(x)<3

2(x -1);

(2)当1<x <3时,f(x)<

9

x -1

x +5

.

【审题】 本题涉及f(x)的不等式,可以构造形如f(x)-φ(x)的函数来证明. 【转化】 (1)当x >1,所证f(x)<32(x -1)转化为f(x)-3

2(x -1)<0证明.

(2)当1<x <3,f(x)<

9

x -1x +5转化为f(x)-9x -1

x +5

<0,证明.

【证明】 (1)法一:记g(x)=ln x +x -1-3

2(x -1),则当x >1时,

g′(x)=1x +12x -3

2

<0.

又g(1)=0,所以有g(x)<0,即f(x)<3

2(x -1).

法二:当x >1时,2x <x +1,故x <x 2+1

2.①

令k(x)=ln x -x +1,则k(1)=0,k′(x)=1

x -1<0,

故k(x)<0,即ln x <x -1.②

由①②得,当x >1时,f(x)<3

2(x -1).

(2)法一:记h(x)=f(x)-9

x -1

x +5

,由(1)得

h′(x)=1x +12x -

54

x +52

=2+x 2x -

54

x +5

2<x +54x -54

x +5

2=x +53

-216x

4x x +5

2

. 令G(x)=(x +5)3

-216x ,则当1<x <3时,G′(x)=3(x +5)2

-216<0,因此G(x)在(1,3)内是减函数.

又由G(1)=0,得G(x)<0,所以h′(x)<0.

因此h(x)在(1,3)内是减函数.又h(1)=0,所以h(x)<0. 于是当1<x <3时,f(x)<

9

x -1

x +5

.

法二:记h(x)=(x +5)f(x)-9(x -1),则当1<x <3时,由(1)得h′(x)=f(x)+(x +5)f′(x)-9

<32(x -1)+(x +5)·? ??

??1x +12x -9

=1

2x [3x(x -1)+(x +5)(2+x)-18x] <12x ??????3x x -1+x +5? ????2+x 2+12-18x =14x (7x 2

-32x +25)<0. 因此h(x)在(1,3)内单调递减. 又h(1)=0,所以h(x)<0, 即f(x)<

9

x -1

x +5

.

【反思】 此题的关键点是转化所证不等式构造新函数,研究其性质.(1)的证法一是利用g(x)的递减性形成不等式g(x)<g(1).

证法二又利用了不等式的“同向相加”性,x <x 2+1

2,ln x -x -1,得到

ln x +x <x -1+x 2+1

2.同样(2)也采用了类似的证法

热点三 恒成立及求参数范围问题

恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解,若不能分离参数,可以将参数看成函数表达式中的常量,利用函数性质求解.

(2012·高考天津卷改编)已知函数f(x)=x -ln(x +a)的最小值为0,其中a >0. (1)求a 的值;

(2)若对任意的x ∈[0,+∞),有f(x)≤kx 2

成立,求实数k 的最小值. 【审题】 (1)根据极值与最值的关系,可求a. (2)中,f(x)≤kx 2

对于x ∈[0,+∞)是恒成立. 而已知f(x)min =0,讨论k 的取值.

【转化】 (1)已知f(x)min =0转化求f(x)min 用a 表示. (2)f(x)≤kx 2

恒成立转化为f(x)-kx 2

≤0恒成立求解. 【解】 (1)f(x)的定义域为(-a ,+∞).

f′(x)=1-1x +a =x +a -1

x +a .由f′(x)=0,得x =1-a >-a.

当x 变化时,f′(x),f(x)的变化情况如下表: x (-a,1-a)

1-a (1-a ,+∞)

f′(x) - 0 +

f(x)

极小值

(2)当k≤0时,取x =1,有f(1)=1-ln 2>0,故k≤0不合题意.

当k>0时,令g(x)=f(x)-kx2,即g(x)=x-ln(x+1)-kx2.

g′(x)=x x +1-2kx =-x[2kx -1-2k ]x +1.令g′(x)=0,得x 1=0,x 2=1-2k

2k >-1.

①当k≥12时,1-2k

2k ≤0,g′(x)<0在(0,+∞)上恒成立,因此g(x)在[0,+∞)上

单调递减.从而对于任意的x ∈[0,+∞),总有g(x)≤g(0)=0,即f(x)≤kx 2

在[0,+∞)上恒成立.

故k≥1

2

符合题意.

②当0<k <12时,1-2k 2k >0,对于x ∈? ????0,1-2k 2k ,g′(x)>0,故g(x)在?

????0,1-2k 2k 内

单调递增.因此当取x 0∈?

????0,1-2k 2k 时,g(x 0)>g(0)=0,即f(x 0)≤kx 20

不成立. 故0<k <1

2不合题意.

综上,k 的最小值为1

2.

热点四 利用导数识别函数图象

给出函数解析式描绘或者识别其图象.除根据一般方法研究其性质外,求导也有独到的技巧.

(2011·高考山东卷)函数y =x

2

-2sin x 的图象大致是( )

【审题】 此函数不是一般的初等函数,根据简单的性质不易识别其图象.为了确定其单调性的变化.

转化:函数y =x 2-2sin x 与x 轴的交点转化y =sin x 与y =x

4的图象的交点.

单调性转化为求y′>0,y′<0的x 的范围.1.(2013·东北三校联合模拟)已知函数f(x)=(1+x)ln x.

(1)求f(x)在x =1处的切线方程;

(2)设g(x)=1

a 1-x

f(x),对任意x ∈(0,1),g(x)<-2.求实数a 的取值范围.

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

导数运算中构造函数解决抽象函数问题

导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[ ]'f x xf x f x x x -= ! (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: 例1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. 例 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

合理构造函数解导数问题

合理构造函数解导数问题 从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=2 3 1ln . (1) 若 3 2 为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()x b x x f = ---3 11有实根,求实数b 的取值范围。 解:(1)因为3 2= x 是函数的一个极值点,所以0)32 (='f ,进而解得:0=a ,经检验是 符合的,所以.0=a (2)显然(),2312a x x ax a x f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。同时a x x --232此函数是31x 时递增, 故此我们只需要保证()0231 1≥--++= 'a a a f ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:( )2 ln x x x x b -+=32 ln x x x x -+= ()2 321ln x x x x g -++=' ()x x x x x x g 1 266212---=-+='' 当6710+< ''x g 所以()x g '在6 7 10+< x 时,(),0<''x g 所以()x g '在6 71+>x 上递减; 又(),01='g ().6 7 10, 000+< <='∴x x g

构造函数利用导数解决函数问题

构造函数利用导数解决函数问题

构造函数解决不等式问题 例:[2011·辽宁卷]函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2, 则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞)C .(-∞,-1) D .(-∞,+∞) 【解析】构造函数G (x )=f (x )-2x -4,所以G ′(x )=f ′(x )-2,由于对任意x ∈R ,f ’(x )>2, 所以G ′(x )=f ′(x )-2>0恒成立,所以G (x )=f (x )-2x -4是R 上的增函数, 又由于G (-1)=f (-1)-2×(-1)-4=0,所以G (x )=f (x )-2x -4>0, 即f (x )>2x +4的解集为(-1,+∞),故选B. 训练: 1.已知函数()y f x =的图象关于y 轴对称,且当 (,0),()'()0 x f x xf x ∈-∞+<成 立0.2 0.22 (2) a f =g ,log 3(log 3) b f π π=g ,3 3log 9(log 9) c f =g ,则a,b,c 的大小关系是 ( ) A. b a c >> B.c a b >> C.c b a >> D.a c b >> 解: 因为函数()y f x =关于y 轴对称,所以函数()y xf x =为 奇函数.因为 [()]'()'() xf x f x xf x =+,所以当 (,0) x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数 () y xf x =单调递减,当 (0,) x ∈+∞时,函数() y xf x =单调递减.因为 0.2122 <<,0131og π <<,3192 og =,所以0.23013219 og og π <<<,所以

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

(完整word版)2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题

构造函数解决高考导数问题 1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 7.(2017·天津文)(本小题满分14分) 设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间; (Ⅱ)已知函数()y g x =和x y e =的图像在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0; (ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 8.(2016·江苏)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2 . ①求方程f (x )=2的根; ②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.

导数练习题及答案:函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

2021届高三理科数学二轮复习专练:构造函数解决导数问题(含解析)

《构造函数解决导数问题》专练 一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则 ()24f x x >+的解集为( ). A .R B .(),1-∞- C .()1,1- D .()1,-+∞ 2.设函数()f x 是定义在()0-∞, 上的可导函数,其导函数为()'f x ,且有22()()f x x f x x '+?>,则不等式2(2021)(2021)4(2)0x f x f +?+-?->的解集为 ( ) A .(2023)-∞-, B .()2-∞-, C .(20)-, D .(20220)-, 3.设()f x 是定义在(,0) (0,)ππ-的奇函数,其导函数为()'f x ,当(0,)x π∈时, ()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6 f x f x π <的解集为 ( ) A .(,0)(0,)66 π π - ? B .(,0)(,)66 π π π- C .(,)(,)66 π π ππ-- ? D .()(0,)66 π π π-- , 4.定义在R 上的函数()f x 的导函数为()'f x ,若()()f x f x '>,(2)1008f =,则不等式2 1 e ( 1) 1008e 0x f x ++->的解集为( ) A .(1,)-+∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞ 5.已知()f x 是定义在()(),00,-∞?+∞上的奇函数,且0x >时 ()()20xf x f x '+>,又()10f -=,则()0f x <的解集为( ) A .() (),11,-∞-+∞ B .()()1,00,1- C .()()1,01,-?+∞ D .()(),10,1-∞-? 6.设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<, ()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集 为( )

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的综合问题最值教学案理解析版

利用导数解决不等式的有关问题 ?考法1证明不等式 【例1】(2018·郑州二模)已知函数f(x)=ln x—2ax+1(a∈R). (1)讨论函数g(x)=x2+f(x)的单调性; (2)若a=错误!,证明:|f(x)—1|>错误!+错误!. [解] (1)由题意知函数y=g(x)的定义域为(0,+∞), g(x)=x2+ln x—2ax+1, 则g′(x)=错误!+2x—2a=错误!(x>0), 记h(x)=2x2—2ax+1, 1当a≤0时,因为x>0,所以h(x)>0,故函数g(x)在(0,+∞)上递增; 2当0<a≤错误!时,因为Δ=4(a2—2)≤0, 所以h(x)≥0,故函数g(x)在(0,+∞)上递增; 3当a>错误!时,由g′(x)<0,解得x∈错误!,所以函数g(x)在区间错误!上递减,同理可得函数g(x)在区间错误!,错误!上递增. (2)证明:当a=错误!时,设H(x)=f(x)—1=ln x—x, 故H′(x)=错误!, 故H′(x)<0,得x>1,由H′(x)>0,得0<x<1, 所以H(x)m ax=f(1)—1=—1,所以|H(x)|min=1. 设G(x)=错误!+错误!, 则G′(x)=错误!, 由G′(x)<0,得x>e, 由G′(x)>0,得0<x<e, 故G(x)m ax=G(e)=错误!+错误!<1, 所以G(x)m ax<|H(x)|min, 所以|f(x)—1|>错误!+错误!.

?考法2由不等式恒(能)成立求参数的范围 【例2】已知函数f(x)=错误!. (1)如果当x≥1时,不等式f(x)≥错误!恒成立,求实数k的取值范围; (2)若存在x0∈[1,e],使不等式f(x0)≥错误!成立,求实数k的取值范围. [解] (1)当x≥1时,k≤错误!恒成立, 令g(x)=错误!(x≥1), 则g′(x)=错误!=错误!. 再令h(x)=x—ln x(x≥1), 则h′(x)=1—错误!≥0, 所以h(x)≥h(1)=1,所以g′(x)>0, 所以g(x)为增函数, 所以g(x)≥g(1)=2, 故k≤2,即实数k的取值范围是(—∞,2]. (2)当x∈[1,e]时,k≤错误!有解, 令g(x)=错误!(x∈[1,e]), 由(1)题知,g(x)为增函数, 所以g(x)m ax=g(e)=2+错误!, 所以k≤2+错误!,即实数k的取值范围是错误!. [规律方法] 1.利用导数证明含“x”不等式方法,即证明:f x>g x.,法一:移项,f x—g x>0,构造函数F x=f x—g x,转化证明F x min>0,利用导数研究F x 单调性,用上定义域的端点值.,法二:转化证明:f x min>g x m ax.,法三:先对所求证不等式进行变形,分组或整合,再用法一或法二. 2.利用导数解决不等式的恒成立问题的策略,1首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参数不等式,从而求出参数的取值范围.,2也可分离变量,构造函数,直接把问题转化为函数的最值问题. 32 (1)如果存在x1,x2∈[0,2]使得g(x1)—g(x2)≥M成立,求满足上述条件的最大整数M;

导数运算中构造函数解决抽象函数问题

. 导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 xx)](x'(x)?fx[ef()]'?e[f0f'(x)?f(x)? 1)构造()(x'(x)?f)?0[xf(x)]'?xfxf'(x)?f(x 2()构造n?1nn?1n[xf'(x)?(xx)]'?xf'(x)?nx)?xnf(x)]fx[f(0nf(x)?xf'(x)?)构造3(x(注意对的符号进行讨论)关系式为“减”型xx f'(x)?f(x?f(x)e)f(x)f'(x)e?[]'?0(x)?f'(x)?f(1)构造 xx2x ee(e)f(x)xf'(x)?f(x)]'?[0?f(x)xf'(x)?构造(2) 2xx nn?1f(x)xf'(x)?nff(x)x(f'(x)?nxx)?[]'?0x)?'(x)?nf(xf 3)构造 (n2nn?1xx(x)x的符号进行讨论)(注意对小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: f(x)、g(x)f'(x)g(x)?f(x)g'(x)?0g(?3)?0R,求不是,例1.设上的可导函数,f(x)g(x)?0的解集等式 f(x)、g(x)x?0R时,函数当变式:设,上的奇函数、偶分别是定义在 f'(x)g(x)?f(x)g'(x)?0g(?3)?0f(x)g(x)?0的解集. ,求不等式, f(x)2.例R)x(x)、g(f x满足已知定义在上的函数a?f'(x)g(x)?f(x)g'(x),,且 g(x)??5(f(1)f?1)31)nf(*??nn(n?N). 的前项和等于,则等于若有穷数列,?? 2?(1)gg(1)32g(n)??f(x)x a?f'(x)g(x)?f(x)g'(x)f(x)、g(x)R满足上的函数,,且变式:已知定义在)g(xf(1)f(?1)5??logx?1x的解集. 若若,求关于的不等式a g(1)g(?1)2 1 / 2 . )(xf3.例R0?x)f'(x)f(x时,的奇函数的导函数为,已知定义域为当0??)f'(x, x111)ln2?lnf(f(?2)c,f(),b?a??2c,,ba,则关于若的大小关系是222 4.例RR?x?x)f'(x)f()(xf上的可导奇函数,且已知函数对于任意恒成为定义在)xf(f(3)=e,则/e^x<1的解集为立,且 1?f(2))xf((1))f(0)?1f(f'(x)??fx R. ,求是,变式:设上的可导函数,且的值. 2e2x2f(x?'(x))?xf)xf()xf'(R上的导函数为,例5.设函数在,且)xf(1?f(1)?xf'(x)2f'(x)f(x)0x?,若存在,且时,,当的导函数为变式:已知2?x)?f(xRx?x. ,使,求的值: 巩固练习??????''x31xff?x2?f)xf(R的不,且,则关于定义在1.满足上的函数,其导函数??1xx??f.等式的解集为▲//)(xy?f)(x)?ff(x)f(x R,且2.已知定义在 的导函数为上的可导函数,满足x1?1)f(2)y?f(x?ex()?f为偶函数,▲,则不等式的解集为 ????0?xx)g)))f(x)g(xf(f)(xg((xI上恒成立,的导函数,若3.设分别是和在区间和 132))g(xf(xax??2xf(x)?2bxx)?xg(I在若函数在区间和与则称上单调性相反.3(a,b)b?a0a?的最

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

相关文档
最新文档