手性杀菌剂的研究进展

合集下载

欧盟委员会重新审查四氟醚唑、联苯菊酯、威百亩

欧盟委员会重新审查四氟醚唑、联苯菊酯、威百亩

欧盟委员会重新审查四氟醚唑、联苯菊酯、威百亩
佚名
【期刊名称】《农药科学与管理》
【年(卷),期】2009(30)9
【摘要】@@ 欧盟委员会第三和第四轮现有有效成分审查中对杀菌剂四氟醚唑(tetraconazole)、杀虫剂/杀螨剂联苯菊酯(bifenthrin)、熏蒸剂威百亩(metam-sodium)进行了重新审查.
【总页数】1页(P62)
【正文语种】中文
【相关文献】
1.20%四氟醚唑·醚菌酯悬乳剂的研制及药效研究 [J], 王旭;刘君良;李树柏;李波;李慧明
2.手性三唑类杀菌剂四氟醚唑、戊唑醇和己唑醇的研究进展 [J], 杨莎莎;段劲生;王梅;董旭;孙明娜;操海群;高同春
3.三唑类杀菌剂——四氟醚唑 [J],
4.加拿大重新登记氯唑灵和三氟羧草醚 [J], 胡笑形
5.氟茚唑菌胺•四氟醚唑24%悬乳剂高效液相色谱方法研究 [J], 黄伟; 何智宇; 姜宜飞; 吴进龙
因版权原因,仅展示原文概要,查看原文内容请购买。

现代杀菌剂发展的三个里程碑

现代杀菌剂发展的三个里程碑
16
如何改变这一光解形象成为了关键。这个时候, BASF也知道ICI在做同样的研究,时间非常紧迫,是 继续投入还是放弃?BASF经过短暂的讨论后决定继续 追加投入,并在后来的二个月中研究取得重大突破, 有三个不同侧链与毒基的化合物被合成了出来,其中 一个化合物的抗真菌活性是strobilurin A的10倍,且稳 定性大大提高,在田间试验中表现尤佳,具有广谱抗 真菌作用,在这个基础上,最终合成了BAS 490F(醚菌 酯,Kresoxime-methyl),并马上注册了专利。
15
两家公司均投入了大量的财力、人力及物力。 意想不到的是,嗜球果伞素A虽然在实验室中抗植 物病原真菌活性非常强,但在田间试验时,效果却 并不理想。研究曾经一度陷入绝境,甚至有人提出 要中止该项目。考察嗜球果伞素A的化学结构,我 们可以看出,该化合物结构中有三个双键共轭,在 田间试验时,强烈的阳光其紫外线很容易破坏结构, 使其失活。
13
1981年Sedmera等发表了mucidin的结构,将mucidin 的构型定为E, E, E 。而Becker等人则首次报道了 strobilurin A与strobilurin B、oudemansin A结构相似, 而且它们的杀菌活性均源于同样的作用机制:通过阻 碍细胞色素b和c1这间的电子传递来抑制线粒体呼吸。 1984年Anke和Steglich确定了strobilurin A的立体构型 为E, Z, E 。直到1986年,将mucidin和strobilurin A直 接对比才证实了两者的一致性。而在这个期间发现了 一系列同系物,如Strobilurin E 和9methoxystrobilurin A。
14
让我们回到1981年,Becker等人的有关此类物质 的杀菌活性及机理引起了巴斯夫(BASF)、ICI这二 个化工巨头的高度注意。(ICI就是著名的帝国化工, 总部在英国,1993年将非核心的医药、农用化学品业 务独立出去成立了捷利康(Zeneca)公司,1997年诺 华(Novartis)买下默克(Merck)的农业部门. 1999 年阿斯特拉公司Actara上市, 1999年阿斯特拉与捷利 康合并. 2000年诺华农业部门与捷利康农业部门合并 成立Syngenta先正达)

新型三唑类杀菌剂——氯氟醚菌唑

新型三唑类杀菌剂——氯氟醚菌唑

新型三唑类杀菌剂——氯氟醚菌唑 20世纪70年代,三唑类杀菌剂开始投入农业生产,主要通过抑制病原菌细胞膜的C14脱甲基甾醇的合成而导致细胞死亡,对锈病、壳针孢菌和镰刀菌等均具有良好的防治效果,目前主要作用于大豆、果树和蔬菜等农产品。

三唑类杀菌剂因其良好的内吸性、预防活性和治疗作用而被广泛使用。

据统计,2008年三唑类产品在欧洲的市场份额已超过60%,2018年其在全球的销售额更是高达33.23亿美元。

然而,传统三唑类杀菌剂因抗性问题导致防效显著下滑,据2011-2019年的田间测评统计,氟环唑、苯醚甲环唑、戊唑醇和丙环唑对小麦叶枯病菌(Zymoseptoria tritici)的杀菌效果分别从91%、81%、62%、66%下降至36%、56%、23%和24%,其中,氟环唑尤为显著。

还有研究指出,戊唑醇对于水生环境以及多种非靶标水生生物的安全存在威胁,并会对其产生长期的负面影响。

美国环保署(EPA)也已将烯效唑、己唑醇、戊唑醇、丙环唑和氟环唑传统三唑类杀菌剂列入可能的人类致癌物名单。

上述矛盾成为当前三唑类杀菌剂实际应用上的科学难题,导致其面临被禁用的可能,新型三唑类农药的研发与创制是解决该科学难题的有效途径。

p产品视窗Product 氯氟醚菌唑(mefentrifluconazole)是由巴斯夫研发的第1个含异丙醇结构的三唑类杀菌剂,其化学名称为 (2RS)-2-[4-(4-氯苯氧基)-α,α,α-三氟-邻甲苯基]-1-(1H-1,2,4-三唑-1-基)丙-2-醇,商品名为Revysol,CAS号为1417782-03-6,分子式为C 18H15ClF3N3O2,相对分子质量为397.8,氯氟醚菌唑的分子结构式见图1。

氯氟醚菌唑可溶于水和有机溶剂,在20℃的条件下,水中的溶解度为0.81mg/L,其水溶性较低、挥发性较低,不会通过淋溶进入地下水;在有机溶剂丙酮、乙酸乙酯、二甲苯和1,2-二氯乙烷中的溶解度分别为93.2、116.2、8.5、55.3mg/L。

有机化学(手性碳原子化合物)课件

有机化学(手性碳原子化合物)课件

总结词
新技术的开发将进一步推动手性碳原子化合 物的应用。
详细描述
随着合成技术和分析方法的不断进步,手性 碳原子化合物的制备和分离将更加高效和精 确。此外,新技术的发展也将促进手性碳原 子化合物在药物合成、生物催化等领域的应 用,提高相关产业的技术水平和生产效率。
新应用的探索
总结词
手性碳原子化合物的新应用将不断涌现。
生物合成法
总结词
利用生物酶的催化作用,在生物体内或体外合成手性碳原子化合物。
详细描述
生物合成法利用生物酶的专一性和高效性,通过生物反应过程将底物转化为手 性碳原子化合物。该方法通常需要特定的微生物或细胞培养条件,并可以产生 光学纯度较高的产物。
物理合成法
总结词
通过物理手段将手性碳原子引入到分子中,是一种新兴的手性碳原子化合物合成方法。
手性碳原子化合物的异构体包括对映异构体和非对映异构体。对映异构体是指具 有相同化学组成但互为镜像的分子,而非对映异构体则是指具有不同化学组成的 分子。
性质
手性碳原子化合物具有旋光性,即能 使偏振光发生旋转的性质。旋光度的 大小取决于手性碳原子化合物的浓度 、温度和波长等因素。
手性碳原子化合物的物理性质和化学 性质与非手性碳原子化合物相似,但 它们在结晶、熔点、溶解度等方面可 能存在差异。
总结词
随着科技的发展,手性碳原子化合物在 新材料的研发中具有广阔的应用前景。
VS
详细描述
手性碳原子化合物具有独特的物理和化学 性质,如光学活性、不对称合成等,使其 成为新型功能材料的重要候选者。在未来 的新材料研发中,手性碳原子化合物有望 在光电材料、生物医用材料等领域发挥重 要作用。
新技术的开发
有机化学(手性碳原子化合物) 课件

戊唑醇对映体在新型纤维素键合手性固定相上的拆分

戊唑醇对映体在新型纤维素键合手性固定相上的拆分

12 仪器与色谱条件 液相色谱 系统 由 55H L . 1 P C泵 ( t s U A 、 47型紫外一 Wa r, S ) 28 e 可见波长检测器 ( a r, S ) S P 30 W t U A 、 E U 00色谱数据处理器( e s 杭州) 72 i 和 75 手动进样阀(0 ) Wa r, S ) 2 ( t U A 组成. e s 色谱柱(5 m× . m i . . 10m 46m d ) 紫外检测波长为 2 0n 柱温为室温. . 3 m; 13 6位选择 键 合型 手性柱 的制 备 6位选 择键 合 型纤 维 素 .35二 甲基 苯 基 氨基 甲酸 酯 ) 照 文献 . 一 一 ( ,一 参 [1 方法合成. 30g 晶纤维素加入到盛有 6 L毗啶的烧瓶 中, 10o 下加热 回流 1 , 1] 将 . 微 0m 于 1 C 2h 加 入 1. 三 苯基 氯化碳 , 10o下 继续 回流 2 00g 在 1 C 4h后 , 加入 1 L35二 甲基苯基 异 氰酸 酯 , 0m ,一 继续反 应 2 .用大 量 甲醇洗 涤产 物 , 4h 经离 心 分 离 后 , 产 物 置于 含 有 少量 浓 盐 酸 的 甲醇 溶 液 中搅 拌 2 , 将 4h
关键词
键合 ;手性 固定相 ; 手性拆 分 ; 戊唑醇 o 5. 6 77 文献 标识 码 A 文章编号 0 5 -7 0 2 0 0 - 5 -3 2 1 9 107)20 8 0 2 0
中图分类号
近十年来 , 手性 固定相高效液相色谱法在医药 、 生化、 农药和有机 中间体等的手性分离分析 中得 到 了广 泛应用 ¨2.其 中研 究得 最 多的是 涂敷 型手性 固定相 .但 是 , . ] 涂敷 型手 性柱 在使 用 四氢 呋喃 、 三 氯 甲烷和丙酮等一些有机溶剂作为流动相时 , 会使纤维素衍生物溶胀和溶解 , 使其空间结构遭到破坏 而失去手性识别能力L , 3 从而限制了该类手性柱的使用 , ] 而键合纤维素固定相则可以克服这一缺点.

乙二胺-N-丙基改性硅胶的可控键合制备及其在银杏酸脱除中的应用研究

乙二胺-N-丙基改性硅胶的可控键合制备及其在银杏酸脱除中的应用研究

山东科学SHANDONGSCIENCE第37卷第1期2024年2月出版Vol.37No.1Feb.2024收稿日期:2023 ̄04 ̄14作者简介:潘翔宇(1998 )ꎬ男ꎬ硕士研究生ꎬ研究方向为功能化色谱填料的研究ꎮE ̄mail:1342478509@qq.com∗通信作者ꎬ靳钊ꎬ男ꎬ高级工程师ꎬ研究方向为功能材料的制备ꎮE ̄mail:jinzhao@qust.edu.cn乙二胺 ̄N ̄丙基改性硅胶的可控键合制备及其在银杏酸脱除中的应用研究潘翔宇ꎬ靳钊∗ꎬ关彤ꎬ陈贝怡(青岛科技大学高分子科学与工程学院ꎬ山东青岛266045)摘要:优化了乙二胺 ̄N ̄丙基键合硅胶(PSA)键合量可控的制备工艺ꎬ考察了PSA制备的批次重复性ꎬ并进行PSA制备的中试放大实验ꎮ采用红外光谱㊁元素分析及电位滴定法对所制备的PSA进行性能评价ꎬ结果表明:在3460cm-1处出现了N H伸缩振动峰ꎬ在2960cm-1和2860cm-1处出现了 CH的不对称和对称伸缩振动峰ꎬ708cm-1处出现了 NH2的变形振动吸收峰ꎬ表明乙二胺 ̄N ̄丙基成功接枝到硅胶表面ꎻ随着制备体系中硅烷化试剂比例的增加ꎬ碳㊁氮和氢元素的含量以及电位滴定法得到的离子交换容量均呈现上升趋势ꎬ说明乙二胺 ̄N ̄丙基官能团的键合量逐渐增加ꎮ将制备的PSA填充成分离纯化小柱ꎬ考察了不同键合量PSA对银杏叶提取物中银杏酸的脱除效率ꎬ结果表明:PSA对银杏酸有强吸附能力ꎬ可应用于银杏叶提取物中银杏酸的脱除ꎬ2#㊁3#㊁4#和5#PSA分离纯化柱的最大上样体积分别为21㊁22㊁23㊁24mLꎬ且脱除效率随乙二胺 ̄N ̄丙基键合量的增加而升高ꎮ关键词:乙二胺 ̄N ̄丙基改性硅胶ꎻ键合量ꎻ银杏酸脱除中图分类号:O658㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2024)01 ̄0051 ̄08开放科学(资源服务)标志码(OSID):Controllablebondingpreparationofethylenediamine ̄N ̄propylmodifiedsilicagelanditsapplicationinginkgolicacidremovalPANXiangyuꎬJINZhao∗ꎬGUANTongꎬCHENBeiyi(SchoolofPolymerScienceandEngineeringꎬQingdaoUniversityofScienceandTechnologyꎬQingdao266045ꎬChina)AbstractʒInthispaperꎬthepreparationprocessofN ̄propylethylenediaminebondedsilicagel(PSA)withcontrollablebondingamountwasoptimizedꎻthebatchrepeatabilityofPSApreparationwasexaminedꎻandthepilotscale ̄upexperimentofPSApreparationwasconducted.ThepropertiesofthePSAwereinvestigatedbyinfraredspectroscopyꎬelementalanalysisꎬandpotentiometrictitration.TheresultsshowedthatN Hstretchingvibrationpeaksappearedat3460cm-1ꎬasymmetricandsymmetricstretchingvibrationpeaksof CHappearedat2960cm-1and2860cm-1ꎬanddeformationvibrationabsorptionpeaksof NH2appearedat708cm-1ꎬindicatingthatN ̄propylethylenediaminewassuccessfullygraftedontothesurfaceofsilicagel.Furthermoreꎬwiththeincreasingproportionofsilanereagentinthepreparationsystemꎬthecontentofcarbonꎬnitrogenꎬandhydrogenelementsandtheionexchangecapacityobtainedbypotentiometrictitrationshowedanupwardtrendꎬindicatingthatthebondingamountofethylenediamine ̄N ̄propylfunctionalgroupgraduallyincreased.MoreoverꎬthepreparedPSApackingcomponentwasseparatedfromthepurificationcolumnꎬandtheremovalefficiencyofginkgolicacidfromtheextractofginkgobilobaleavesusingPSAwithdifferentbondingamountswasinvestigated.TheresultsshowedthatPSAhadastrongadsorptioncapacityforginkgolicacidandcouldbeusedtoremoveginkgolicacidfromtheextractofginkgobilobaleavesꎬthemaximumsampleloadingvolumesforPSAseparationandpurificationcolumns2#ꎬ3#ꎬ4#ꎬand5#are21ꎬ22ꎬ23ꎬ24mLꎬrespectively.Inadditionꎬtheremovalefficiencywasfoundtoincreasewiththeincreasingamountofethylenediamine ̄N ̄propylbonding.Keywordsʒethylenediamine ̄N ̄propylmodifiedsilicagelꎻbondingquantityꎻginkgoacidremoval㊀㊀胺类硅胶材料由于强吸附性能已经成为人们研究的热门课题[1 ̄4]ꎬ乙二胺 ̄N ̄丙基键合硅胶(PSA)是目前被广泛应用的一种胺基键合硅胶ꎬ因PSA具有两个胺基且存在仲胺ꎬ通过弱阴离子交换和正相保留作用ꎬ其具有较大的离子交换容量[5]ꎮ李来明等[6]采用非均相氨化法合成硅胶微球ꎬ制备了氨丙基和乙二胺 ̄N ̄丙基两种胺基键合硅胶并评价了其对甲苯磺酸吸附的吸附量ꎮAguado等[7]制备了氨丙基㊁乙二胺 ̄N ̄丙基㊁二乙烯三胺基丙基功能化介孔硅胶SBA ̄15材料ꎬ可用于污水中重金属Cu2+等重金属离子的吸附ꎮ王军等[8]以PSA和十八烷基键合硅胶为净化材料去除样品中的干扰物质ꎬ建立了一种QuEChERS-气相色谱-质谱法检测酥油中的8种有机磷农药残留ꎮ蒋明明等[9]建立了一种基于PSA和多壁碳纳米管通过超高效液相色谱-质谱法测定普洱茶中3种手性杀菌剂农药残留的分析方法ꎮMa等[10]通过PSA去除番茄㊁甜椒和甜食中的有机酸㊁一些糖类和极性色素ꎮ然而ꎬ目前同一厂家的商品化PSA离子交换容量通常为固定值ꎬ针对不同有害物质的脱除需要不同离子交换容量的PSA来实现ꎬ对PSA的应用效果及应用领域产生了一定的限制作用ꎮ目前PSA生产处于实验室阶段ꎬ中试批量生产PSA难度大ꎬ无法满足PSA的实际应用需求ꎮ因此ꎬ开发乙二胺 ̄N ̄丙基键合量可控的PSA制备工艺ꎬ并进行中试放大实验生产批次稳定性高㊁离子交换容量可选的PSA具有重要的应用价值ꎮ银杏叶提取物中含有银杏黄酮和银杏内酯等药用活性成分[11]ꎬ但其中也含有具有较强毒副作用[12 ̄15]的银杏酸[16 ̄17]ꎮ«中国药典»[18]中规定银杏叶提取物中银杏酸的质量分数不得超过5mg/kgꎬ其中白果新酸为银杏酸中的主要成分ꎬ白果新酸具有抗氧化㊁抗血小板聚集及改善记忆㊁提高机体免疫功能等药理作用ꎬ可用于防治农业病虫害㊁抑制痤疮致病菌等ꎮ目前通常使用大孔树脂脱除银杏酸ꎬ辛云海[19]用D918阴离子交换树脂对银杏提取物中银杏酸进行脱除ꎬ但大孔树脂存在处理步骤繁琐㊁成本较高且会出现破碎的问题ꎮ硅胶作为一种稳定的无机材料具有高机械稳定性ꎬ乙二胺 ̄N ̄丙基官能团具有双氨基结构ꎬ与银杏酸间可产生强吸附作用力ꎬ因此PSA在银杏酸脱除中具有理想的应用前景ꎮ本文探讨了PSA制备工艺中乙二胺 ̄N ̄丙基硅烷化试剂和三甲基氯硅烷两个关键参数的用量与PSA键合量的关系ꎬ实现PSA离子交换容量可调控的制备工艺要求ꎬ并对优化的制备工艺进行中试放大实验ꎬ通过离子交换容量㊁红外光谱和元素分析结果对制备重复性进行表征ꎬ保证制备工艺的批次稳定性ꎮ将制备的PSA填充成分离纯化小柱ꎬ应用于银杏叶提取物中有害物质银杏酸的脱除ꎮ采用«中国药典»中规定的高效液相色谱法对银杏酸含量进行定量分析ꎬ考察了不同离子交换容量的PSA对银杏酸的脱除效率ꎬ评价PSA在银杏酸脱除方面的应用前景ꎮ1㊀实验部分1.1㊀试剂与仪器硅胶(230~400目)ꎬ青岛美高集团有限公司ꎻ乙二胺 ̄N ̄丙基三甲氧基硅烷(纯度ȡ95%)ꎬ上海吉至生化科技有限公司ꎻ三甲基氯硅烷(纯度ȡ99.99%)ꎬ上海阿拉丁生化科技股份有限公司ꎻ白果新酸(标准品ꎬ纯度ȡ98%)ꎬ四川维克奇生物科技有限公司ꎻ浓盐酸㊁甲苯㊁4A型分子筛㊁二氯甲烷㊁三氟乙酸㊁磷酸㊁乙醇和甲醇ꎬARꎬ国药集团化学试剂有限公司ꎻ甲醇ꎬ色谱纯ꎬ德国默克股份公司ꎻ乙腈ꎬ色谱纯ꎬ天津康科德科技有限公司ꎮWaters2695高效液相色谱仪配置Waters2487双波长检测器ꎬ美国Waters公司ꎻVarioELⅢ型元素分析仪ꎬ德国Elementar公司ꎻNicolet6700FTIRSpectormeter型傅里叶变换红外分析光谱仪ꎬ美国Thermo公司ꎻR ̄1001VN型旋转蒸发仪ꎬ郑州长城科工贸有限公司ꎻ高精度电位滴定仪ꎬ北京海光仪器有限公司ꎻ马弗炉ꎬ济南精锐分析仪器有限公司ꎻ反应釜ꎬ南京科尔仪器设备有限公司ꎻ电热鼓风烘箱ꎬ上海精宏实验设备有限公司ꎻ真空干燥箱ꎬ上海一恒科学仪器有限公司ꎮ1.2㊀PSA的制备1.2.1㊀PSA制备工艺优化将硅胶置于450ħ马弗炉中活化6hꎬ得到活化硅胶ꎮ取活化硅胶置于质量分数20%盐酸中ꎬ于25ħ机械搅拌10hꎬ待反应结束后ꎬ用超纯水多次洗涤至中性ꎬ于65ħ鼓风烘箱干燥3hꎬ65ħ真空烘箱干燥10hꎬ得酸化硅胶ꎮ称取20g酸化硅胶ꎬ置于150mL三口圆底烧瓶中ꎬ加入100mL除水甲苯ꎬ分别加入不同体积乙二胺 ̄N ̄丙基三甲氧基硅烷(3.4㊁4.1㊁4.8㊁5.5㊁6.8㊁8.2mLꎬPSA编号分别为1#㊁2#㊁3#㊁4#㊁5#和6#)ꎬ通N2作为保护气ꎬ机械搅拌下于50ħ冷凝回流反应24hꎬ待反应完成后ꎬ冷却过滤ꎬ依次采用50mL甲苯㊁3次50mL甲醇洗涤ꎬ于80ħ鼓风烘箱预烘ꎬ80ħ真空烘箱干燥过夜得不同键合量的PSAꎬ其反应式如图1所示ꎮ图1㊀乙二胺 ̄N ̄丙基键合硅胶(PSA)的键合反应式Fig.1㊀BondingprocessofN ̄propylethylenediaminesilicagel(PSA)1.2.2㊀PSA中试放大实验中试放大实验在10L带机械搅拌控温反应釜中进行ꎬ加入2kg酸化硅胶㊁550mL乙二胺 ̄N ̄丙基三甲氧基硅烷和7L除水甲苯ꎬ通N2作为保护气ꎬ机械搅拌下于50ħ冷凝回流反应24hꎬ待反应完成后ꎬ冷却过滤ꎬ依次采用甲苯和甲醇进行洗涤ꎬ于80ħ鼓风烘箱预烘ꎬ80ħ真空烘箱干燥过夜得中试键合PSAꎮ1.3㊀PSA离子交换容量的测定PSA上键合的乙二胺 ̄N ̄丙基官能团上的两个胺基可以与H+发生酸碱中和反应ꎬ因此通过电位滴定仪和pH电极可以测定PSA的离子交换容量:称取0.2gPSA于锥形瓶中ꎬ加入120mL浓度为0.01mol/L的HCl水溶液ꎬ超声10minꎬ静置1~2hꎬ使填料上的胺基和溶液中的H+充分反应ꎬ用移液管移取上清液50mL于锥形瓶中ꎬ确保没过pH电极ꎬ加入1~2滴酚酞指示剂ꎬ用0.01mol/LNaOH标准溶液滴定剩余的HClꎬ滴定终点时ꎬ记录消耗NaOH水溶液的体积ꎬ同时做空白ꎬ通过式(1)计算ꎬ可以得到离子交换容量(IEC)ꎬ平行3次取平均值ꎮIEC=c1V1-c2V2/V3/V1()[]mꎬ(1)式中ꎬc1为HCl溶液浓度ꎬmol/LꎻV1为HCl溶液体积ꎬmLꎻc2为NaOH溶液浓度ꎬmol/LꎻV2为NaOH溶液体积ꎬmLꎻV3为移取上清液体积ꎬmLꎻm为PSA质量ꎬgꎮ1.4㊀PSA脱除银杏酸1.4.1㊀银杏酸含量检测方法参考中国药典 银杏叶提取物 中银杏酸高效液相色谱检测(HPLC)方法ꎬ色谱柱为C18柱(4.6mmˑ150mmꎬ5μm)ꎬ流动相(A)为体积分数0.1%三氟乙酸的乙腈ꎬ流动相(B)为体积分数0.1%三氟乙酸的水ꎮ紫外检测波长为310nmꎬ流速为1.0mL/minꎬ柱温为35ħꎬ进样量为10μLꎮ流动相梯度:0~30minꎬ流动相A从75%升到90%ꎬ保持5minꎬ35~36minꎬ流动相A从90%降至75%ꎬ保持9minꎮ以白果新酸为对照品ꎬ采用外标法进行定量ꎮ称取10mg白果新酸标准品于10mL容量瓶中ꎬ甲醇溶解定容ꎬ配制成质量浓度1000μg/mL的母液ꎮ用甲醇将母液稀释成质量浓度分别为0.1㊁0.25㊁0.5㊁1㊁5㊁10㊁25μg/mL的标准工作液ꎬ采用HPLC进行检测绘制标准曲线ꎮ1.4.2㊀银杏叶提取物的制备取30g银杏叶粉末于500mL蓝盖瓶中ꎬ加入300mL的乙醇ꎬ摇匀ꎬ超声1hꎬ抽滤并收集滤液ꎻ剩余滤渣再用300mL的乙醇超声提取1hꎬ抽滤后合并滤液得到银杏叶提取液ꎮ取50mL银杏液提取液进行旋转蒸发ꎬ将溶剂蒸干后得到0.33g银杏叶提取物ꎮ1.4.3㊀分离纯化柱的装填在低压分离纯化柱管底部放入筛板ꎬ将柱管连接至真空抽滤瓶ꎮ取5gPSA填料用乙醇-水(体积比4ʒ1)25mL分散ꎬ超声1~2min后用移液枪沿着管壁旋转加入到吸附柱中ꎬ抽干溶剂后将柱管顶部放入筛板压实ꎬ拧紧顶部盖子后完成装填ꎮ2㊀结果与讨论2.1㊀PSA的制备PSA硅胶上乙二胺 ̄N ̄丙基的键合量与其离子交换容量成正比关系ꎬ因此本文通过检测离子交换容量来反映乙二胺 ̄N ̄丙基键合量的变化趋势ꎮ图2㊀硅烷化试剂用量与离子交换容量关系图Fig.2㊀Relationshipbetweenvolumeofsilanereagentandionexchangecapacity2.1.1㊀PSA制备工艺优化以20g酸化硅胶为原料ꎬ进行PSA键合反应小试制备工艺优化ꎮ首先优化反应体系中乙二胺 ̄N ̄丙基三甲氧基硅烷用量对离子交换容量的影响ꎮ构建6种键合反应体系ꎬ分别得到1#~6#键合PSAꎬ每种反应体系重复3次考察键合反应的批次重复性ꎬ1#~6#键合PSA的离子交换容量相对标准偏差值范围为0.7%~5.9%ꎬ批次重复性良好ꎮ以PSA离子交换容量平均值为纵坐标㊁乙二胺 ̄N ̄丙基三甲氧基硅烷体积为横坐标作图(图2)ꎬ考察PSA键合量与硅烷化试剂用量间的关系ꎮ结果表明:当体系中乙二胺 ̄N ̄丙基三甲氧基硅烷少于5.5mL时ꎬ离子交换容量随硅烷化试剂用量增加而快速升高ꎬ而体系中乙二胺 ̄N ̄丙基三甲氧基硅烷体积达到5.5mL之后ꎬ离子交换容量增加趋势变平缓ꎮ原因是当硅胶表面硅羟基趋于键合饱和时ꎬ由于反应活性位点减少导致继续增加硅烷化试剂的量其键合量增加不明显ꎮ同时ꎬ体系中过剩的未反应硅烷化试剂可发生自交联反应ꎬ造成硅胶孔结构的堵塞ꎬ硅胶表面积降低ꎮ因此ꎬ对于PSA小试制备工艺体系ꎬ选择加入的乙二胺 ̄N ̄丙基三甲氧基硅烷体积为5.5mLꎮ2.1.2㊀PSA的中试放大实验为了验证PSA制备小试优化的工艺可以成功应用于中试放大实验ꎬ按照小试工艺优化的物料比ꎬ酸化硅胶和乙二胺 ̄N ̄丙基三甲氧基硅烷的量分别放大100倍ꎬ即2kg酸化硅胶和550mL乙二胺 ̄N ̄丙基三甲氧基硅烷ꎬ溶剂除水甲苯的量放大70倍ꎬ即7Lꎬ在10L带机械搅拌机控温反应釜中进行中试放大实验ꎮ若完全按照小试优化工艺全部放大100倍ꎬ体积超出10L反应釜的承载范围ꎬ因此对溶剂除水甲苯的放大倍数较少为70倍ꎬ经实验表明物料的分散和搅拌均满足实验要求ꎮ键合反应的键合温度㊁键合时间以及清洗步骤均参照小试工艺进行ꎮ键合反应重复3次ꎬ采用PSA的离子交换容量重复性评价中试放大实验的批次稳定性ꎬ结果列于表1ꎬ结果表明:采用最佳工艺中试放大实验离子交换容量重复性良好ꎬ三批次重复性相对标准偏差仅为0.7%ꎮ中试放大实验的离子交换容量与小试相比略有提升ꎬ原因可能为中试放大实验中溶剂除水甲苯的用量相对减少30%ꎬ因此单位溶剂中硅烷化试剂的浓度提升ꎬ从而导致键合量略有提升ꎮ与商品化PSA相比ꎬ最佳工艺中试放大实验制备的PSA可达到甚至优于商品化PSA的离子交换容量ꎬ说明中试放大合成工艺的可行性ꎮ表1㊀最佳工艺中试放大三批次PSA离子交换容量及其相对标准偏差Table1㊀Theionexchangecapacityanditsrelativestandarddeviationof批次12.310.7批次22.29批次32.34商品化1.942.2㊀PSA的表征2.2.1㊀红外光谱对裸硅胶和PSA进行傅里叶红外光谱(FTIR)表征ꎬ图3为两者的IR谱图ꎮ裸硅胶谱图中1100cm-1处的吸收峰为硅胶上Si O键的弯曲振动峰ꎬ3460cm-1和1640cm-1处的吸收峰分别为硅胶表面残留硅羟基O H键的伸缩振动和弯曲振动峰ꎮ与裸硅胶相比ꎬPSA谱图中在3460cm-1处出现了更为明显N H键的伸缩振动峰[20]ꎬ在708cm-1处出现了 NH2的变形振动吸收峰ꎬ在2960cm-1和2860cm-1处出现了 CH的不对称和对称伸缩振动峰ꎬ表明乙二胺 ̄N ̄丙基基团被成功键合到硅胶上ꎮ图3㊀裸硅胶和PSA傅里叶红外光谱图Fig.3㊀InfraredspectrumofbaresilicagelandPSA2.2.2㊀元素分析将小试工艺优化构建的6种反应体系所得PSA进行元素分析测试ꎮ如图4所示ꎬPSA的碳㊁氮和氢元素质量分数随着键合反应体系中乙二胺 ̄N ̄丙基三甲氧基硅烷用量的增加而快速上升ꎬ当乙二胺 ̄N ̄丙基三甲氧基硅烷用量达到小试最优工艺5.5mL时ꎬ所得PSA的碳㊁氮和氢元素质量分数分别为6.39%㊁2.86%和2.03%ꎬ然而硅烷化试剂用量继续增加时ꎬ碳㊁氮和氢元素质量分数增加趋势变平缓ꎮ结果表明:PSA的碳㊁氮和氢元素质量分数与硅胶上键合的乙二胺 ̄N ̄丙基的量成正比ꎬ其变化趋势与离子交换容量的变化趋势相符合ꎬ因此小试制备工艺中乙二胺 ̄N ̄丙基三甲氧基硅烷用量为5.5mL时ꎬ键合量开始趋于饱和ꎮ图4㊀小试制备工艺优化中6种PSA元素分析结果Fig.4㊀Analysisresultsof6kindsPSAelementsintheoptimizationofthesmall ̄scalepreparationprocess㊀㊀表2为最佳工艺中试放大实验所得3批次PSA的元素分析结果ꎬ与小试最佳工艺相比略有微ꎬ与离子交换容量的结果相符ꎮ与商品化PSA的元素分析结果相比ꎬ碳㊁氮和氢元素含量可达到甚至优于商品化PSAꎮ表2㊀最佳工艺中试放大实验及商品化PSA元素分析Table2㊀PSA批次22.796.371.71批次33.317.462.03安捷伦2.736.471.772.3㊀PSA对银杏酸的吸附研究将中试放大制备的PSA填装成分离纯化小柱ꎬ用于银杏叶提取物中银杏酸的脱除ꎮ在真空作用下使银杏叶提取物通过小柱ꎬ收集净化液进行高效液相色谱分析ꎬ定量检测净化液中白果新酸含量ꎮ2.3.1㊀白果新酸标准曲线的建立将质量浓度分别为0.10㊁0.25㊁0.50㊁1.00㊁5.00㊁10.00㊁25.00μg/mL的白果新酸标准工作液进行高效液相色谱分析ꎬ绘制标准工作曲线ꎮ所得标准工作曲线的线性回归方程为y=6636.1xꎬ相关系数r2=0.9933ꎮ图5为白果新酸标准品液相色谱图(质量浓度为25μg/mL)ꎮ图5㊀白果新酸标准品高效液相色谱图Fig.5㊀Highperformanceliquidchromatographyofginkgonewacidstandard图6㊀银杏叶提取物上样体积与净化液中白果新酸浓度关系图Fig.6㊀Relationshipbetweensampleloadingvolumeofginkgobilobaextractandconcentrationofginkgobilobanewacidinpurificationsolution2.3.2㊀PSA离子交换容量对银杏酸脱除效率的影响PSA键合的乙二胺 ̄N ̄丙基官能团含有一个伯胺基团和一个仲胺基团ꎬ其与银杏酸含有的羧基以及酚羟基之间存在酸碱作用力ꎬ因此PSA对银杏酸具有强吸附作用ꎮ当银杏叶提取物通过PSA分离纯化柱时ꎬ银杏酸被吸附到填料上ꎬ从而达到银杏酸脱除的目的ꎮ为了考察PSA离子交换容量对银杏酸脱除效率的影响ꎬ选取2#㊁3#㊁4#㊁5#PSA进行脱酸实验ꎮ每支PSA分离纯化柱总上样体积为25mL银杏叶提取物ꎬ前10mL上样体积间隔为2mLꎬ之后上样体积间隔改为1mLꎬ收集净化液定量分析白果新酸含量ꎮ银杏叶提取物的上样体积与净化液中白果新酸含量的关系图如图6所示:(1)2#㊁3#㊁4#和5#PSA分离纯化柱对白果新酸的突破体积(脱除效率为100%)ꎬ分别为15㊁16㊁17㊁18mLꎬ结果表明随着离子交换容量的增加ꎬ突破体积增大ꎬ当上样体积大于18mL时ꎬ所有PSA柱的净化液中均检出白果新酸ꎮ(2)«中国药典»中规定银杏叶提取物中银杏酸质量分数不得超过5mg/kgꎬ因此本文将净化液中白果新酸含量不高于5mg/kg的上样体积作为最大上样体积ꎬ2#㊁3#㊁4#和5#PSA分离纯化柱的最大上样体积分别为21㊁22㊁23和24mLꎮ因此ꎬPSA离子交换容量越高ꎬ对银杏酸的吸附效率越高ꎬPSA的离子交换容量与银杏酸脱除效率成正相关关系ꎮ图7为4#键合PSA分离净化柱上样体积分别为17mL和23mL所得净化液以及原始银杏叶提取物的HPLC色谱图ꎮ原始银杏叶提取物中白果新酸质量分数为6682mg/kgꎬ4#PSA分离净化柱上样体积分别为17mL和23mL所得净化液中白果新酸质量分数分别为0和4.1mg/kgꎮ图7㊀4#键合PSA分离净化柱上样体积分别为17mL和23mL所得净化液以及原始银杏叶提取物的HPLC色谱图Fig.7㊀HPLCChromatogramofpurifiedsolutionandoriginalGinkgoBilobaextractwithsamplevolumesof17mLand23mLon4#bondedPSAseparationandpurificationcolumn3㊀结论本文通过考察PSA小试制备工艺中硅烷化试剂与离子交换容量的变化关系ꎬ制备一系列离子交换容量不同的PSA并得到最优小试制备工艺ꎮ将最优小试制备工艺在10L反应釜中进行公斤级中试放大实验ꎬ验证最优小试制备工艺的放大效果ꎬ对工业批量生产PSA具有一定借鉴意义ꎮ对中试实验制备㊁小试制备及商品化PSA进行离子交换容量㊁红外光谱和元素分析表征ꎬ并将其结果进行比较ꎬ结果表明中试放大实验得到的PSA性能与最优小试工艺相符ꎬ中试放大实验成功ꎬ并且其性能与商品化PSA性能相当ꎮ本文优化的制备工艺对工业生产PSA硅胶填料具有借鉴价值ꎮ将PSA装填成分离纯化小柱应用于银杏叶提取物中银杏酸的脱除ꎬ发现白果新酸的脱除效率与PSA的离子交换容量成正相关关系ꎮ4#键合PSA分离纯化柱对白果新酸脱除的突破体积和最大上样体积分别达到17mL和23mLꎬ结果表明键合PSA在银杏酸脱除方面具有应用潜力ꎮ参考文献:[1]宋祥家ꎬ李红霞.胺类硅胶材料的合成及应用[J].化工技术与开发ꎬ2012ꎬ41(8):26 ̄28.DOI:10.3969/j.issn.1671 ̄9905.2012.08.008.[2]王明华.硅胶负载酰胺 胺型螯合树脂的合成及性能研究[D].烟台:鲁东大学ꎬ2008.[3]朱萌.胺类聚合物型亲水作用色谱固定相的制备及色谱性能评价[D].青岛:青岛科技大学ꎬ2019.[4]王玲慧.乙二胺硅胶材料的制备及其吸附性能研究[D].郑州:郑州大学ꎬ2010.[5]包建民ꎬ王惠柳ꎬ李优鑫.HPLC级二氧化硅微球的制备及其功能化[J].精细化工ꎬ2018ꎬ35(9):1457 ̄1465.DOI:10.13550/j.jxhg.20170514.[6]李来明ꎬ任芳芳ꎬ包建民ꎬ等.7种胺基键合硅胶的制备及其对重金属Pb2+的吸附[J].色谱ꎬ2020ꎬ38(3):341 ̄349.DOI:10.3724/SP.J.1123.2019.09030.[7]AGUADOJꎬARSUAGAJMꎬARENCIBIAA.InfluenceofsynthesisconditionsonmercuryadsorptioncapacityofpropylthiolfunctionalizedSBA ̄15obtainedbyco ̄condensation[J].MicroporousandMesoporousMaterialsꎬ2008ꎬ109(1/2/3):513 ̄524.DOI:10.1016/j.micromeso.2007.05.061.[8]王军ꎬ扎西次旦ꎬ黄利英ꎬ等.基于N ̄丙基乙二胺键合硅胶和十八烷基键合锆胶的QuEChERS ̄气相色谱-质谱法检测酥油中的8种有机磷农药残留[J].食品安全质量检测学报ꎬ2019ꎬ10(21):7360 ̄7364.DOI:10.19812/j.cnki.jfsq11 ̄5956/ts.2019.21.050.[9]蒋明明ꎬ曾小娟ꎬ宋红坤ꎬ等.多壁碳纳米管/N-丙基乙二胺混合吸附-超高效液相色谱-串联质谱法测定普洱茶中3种手性杀菌剂农药残留[J].食品安全质量检测学报ꎬ2020ꎬ11(6):1702 ̄1708.DOI:10.19812/j.cnki.jfsq11 ̄5956/ts.2020.06.002. [10]MAYCꎬMANIANꎬCAIYLꎬetal.AneffectiveidentificationandquantificationmethodforGinkgobilobaflavonolglycosideswithtargetedevaluationofadulteratedproducts[J].Phytomedicineꎬ2016ꎬ23(4):377 ̄387.DOI:10.1016/j.phymed.2016.02.003. [11]池静端.银杏叶中黄酮类成分的化学研究[J].中国中药杂志ꎬ1998ꎬ23(1):40 ̄41.[12]杨小明ꎬ陈钧ꎬ钱之玉.烷基酚酸的生物活性研究进展[J].中草药ꎬ2003ꎬ34(5):U005 ̄U006.DOI:10.3321/j.issn:0253 ̄2670.2003.05.047.[13]沈琦ꎬ李贺ꎬ廉洪ꎬ等.银杏酸对大鼠肝毒性的影响研究[J].中国临床药理学杂志ꎬ2018ꎬ34(12):1457 ̄1459.DOI:10.13699/j.cnki.1001 ̄6821.2018.12.018.[14]IRIEJꎬMURATAMꎬHOMMAS.Glycerol ̄3 ̄phosphatedehydrogenaseinhibitorsꎬanacardicacidsꎬfromGinkgobiloba[J].BioscienceꎬBiotechnologyꎬandBiochemistryꎬ1996ꎬ60(2):240 ̄243.DOI:10.1271/bbb.60.240.[15]张秀丽ꎬ杨小明ꎬ夏圣ꎬ等.银杏酸对痤疮致病菌的抑制作用[J].江苏大学学报(医学版)ꎬ2007ꎬ17(6):523 ̄525.DOI:10.13312/j.issn.1671 ̄7783.2007.06.004.[16]王云飞ꎬ杨小明ꎬ李月英ꎬ等.银杏酚对SMMC ̄7721肝癌细胞和荷H22肝癌小鼠的抗癌作用[J].江苏大学学报(医学版)ꎬ2013ꎬ23(3):233 ̄237.DOI:10.13312/j.issn.1671 ̄7783.2013.03.018.[17]姚建标ꎬ金辉辉ꎬ王如伟ꎬ等.银杏叶提取物中总银杏酸HPLC法限量检测[J].药物分析杂志ꎬ2015ꎬ35(11):2041 ̄2044.DOI:10.16155/j.0254 ̄1793.2015.11.30.[18]国家药典委员会.中华人民共和国药典2020年版一部[S].北京:中国医药科技出版社ꎬ2020.[19]辛云海.银杏叶化学成分及银杏酚酸脱除工艺的研究[D].桂林:广西师范大学ꎬ2007.[20]YUJGꎬLEYꎬCHENGB.FabricationandCO2adsorptionperformanceofbimodalporoussilicahollowsphereswithamine ̄modifiedsurfaces[J].RSCAdvancesꎬ2012ꎬ2(17):6784 ̄6791.DOI:10.1039/C2RA21017G.。

手性流动相添加剂法对两种手性化合物的直接拆分

手性流动相添加剂法对两种手性化合物的直接拆分杨丽;廖勇;周志强;江树人;王鹏【期刊名称】《分析测试学报》【年(卷),期】2004(023)005【摘要】以β-环糊精为手性流动相添加剂,于C8反相柱上建立了2种手性农药(包括杀菌剂己唑醇和杀虫剂SR-生物丙烯菊酯)对映体的高效液相色谱拆分方法.探讨了β-环糊精浓度、流动相pH、有机改性剂种类等因素对手性拆分的影响.结果表明:在流动相为β-环糊精水溶液、磷酸钠缓冲液(0.05mol/L)、乙腈、三乙胺(体积比50:30:20:0.5)条件下,己唑醇对映体在pH为7.4,β-环糊精溶液浓度为7mmol/L时,SR-生物丙烯菊酯对映体在pH为6.4,β-环糊精浓度为10.5 mmol/L 时得到最佳分离.【总页数】3页(P133-135)【作者】杨丽;廖勇;周志强;江树人;王鹏【作者单位】中国农业大学,应用化学系,北京,100094;中国科学院,遗传与发育生物所,北京,100101;中国农业大学,应用化学系,北京,100094;中国农业大学,应用化学系,北京,100094;中国农业大学,应用化学系,北京,100094【正文语种】中文【中图分类】O657.72;S482.2【相关文献】1.以羧甲基-β-环糊精为HPLC手性流动相添加剂法分离两种手性药物对映体 [J], 刘静;董斌;丁红雨2.流动相组成对有机硒手性化合物拆分的影响 [J], 韩小茜;齐邦峰;敦惠娟;祝馨怡;纳鹏君;蒋生祥;陈立仁3.羟丙基-β-环糊精手性流动相添加剂法拆分盐酸氯丙那林 [J], 翟明翚;罗棶钰;陈影;王颖;苏立强4.流动相添加剂法与手性固定相法对己唑醇光学异构体的拆分 [J], 杨丽;江树人;廖勇;王鹏;田芹;周志强5.高效液相色谱手性流动相添加剂法拆分愈创甘油醚对映体 [J], 翟明翚;韩爽;王颖;陈志伟;苏立强因版权原因,仅展示原文概要,查看原文内容请购买。

季铵盐类杀菌剂的研究进展

季铵盐类杀菌剂的研究进展随着⽣活⽔平的提⾼,⼈们对⽣活环境的要求也越来越⾼。

⾃然界中存在着⼤量的微⽣物,有害微⽣物对⼈和动、植物有极⼤的危害,影响⼈们的健康,甚⾄危及⽣命。

微⽣物还会引起各种材料的分解、变质和腐败,带来重⼤的经济损失。

由此,具有抗菌和杀菌功能的材料越来越受到⼈们的关注,抗菌材料的⽣产已成为⼀个新兴的产业。

1 季铵盐杀菌剂研究季铵盐类杀菌剂是研究较多的⼀类有机杀菌剂,⾃1935年德国⼈G.Domark发现烷基⼆甲基氯化铵的杀菌作⽤并利⽤其处理军服以防⽌伤⼝感染以来,季铵盐类抗菌剂的研究⼀直是研究者关注的重点,⽬前该类抗菌剂已经发展到第五代。

FraI1k1in发现长链烷基季铵盐基团就具有很强的抗菌性能,作为季铵盐类的⼀个主要品种,这类抗菌剂的抗菌作⽤随季铵盐类结构变化的⼀般规律是同类季铵盐烷基链短的毒性要⽐烷基链长的⼤;在烷基链长相同时,带苄基的毒性要⽐带甲基的⼩;单烷基的毒性要⽐带甲基的⼩,单烷基的毒性要⽐双烷基的⼤。

随着烷基链的增长,抗菌能⼒增强;但到⼀定长度,抗菌⼒反⽽下降。

对于⼩分⼦季铵盐抗菌剂的抗菌活性已经有了较多的研究,但是⼩分⼦抗菌剂存在易挥发、不易加⼯、化学稳定性差等缺点。

⼈们发现带有长链烷基的⾼分⼦季铵盐基团具有很好的抗菌性能,同时⾼分⼦季铵盐抗菌剂不会渗透进⼈的⽪肤,还具有⽐⼩分⼦抗菌剂更好的抗菌性能,因此⾼分⼦季铵盐抗菌剂成为当今研究和开发的⼀个热点。

本⽂介绍了国内外有关季铵盐类抗菌剂及其抗菌机理等的最新研究进展,并对其应⽤和今后的发展作了评述。

1.1 ⽔溶性季铵盐杀菌剂研究⽬前⽔溶性的⼩分⼦和⾼分⼦季铵盐抗菌剂已经⼴泛应⽤于⽔处理、⾷品、医疗卫⽣和包装材料等领域。

将抗菌基团键合到⾼分⼦⾻架上,制得的⾼分⼦抗菌材料,可提⾼抗菌基团的密度,从⽽提⾼抗菌性能。

⽬前以共价键连接的⾼分⼦抗菌剂研究主要是季铵盐、季镌盐及吡啶盐型。

US 5411933[2J报道了⼀种季铵盐抗菌剂,其结构的显著特征为季氮上带有不饱和的丙炔基,这类化合物具有极⾼效、⼴谱的抗菌活性,其对⼤肠杆菌的MIC⼩于4 ,对曲霉属的MIC⼩于1.6 。

固定化脂肪酶拆分手性化合物

北京化工大学硕士学位论文固定化脂肪酶拆分手性化合物姓名:秦韶巍申请学位级别:硕士专业:生物化工指导教师:谭天伟20060610第二章脂肪酶的纯化与性质研究表2—1C白H以出够99“125脂肪酶的纯化Tabk2一lPurinc“onofthe1ipaSe疗omo耐池印99-1252.3.2脂肪酶蛋白分子量的测定分别从粗酶液和疏水层析纯化后的高活性酶液中采集样品10∥l,进行SDS.PAGE检测。

结果见图2-3。

图20脂肪酶SDS.PAGE图(考马斯亮蓝染色法进行染色)(A):纯化后的脂肪酶;(B):maker:(c:)粗酶液F远.2-3nIemolecul酣m够sofIipaSedelecledbysDs—PAGE(Stai∞dwimCoom鼬sieBfilliantBlue)(A):也ep埘制lip鹊e;(B):m砷∞r;(c):mesupem8掘ntoflipasesoIution与泳道C耜比,泳道A中位于35。

5~50.7kDa之间有一条醒目的蛋白带,其余杂蛋白带不可见,说明粗酶液经过离子交换层析和疏水层析处理后,杂蛋白已经被除去。

目标脂肪酶得到了较好的纯化,收率较高,这与2.3.1的实验分析结果是一致的。

通过计算机软件对电泳胶进行分析,得出目标脂肪酶蛋白的分子量约北京化工大学硕士学位论文为38kDa。

2.3、3脂肪酶同工酶的测定首先将纯化后的脂肪酶溶液进行双向SDs.PAGE检测。

图2.4腊肪酶双向电泳分析图(考马斯亮蓝染色法进行染色)Fjg.2‘4像de钯c:lionof她p喇行cdlipa辩bysDs·PAGE(Stainedwj也Co啪哪ie蹦lli删Blue)图2、4显示出4个分子量相同、等电点比较接近的蛋白点。

为了确定这四类蛋白是否为cc珊凼妇蹰99.125脂肪酶的同工酶,本实验采用等电聚焦的方法对纯化后的脂肪酶溶液进行处理,然后分别对等电聚焦胶条进行考马斯亮蓝染色和RhodallhneB活性染色,并通过对照等电聚焦电泳后的脂肪酶活性染色和蛋白质染色结果,明显区分每个蛋白点,从而确定每个蛋白点是否具有脂肪酶活性。

1_3_4_恶二唑类化合物合成及应用的研究新进展_宋庆宝

文章编号:1006-4184-(2009)08-0017-081,3,4-噁二唑类化合物合成及应用的研究新进展宋庆宝,徐丽娟,马淳安(浙江工业大学化学工程与材料学院,浙江杭州310032)摘要:1,3,4-噁二唑类化合物因具有独特的生物活性和光学活性而被广泛研究,该类化合物在农药、医药、材料等领域有广泛应用。

将1,3,4-噁二唑环引入不同的化合物结构中,通过结构修饰能生成一系列具有广谱生物活性的化合物及电致发光材料。

因此,1,3,4-噁二唑衍生物的合成也成了人们研究的热点。

文章综述了近年来合成1,3,4-噁二唑类化合物的传统方法、微波辅助合成法、固相合成法,对其在医药、材料等方面的应用进行了总结,并对其发展趋势和应用前景作了展望。

关键词:1,3,4-噁二唑;合成;生物活性;光学活性收稿日期:2009-01-16作者简介:宋庆宝(1959-),男,吉林磐石人,教授,博士。

从事有机化学教学和研究。

1,3,4-噁二唑及其衍生物具有重要的生物活性,广泛应用于医药[1]、农药[2-3]等领域,某些1,3,4-噁二唑衍生物还具有光敏性质,可用于生产荧光剂、闪烁剂等,尤其可作为感光高分子材料应用于电致发光仪器[4-6]。

由于该类化合物的用途广泛,化学工作者对其合成方法进行了广泛而深入的研究,不断地涌现出新的合成方法和技术。

笔者综述了近年来合成1,3,4-噁二唑类化合物的传统方法、微波辅助合成法、固相合成法,对其生物活性的研究及在电致发光材料的应用进行了总结。

1合成方法1.1传统的合成方法2000年,Liras 等[7]在-10~25℃下,在二氯甲烷中用三氟乙酸酐处理二元酰肼,合成了不对称二取代1,3,4-噁二唑,产率达72%~95%(Eq.1)。

(1)2001年,Tandon 等[8]用BF 3·Et 2O 作催化剂,以乙酰氯和水合肼为原料,在二氧六环中回流2h 合成了对称的1,3,4-噁二唑,该法产率高、易处理(Eq.2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Z
Cl
Cl
2
2
2
4
3
2
Z
H
OCH3
1
1
0
1
0
0
E
H
H
4
2
1
3
1
0
E
Cl
H
4
3
1
1
0
0
E
H
Cl
4
4
3
4
0
0
E
Cl
Cl
4
4
4
4
4
4
E
H
OCH3
2
0
0
0
0
0
杀菌活性等级:0低于49%;1是50%~74%;2是75%~89%;3是90%~99%;4是100%
丙环唑(propiconazol) 是上世纪七十年代由杨森公司 开发的一种的内吸性广谱杀菌剂,丙环唑有两个手 性中心,四个异构体,其杀菌活性无显著差异,但 与2S体相比,2R体对蔬菜有药害,对植物生长有
抑制作用
N N
N
Cl
H2 C
C*
Cl
OO
* CH2CH2CH3
丙环唑
手性丙环唑 的合成方法由Ciba-Geigy公司开发, 以RuCl2(BINAP)为手性催化剂得到的混合物,通 过樟脑磺酸结晶分离得到纯的光学体。
Cl
Cl
O COOH
(R)-RuCl2(BINAP)
OH
OH
(R)
O CH2Br C
谢速度是(+) > (-)
HO
Cl
O C * C C(CH3)3
N N
N 三唑酮
三唑醇(triadimonol)是1975年Buchel发现的 一种优良的内吸性广谱杀菌剂有两个手性 碳,四个光学异构体,它们的生物活性有 明显的差异。可以利用(+)-樟脑-β-磺酸为拆 分剂,将异构体拆分开来。其活性顺序是
N
N
N
(S)-(+)-烯效唑
烯唑式化合物由于烯键的存在,同时还有Z,E两种顺反异构体, 它们的杀菌活性也有区别的,如表E型的活性高于Z型
构型
R1
R2
防治白粉病的浓度 ppm
50 12.5 3.1
防治叶锈病的浓度 ppm
50 12.5 3.1
Z
H
H
3
1
0
2
1
0
Z
Cl
H
2
1
0
0
0
0
Z
H
Cl
3
3
2
4
4
2
手性农药的合成与生 物活性研究进展
——杀菌剂篇与除草剂篇
手性是自然界的本质属性之一,是生命物质区别与 非生命物质的重要标志。生命现象中的化学过程都是 在高度不对称的环境中进行的。许多化学物质的生理 功能的产生常归因于分子的手性识别和匹配。随着科 学的发展,人们对生命过程的认识不断深入,手征性 研究己引起科学界广泛的兴趣。
第一部分
手性杀菌剂的合成与生物活性
一、三唑类杀菌剂
三唑类杀菌剂是杀菌剂发展历史上最引人 注目的一类,其机理是通过抑制细胞膜中 的麦角甾醇类的合成,影响细胞膜的形成, 从而导致菌体死亡。同时三唑类化合物还 可以控制植物体内赤霉素的合成,延缓植 物顶端生长优势,表现出植物生长调节活 性
三唑酮(triadimefon)是一个三唑类杀菌剂中里程碑 式的化合物,以它为先导结构,各大公司相继开 发出了近40种1, 2, 4-三唑类杀菌剂品种。有报道 三唑酮在哺乳动物肝脏中代谢成三唑醇,并且代
OH
Cl
CH C * C C(CH3)3
NH N
N
烯效唑
OH
Cl
CH C *C C(CH3)3
NH Cl N
N
烯唑醇
值得注意的是烯唑醇虽然结构只与烯效唑相差一 个氯原子,生物活性却不同,烯效唑的植物生长 活性较烯唑醇高,烯唑醇的杀菌活性较烯效唑高, 二者都是的R体杀菌活性高,S体的植物生长活性 高
1991年日本住友公司开发了光学纯的烯效唑的合成 方法,以(S)-氨基醇为手性催化剂,用硼氢化钠还 原(S)-前手性酮得到了植物生长调节活性更高的
(S)-(+)-烯效唑,
Cl
O
C C(CH3)3 CC
H
N
N
N
OH (s) Ph
Ph NH2
NaBH4
Cl OH
(S) C C(CH3)3
CC H
H
手性农药只含一个或两个高效异构体,其用量少, 环境友好,高效低毒,选择性强,残留量少,因而受 到广泛的关注。据最新统计,手性农药自上世纪七十 年代出现在国际市场以来,商业化的农用化学品中有 28%为手性化合物,约有200种。32%是杀菌剂是手性 的,34%的杀虫剂和21%的除草剂是手性的,但受分 离制备技术水平和经济因素的影响,大部分手性化合 物仍以外消旋体形式销售和使用,只有7%的农药是以 纯光学体的形式出售。
(1S,2R)>(1R,2R) >(1R,2S) >(1S,2S) 。
H OH
Cl
O *C *C C(CH3)3
NH N
N
三唑醇
大部分的三唑类化合物有几何异构和光学异构。 在这些异构中有的杀菌活性很高,有的杀菌活性 较低,有的则具有较强的植物生长调节性能,例 如:三唑醇和多效唑有两个手性碳原子,四个立
体异构,它们之间的生物活性差异如表
三唑醇和多效唑的立体异构与生物活性
三唑醇
多效唑
杀菌活性 植物生长调节活性
1S,2R>1R,2R 1S,2R>1R,2S
1R,2R>1S,2S 1S,2S>1R,2R
烯效唑(uniconazole) 和烯唑醇(dinicorazole) 亦是三 唑类杀菌剂中具有代表性的例子
(2R,4R)-丙环唑
除了光学异构以外,丙环唑还存在顺反异构,以 二氧戊环上为平面,丙基和取代苯环位于同一侧
时即cis,在两侧时为trans 由表可见cis体的活性
略好于trans体。
丙环唑的顺反异构与杀菌活性
构型
浓度 (mg/L)
抑制率%
小麦纹枯病菌
水稻稻瘟病菌
cis/trans-丙环唑(95/5) cis/trans-丙环唑(95/5) cis/trans-丙环唑(95/5) cis/trans-丙环唑(95/5) cis/trans-丙环唑(61/39) cis/trans-丙环唑(61/39) cis/trans-丙环唑(61/39) cis/trans-丙环唑(61/39)
早期的手性农药有(1R,3R,αR)-溴氰菊酯,精喹禾 灵,高效麦草伏甲酯等,近年来随着手性技术的 提高,更有不少农药以纯光学体销售,它们中具 有代表性的有高效氯氰菊酯,精甲霜灵,(S)-咪唑 菌酮,氟唑草胺,高效异丙甲草胺等。
手性农药主要有以下几大类:拟除虫菊酯杀虫 剂、有机膦杀虫剂、三唑类杀菌剂、N-酰基苯胺 类杀菌剂、苯氧基类除草剂,氧基苯氧基丙酸酯 类除草剂、酰胺类除草剂。
Cl
(S)
BrH2C C
Cl
O (R) O
H CH2CH2CH3
Cl
(R)
BrH2C C
Cl
O (R) O
H3CH2CH2C H
N HNNFra bibliotekClN H2 (S)
NC C
Cl
N
O (R) O
H CH2CH2CH3
(2S,4R)-丙环唑
Cl
N H2 (R)
NC C
Cl
N
O (R) O
H3CH2CH2C H
相关文档
最新文档