常用热处理工艺
热处理方法有哪些

热处理方法有哪些热处理方法有哪些?(上)热处理是指通过加热、保温、冷却等一系列工艺措施,改变材料或零件的组织结构、性能和形状的工艺过程。
热处理方法多种多样,下面将介绍一些常见的热处理方法。
1. 火焰淬火火焰淬火是利用火焰或火腿加热工件到淬火温度,然后通过气流或喷水等介质冷却,使工件表面形成一层淬火组织,具有较高的硬度和强度。
2. 淬火回火淬火回火是指在淬火后,对工件进行回火处理,改变其组织和性能以达到所需的力学性能。
该方法常用用于工具钢、弹簧钢等材料的热处理。
3. 渗碳渗碳是指将具有一定碳含量的低碳钢或铁件,置于含有碳、氧、氮等元素的介质中进行加热,使其表层渗入碳元素,从而提高其表面硬度和耐磨性能。
4. 固溶处理固溶处理是指将有机物质或合金材料加热,使其中的固溶体发生不完全固态反应,使其达到特定的化学成分和组织状态,从而达到提高材料性能的目的。
常用于不锈钢、合金钢等材料的热处理。
5. 淬火调质淬火调质是指先将工件快速加热到淬火温度,然后进行气体或水冷却,使其达到莫氏硬度要求,然后回火,调整其硬度、强度和韧度等性能。
该方法常用于合金钢、冷拔钢丝等材料的热处理。
6. 磷化磷化是利用化学反应原理,将所需的基体材料表面,通过化学作用,在表面一层上生成有机物磷化层,以提高其表面硬度、耐蚀性能。
以上就是一些常见的热处理方法,它们可以提高工件的硬度、强度、耐磨性、耐腐蚀能力等物理和化学性能。
同时,热处理也是材料加工中不可缺少的一种重要工艺。
热处理方法有哪些?(下)热处理是冶金学的重要分支,在现代工业生产中起着举足轻重的作用。
相信大家对热处理方法有一定了解了,接下来将进一步介绍其他热处理方法。
7. 焊后热处理焊后热处理是指在焊接过程完成后,通过加热、保温和冷却等工艺措施,使其焊接部位的材料复原其原有的组织和性能,同时消除焊接时产生的焊接应力问题。
8. 焙烧焙烧是指通过加热材料,使其表面或内部氧化或还原,从而改变其化学性质和物理性能的过程。
常见的热处理方法

常见的热处理方法、目的和工序位置的安排由于热处理工序安排对车削类工艺影响较大,更重要的是往往由于热处理工序安排颠倒,使工件无法继续加工,而且所产生的废品往往是无法挽回的。
为此对热处理工序的安排要加以了解,并引起重视。
下面将常见的热处理方法、目的和工序位置的安排分别介绍如下:一、预备热处理预备热处理包括退火、正火、调质和时效等。
这类热处理的目的是改善加工性能,消除内应力和为最终热处理做好组织准备。
退火、正火、调质工序多数在粗加工前后,时效处理一般安排在粗加工、半精加工以后,精加工之前。
1.退火和正火目的是改善切削性能,消除毛坯内应力,细化晶粒,均匀组织;为以后热处理作准备。
例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理;含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。
一般用于锻件、铸件和焊接件。
退火一般安排在毛坯制造之后,粗加工之前进行。
2.调质目的是使材料获得较好的强度、塑性和韧性等方面的综合机械性能,并为以后热处理作准备。
用于各种中碳结构钢和中碳合金钢。
调质一般安排在粗加工之后,半精加工之前。
调质是最常用的热处理工艺。
大部分的零件都是通过调质处理来提高材料的综合机械性能,即提高拉伸强度、屈服强度、断面收缩率、延伸率、冲击功。
调质处理能大大提高材料的拉伸和屈服强度,提高屈强比和冲击功,使材料具有强度和塑韧性的良好配合。
由于屈服强度、疲劳强度、冲击强度的提高,在零件设计时就可以采用更小的材料截面,从而减少机械设备的整体重量,节省零件占用空问和能量消耗。
因此在某些场合为了减少机械空间和机械重量在设计过程中要有意识地利用调质工艺。
需要强调的是,一般来讲调质钢应该为中碳钢( C = 0.3%~0.6%);碳钢中像30、35、40、45、50等钢种则既可以调质处理又可以正回火使用;而对高碳钢和低碳钢则不宜采用调质工艺调质过程是淬火加高温回火。
40crnimoa热处理工艺

40crnimoa热处理工艺
40CrNiMoA是一种低合金钢,常用于制造大型机械零件和工程结构。
热处理是对该钢材进行加热和冷却处理,以改变其组织和性能。
下面将详细介绍40CrNiMoA的热处理工艺。
热处理工艺主要包括加热、保温和冷却三个步骤。
首先是加热过程,将40CrNiMoA钢材加热到适当的温度,一般采用火焰加热或加热炉进行。
加热温度通常根据该钢的具体化学成分和应用要求来确定。
接下来是保温过程,将40CrNiMoA钢材保持在一定的温度下,使其组织发生相应的变化。
保温时间一般较长,以保证钢材内部温度均匀并达到所需的组织转变。
最后是冷却过程,将40CrNiMoA钢材迅速冷却到室温,以固定其新的组织结构。
冷却方式可以选择空气冷却、水淬或油淬等,具体取决于所需的性能要求。
热处理后,40CrNiMoA钢材的性能会发生明显的改变。
一般来说,热处理可以提高其硬度、强度和耐磨性,同时降低其韧性和塑性。
因此,在选择热处理工艺时,需要根据具体应用要求来平衡这些性能指标。
综上所述,40CrNiMoA的热处理工艺涉及加热、保温和冷却三个步骤,通过改变钢材的组织结构来调整其性能。
这需要根据具体应用要求选择合适的加热温度、保温时间和冷却方式,以实现预期的性能提升。
铸钢件常见热处理工艺

按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。
1.退火:退火是将铸钢件加热到Ac3以上20~3(FC,保温一定时间,冷却的热处理工艺。
退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。
碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。
适用于所有牌号的铸钢件。
2,正火:正火是将铸钢件加热到Ac3温度以上30~50。
C保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。
正火的目的是细化钢的组织,使其具有所需的力学性能,也是作为以后热处理的预备处理。
正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。
经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。
一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。
正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。
3淬火:淬火是将铸钢件加热到奥氏体化后(AC。
或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。
常见的有水冷淬火、油冷淬火和空冷淬火等。
铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能铸钢件淬火工艺的主要参数:Q)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。
原则上,亚共析铸钢淬火温度为Ac o以上20~30℃,常称之为完全淬火。
共析及过共析铸钢在Ac o以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。
这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。
(2)淬火介质:淬火的目的是得到完全的马氏体组织。
为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。
常用钢热处理工艺参数

常用钢热处理工艺参数常用钢的热处理工艺参数主要包括加热温度、保温时间和冷却速度等。
下面将对常用钢热处理工艺参数进行详细介绍。
首先是加热温度。
加热温度是指将钢加热至一定温度的过程。
不同钢材对应的加热温度有所不同,一般可以根据钢材的成分及用途来确定加热温度。
例如,低碳钢的一般加热温度为800~900℃,中碳钢的加热温度为900~1000℃,高碳钢的加热温度则为1000~1100℃。
其次是保温时间。
保温时间是指钢材在加热温度下的持续时间。
保温时间的长短取决于钢材的尺寸、组织变化的要求以及工装的结构等因素。
一般来说,保温时间是根据钢材在加热过程中把温度均匀分布,并让钢材内部达到均匀组织的时间。
低碳钢的保温时间一般为15~30分钟,高碳钢则需要较长的保温时间,大约为60~90分钟。
再次是冷却速度。
冷却速度是指加热后的钢材在自然冷却或外界介质冷却下的降温速率。
冷却速度的选择与钢材的成分、硬化要求等因素有关。
一般来说,冷却速度越快,钢材的硬度和脆性越大。
常用的冷却介质有油、水、盐等。
在使用不同介质进行淬火时,需要考虑钢材的裂纹敏感性和工件的形状等因素。
在进行回火处理时,冷却速度较慢,通常选择自然冷却。
此外,还有一些特殊的热处理工艺参数。
例如,贝氏体调质是一种热处理工艺,一般的工艺参数是加热到750~800℃,保温时间为2~4小时,然后以适当的冷却速度冷却到室温。
淬火退火是将钢经过正常淬火后进行再加热和保温,并以缓慢冷却的方式进行的热处理工艺。
一般的工艺参数是先将钢加热到500~650℃,保温时间为1~2小时,然后以适当的速度冷却到室温。
总之,常用钢的热处理工艺参数包括加热温度、保温时间和冷却速度等。
这些参数的选择需要根据具体钢材的成分、尺寸和硬度要求等因素来确定。
正确选择和控制这些工艺参数可以改善钢材的力学性能和工作性能,提高其使用寿命和安全性。
热处理工艺方法600种

热处理工艺方法600种1.完全退火2.亚共析钢钢锭的完全退火3.亚共析钢锻轧钢材的完全退火4.冷拉钢材料坯的完全退火5.不完全退火6.过共析钢及莱氏体钢钢锭的不完全退火7.过共析钢锻轧钢材的不完全退火8.亚共析钢冷拉坯料的不完全退火9.均匀化退火(扩散退火)10.低温退火11.钢锭的低温退火12.热锻轧钢材的低温退火13.中间退火(软化退火)14.冷变形加工时的中间退火15.热锻轧钢材的中间退火16.再结晶退火17.低碳钢的再结晶退火18.不锈钢的再结晶退火19.去应力退火.20.热锻轧材及工件的去应力退火21.冷变形钢材的去应力退火22.奥氏体不锈钢的去应力退火23.铸铁的去应力退火24.软磁材料的去应力退火25.非铁金属及耐热合金的去应力退火26.预防白点退火(去氢退火)(消除白点退火)27.碳钢及低合金钢的去氢退火28.中合金钢的去氢退火29.高合金钢的去氢退火30.晶粒粗化退火31.等温退火32.球化退火33.低温球化退火34.一次球化退火35.等温球化退火36.来去球化退火37.正火球化退火38.高速钢快速球化退火39.钠燃烧无氧化光亮退火40.快速连续光亮退火41.盐浴退火42.装箱退火43.普通真空退火44.真空-保护气体退火45.部分退火46.两次处置惩罚快速退火47.高速钢的循环退火48.石墨钢的石墨化退火49.脱碳退火50.可锻化退火51.快速可锻化退火52.球墨铸铁的低温石墨化退火53.球墨铸铁的高温石墨化退火54.球墨铸铁的高-高温石墨化退火55.球状石墨化退火56.高温石墨化退火57.余热退火58.普通正火59.亚温正火60.等温正火61.水冷正火62.风冷正火63.喷雾正火64.多次正火65.球墨铸铁完全奥氏体化正火66.球墨铸铁不完整奥氏体化正火67.球墨铸铁快速正火68.球墨铸铁的余热正火第二章团体热处置惩罚——淬火69.完全淬火70.不完全淬火71.中碳钢的亚温淬火72.低碳钢双相区淬火73.低碳钢双相区二次淬火74.灰铸铁的淬火75.球墨铸铁的淬火76.高速钢部分淬火77.高速钢高温淬火78.余热淬火(直接淬火)79.二次(从头)加热淬火80.两次淬火81.正火-淬火82.高温回火-淬火83.预热淬火(门路式加热淬火)84.延时淬火(降温淬火、提早淬火)85.部分淬火86.薄层淬火87.短时加热淬火88.“零”保温淬火89.快速加热淬火90.可控气氛加热淬火91.氮基氛围干净淬火92.滴注式保护氛围光明淬火93.涂层淬火94.包装淬火95.硼酸防护光明淬火96.真空淬火97.真空高压气体淬火98.轮回加热淬火99.淬火-抛光-淬火(Q-P-Q)处理100.流态炉加热淬火101.石墨流态炉加热淬火102.流态炉淬火冷却103.脉冲加热淬火104.感到穿透加热淬火105.通电加热淬火106.盐浴加热淬火107.盐浴静止加热淬火108.单液淬火109.压缩空气淬火(空淬及风淬) 110.动液淬火222.喷液淬火112.双液淬火(双介质淬火) 113.大型锻模水-气夹杂物淬火114.大锻件水-气夹杂物淬火115.单槽双液淬火116.三液淬火117.悬浮液淬火118.间断淬火119.磁场冷却淬火120.超声波淬火121.浅冷淬火122.超低温淬火(液氮淬火)123.冰冷处理124.液氮气体深冷处理125.模具钢的深冷处理126.高速钢刀具的深冷处理127.马氏体分级淬火128.马氏体等温淬火129.等温分级淬火130.贝氏体等温淬火131.灰铸铁的贝氏体等温淬火132.球墨铸铁的贝氏体等温淬火133.球墨铸铁亚温加热贝氏体等温淬火134.分级等温淬火135.二次贝氏体等温淬火136.珠光体等温淬火137.预冷等温淬火138.预淬等温淬火139.微变形淬火140.无变形淬火141.碳化物微细化淬火142.碳化物微细化四步处理143.晶粒超细化淬火144.晶粒超细化轮回淬火145.晶粒超细化的高温形变淬火146.晶粒超细化的室温形变处置惩罚147.GCr15钢双细化淬火148.低碳钢激烈淬火149.中碳钢高温淬火150.中碳钢过热淬火151.过共析钢高温淬火152.渗碳件四步处理法153.渗碳冷处理154.自回火淬火155.马氏体等温-马氏体分级淬火复合处理156.反淬火157.预应力淬火158.修复淬火159.固溶化淬火(固溶处理)160.水韧处置惩罚161.锻造余热水韧处置惩罚162.进步初始硬度的水韧163.水韧-时效处置惩罚164.细化晶粒水韧实时效处置惩罚第三章整体热处理——回火与时效165.低温回火166.中温回火167.高温回火168.调质处置惩罚169.盘条的调质处理170.球墨铸铁的调质处理171.调质球化172.冷挤压用钢的调质球化173.高速钢的低高温回火174.修复回火175.带温回火176.振动回火177.通电加热回火178.快速回火179.渗碳二次硬化处理180.多次回火181.淬回火182.自回火183.感应回火184.去氢回火185.去应力回火186.压力回火187.局部回火188.自然时效189.回归处理190.人工时效191.分级时效192.分区时效193.两次时效194.振动时效195.磁致伸缩消除刀具残余应力处理196.铸铁稳定化处理197.合金钢稳定化时效(残余奥氏体稳定化处理)198.奥氏体稳定化处理199.奥氏体调治处置惩罚第四章表面淬火200.感应加热表面淬火201.高频加热外表淬火202.高频预正火淬火203.高频无氧化淬火204.渗碳感应表面淬火205.渗氮感应表面淬火206.高频加热浴炉处置惩罚207.中频加热表面淬火208.工频加热外表淬火209.感应表面淬火时的加热方法210.喷液及浸液表面淬火211.埋油外表淬火212.埋水表面淬火213.大功率脉冲感应淬火214.超音频感应加热淬火215.双频感应淬火216.混合加热表面淬火217.火焰加热外表淬火218.电接触加热表面淬火219.电解液加热外表淬火220.盐浴加热表面淬火221.高速钢的激光加热表面淬火222.布局钢的激光外表淬火223.有色金属的激光表面淬火224.激光表面淬火代替局部渗碳225.电子束外表淬火226.空气电子束重熔淬火227.电子束表面合金化228.电火花表面强化及合金化229.强白光源表面淬火第五章化学热处理230.渗碳231.固体渗碳232.分段固体渗碳233.无箱固体渗碳234.固体气体渗碳235.气体固体渗碳236.粉末放电渗碳237.膏剂渗碳238.高频加热膏剂渗碳239.盐浴渗碳240.通俗(含氰)盐浴渗碳241.低氰盐浴渗碳242.原料无氰盐浴渗碳243.无毒盐浴渗碳244.通气盐浴渗碳245.超声波盐浴渗碳246.高温盐浴渗碳247.盐浴电解渗碳248.高频加热液体渗碳249.液体放电渗碳250.铸铁浴渗碳251.间接通电液体渗碳252.气体渗碳253.滴注式气体渗碳254.通气式气体渗碳255.分段气体渗碳256.高压气体渗碳257.感应加热气体渗碳258.火焰渗碳259.部分渗碳260.不均匀奥氏体渗碳261.碳化物弥散渗碳262.二重渗碳263.真空渗碳264.一段式真空渗碳265.脉冲式真空渗碳266.摆动式真空渗碳267.真空离子渗碳268.高温离子渗碳269.流态炉渗碳270.流态炉高温渗碳271.稀土催化渗碳272.稀土低温渗碳273.高含量渗碳274.离子轰击过饱和渗碳275.过分渗碳276.等离子渗碳277.修复渗碳278.深层渗碳279.穿透渗碳280.相变超塑性渗碳281.中碳及高碳钢的渗碳282.高速钢的低温渗碳283.渗碳后硼-稀土共渗复合处置惩罚284.渗氮285.气体等温渗氮286.气体二段渗氮287.气体三段渗氮288.短时渗氮289.不锈钢渗氮290.铸铁渗氮291.局部渗氮292.退氮处置惩罚293.抗蚀渗氮294.纯氨渗氮295.氨氮夹杂气体渗氮296.液氨滴注渗氮297.流态炉渗氮298.压力渗氮299.包装渗氮300.盐浴渗氮301.无毒盐浴渗氮302.压力盐浴渗氮303.渗氮亚温淬火复合处理304.离子渗氮305.高温离子渗氮306.氨气预处置惩罚离子渗氮307.快速深层离子渗氮308.热循环离子渗氮309.离子束渗氮310.真空渗氮311.离子渗氮及淬火两重处置惩罚312.化学催化渗氮313.稀土催化渗氮314.钛催化渗氮315.电解气相催化渗氮316.高频加热气体渗氮317.磁场中渗氮318.激光渗氮319.激光预处置惩罚及渗氮320.碳氮共渗321.高温分段气体碳氮共渗322.高温厚层气体碳氮共渗323.高频加热气体碳氮共渗324.高频加热膏剂碳氮共渗325.石墨粒子流态炉高温碳氮共渗326.中温碳氮共渗327.通气式中温气体碳氮共渗328.滴注通气式中温气体碳氮共渗329.滴注式中温气体碳氮共渗330.分阶段式中温气体碳氮共渗331.高含量(浓度)中温气体碳氮共渗332.真空中温碳氮共渗333.中温液体碳氮共渗(盐浴氰化)334.无毒盐浴碳氮共渗335.高频加热盐浴碳氮共渗336.高频加热液体碳氮共渗337.双浴液体碳氮共渗338.中温固体碳氮共渗339.中温膏剂碳氮共渗340.低中温碳氮共渗341.高温碳氮共渗(软氮化)342.高温气体碳氮共渗343.氮基氛围高温碳氮共渗344.稀土低温碳氮共渗345.铸铁的低温气体碳氮共渗346.高温碳氮共渗后淬火复合处置惩罚347.高温碳氮共渗渗碳复合处置惩罚348.低温液体碳氮共渗349.低温固体碳氮共渗350.低温无毒固体碳氮共渗351.快速低温固体碳氮共渗352.辉光离子低温碳氮共渗353.加氧高温碳氮共渗354.真空加氧高温碳氮共渗355.低温短时碳氮共渗356.低温薄层碳氮共渗357.稀土离子低温碳氮共渗358.分级淬火-低温碳氮共渗359.低温碳氮共渗-重新加热淬火360.中低温碳氮共渗复合处理361.碳氮共渗-镍磷镀复合处理362.氧氮处置惩罚363.渗硼364.低温固体渗硼365.固体渗硼-等温淬火复合处理366.粉末渗硼367.膏剂渗硼368.辉光放电膏剂渗硼369.深层膏剂渗硼370.自保护膏剂渗硼371.盐浴渗硼372.盐浴电解渗硼373.铸铁渗硼374.气体渗硼375.辉光放电气体渗硼376.硼锆共渗377.渗碳渗硼378.渗氮渗硼379.液体稀土钒硼共渗380.膏剂硼铝共渗381.超厚渗层硼铝共渗382.硼钛共渗383.镀镍渗硼384.硼碳氮三元共渗385.渗硼复合处理386.渗硼感应加热复合处理387.感应加热渗硼388.激光加热渗硼389.稀土渗硼390.不锈钢硼氮共渗391.渗硫392.离子渗硫393.气相渗硫394.铸铁渗硫395.硫氮共渗396.离子硫氮共渗397.离子氧氮硫三元共渗398.高温硫氮碳三元共渗399.硫氮碳三元共渗400.离子硫氮碳共渗401.高温电解硫钼复合渗镀402.蒸汽处理403.渗氮蒸汽处置惩罚404.硫氮共渗蒸汽处置惩罚405.氧化处置惩罚406.氧氮共渗407.氧碳氮三元共渗408.磷化409.粉末渗铝410.低温粉末渗铝411.熔铝热浸渗铝412.高频感应加热渗铝413.气体渗铝414.喷镀散布渗铝415.熔盐电解渗铝416.直接通电加热粉末渗铝417.铝稀土共渗418.渗铬419.散布渗铬420.辉光离子渗铬421.双层辉光离子渗铬422.真空渗铬423.稀土硅镁-三氧化二铬-硼砂盐浴渗铬424.铬稀土共渗425.渗铬后渗碳或渗氮426.铬铝共渗427.铬硅共渗428.铸铁的固-气法硅铬共渗429.铬铝硅三元共渗430.渗钛431.固体渗钛432.盐浴渗钛433.气体渗钛434.双层辉光离子渗钛435.钛铝共渗436.硼砂浴渗钒437.中性盐浴渗钒438.硼钒连续渗439.铬钒共渗440.渗钒真空淬火441.渗硅442.熔盐电解渗硅443.离子渗硅444.硼硅共渗445.激光硼硅共渗446.钼合金渗硅-离子渗氮复合处置惩罚447.渗锌448.渗锰449.渗锡450.离子钨钼共渗451.铸渗合金452.热循环化学热处理453.离子注入454.氮离子注入455.硼砂浴覆层(TD)法第六章形变热处理456.高温形变淬火457.锻热淬火458.锻热预冷淬火459.辊锻余热淬火460.锻后余热浅冷淬火自回火461.轧热淬火462.轧后余热控冷处理463.罗纹钢筋轧后余热处置惩罚464.挤压余热淬火465.高温形变正火466.高温形变等温淬火467.亚温形变淬火468.低温形变淬火469.珠光体区等温形变淬火470.低温形变等温淬火471.连续冷却形变处理472.珠光体温形变473.珠光体冷形变474.引发马氏体的形变时效475.马氏体室温形变时效476.回火马氏体室温形变时效477.贝氏体室温形变时效478.马氏体及铁素体双相构造室温形变强化479.过饱和固溶体形变时效480.屡次形变时效481.形变分级时效482.外表冷形变强化483.外表高温形变淬火484.使用形变强化结果遗传性的形变热处置惩罚485.预先形变热处置惩罚486.多边化强化处理487.复合形变淬火488.超塑形变处理489.9SiCr钢超塑形变处理490.低温形变淬火与马氏体形变时效相结合的形变热处理491.高温形变淬火与马氏体形变时效相结合的形变热处理492.奥氏体钢的热形变处理493.冷形变渗碳494.冷形变渗氮495.冷形变碳氮共渗496.冷形变渗硼497.形变渗钛498.低温形变淬火渗硫499.锻热渗碳淬火500.锻热淬火渗氮501.渗碳表面形变时效502.高温形变淬火高温碳氮共渗503.预冷形变外表形变热处置惩罚504.外表形变时效505.化学热处置惩罚后的冷外表形变强化506.化学热处置惩罚后外表高温形变淬火507.多边化处置惩罚后的化学热处置惩罚508.表面纳米化后的化学热处理509.晶粒超细化处理第七章非铁金属的热处置惩罚510.铝合金的形变热处理511.铜合金的形变热处理512.变形铝合金的去应力退火513.变形铝合金的再结晶退火514.变形铝合金的匀称化退火515.变形铝合金的时效516.变形铝合金的形变热处理517.变形铝合金的稳定化处理518.铸造铝合金的退火519.锻造铝合金的固溶处置惩罚实时效520.工业纯铜的热处理521.黄铜的热处理522.锡青铜的热处理523.铝青铜的热处理524.铍青铜的固溶处理525.铍青铜的时效处置惩罚526.铍青铜的去应力退火处理527.弹性青铜的热处理528.硅青铜的热处置惩罚529.铬青铜、锆青铜的热处理530.白铜的热处理531.钛合金的去应力退火532.钛合金的完整退火533.钛合金的等温退火和双重退火534.钛合金的固溶处置惩罚535.钛合金的时效536.钛合金的形变热处置惩罚537.镁合金的退火处理538.镁合金的固溶淬火处置惩罚539.镁合金的时效处置惩罚540.镁合金的固溶淬火及野生时效处置惩罚541.镍和镍合金的热处置惩罚542.钨合金的热处置惩罚543.钼合金的热处理544.直生式渗碳545.高温渗碳546.稀土催渗化学热处置惩罚547.高压气淬真空热处置惩罚548.低压渗碳技术549.燃气真空热处理技术550.铁基粉末冶金件的淬火与回火处置惩罚551.铁基粉末冶金资料的时效处置惩罚552.铁基粉末冶金材料的渗碳和碳氮共渗553.铁基粉末冶金材料的气体渗氮和气体氮碳共渗554.铁基粉末冶金材料的蒸汽处理(氧化处理)555.铁基粉末冶金材料的渗硫处理556.铁基粉末冶金资料的渗锌处置惩罚557.铁基粉末冶金资料的渗铬处置惩罚558.铁基粉末冶金资料的渗硼处置惩罚559.钢结硬质合金的退火560.钢结硬质合金的淬火561.钢结硬质合金的回火562.钢结硬质合金的时效硬化563.钢结硬质合金的沉积硬化合物层564.粉末高速钢的热处理565.硬质合金的退火566.硬质合金的淬火567.硬质合金的时效硬化568.电工用纯铁的野生时效569.电工用纯铁的高温净化退火570.电工用纯铁的去应力退火571.热轧硅钢片的热处置惩罚572.冷轧无取向硅钢片的热处置惩罚573.冷轧取向硅钢片的热处理574.铁镍合金的中央退火575.铁镍合金的高温退火576.铁镍合金的磁场退火577.低收缩合金(因瓦合金)坯料的热加工和热处置惩罚578.低收缩合金(因瓦合金)的制品热处置惩罚579.高温用因瓦合金的热处置惩罚580.热双金属的热处理581.高弹性合金的淬火、回火处置惩罚582.高弹性合金的形变热处置惩罚583.镍基高弹性合金的热处置惩罚584.钴基高弹性合金的热处理585.铜基高弹性合金的热处置惩罚586.恒弹性合金的热处理587.TiNi合金单程形状记忆热处理588.TiNi合金双程形状记忆热处理589.锻造镁合金基复合资料强化热处置惩罚590.变形镁合金基复合资料强化热处置惩罚591.钛合金的热处置惩罚592.高温化学气相沉积技术(简称HT-CVD)593.中温化学气相沉积(MT-CVD)技术594.低温化学气相沉积技术595.活性回响反映离子镀手艺596.空心阴极离子镀手艺(HCD)597.热丝阴极离子镀技术598.电弧离子镀技术599.磁控溅射手艺600.化学气相沉积复合超硬涂层技术601.物理气相沉积复合超硬涂层技术仅供小我用于进修、研讨;不得用于贸易用处。
铁的常用热处理方法及用途
铁的常用热处理方法及用途
铁的常用热处理方法包括:
1. 淬火:将铁加热到临界温度以上,保温一段时间后快速冷却,以增加其硬度、强度和耐磨性。
淬火主要用于刀具、工具、模具等。
2. 回火:将淬火后的铁重新加热到低于临界温度,但高于转变温度的范围内,保温一段时间后冷却,以减小内应力、稳定组织和提高韧性。
回火主要用于各种结构零件和工具。
3. 退火:将铁加热到高于临界温度,保温一段时间后缓慢冷却,以消除内应力、软化铁素体、细化晶粒和改善组织结构。
退火主要用于各种铸件、锻件和焊接件。
4. 表面热处理:只加热工件表层,以改变其表层力学性能的金属热处理工艺。
包括表面淬火、化学热处理等。
表面热处理主要用于提高工件的耐磨性、抗疲劳性和耐腐蚀性等。
此外,还有一些特殊的热处理方法,如深冷处理、形变热处理等。
这些热处理方法的应用范围因材料种类、组织结构和性能要求而异。
选择合适的热处理方法对于提高材料的力学性能、物理性能和化学性能至关重要。
常用表面处理工艺及热处理工艺
正火:又称常化,是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
运用范围:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。
②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。
③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。
④用于铸钢件,可以细化铸态组织,改善切削加工性能。
⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。
⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
目的:使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低材料的硬度。
退火:将金属构件加热到高于或低于临界点,保持一定时间,随后缓慢冷却,从而获得接近平衡状态的组织与性能的金属热处理工艺。
目的:降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
退火工艺随目的之不同而有多种,如等温退火、均匀化退火、球化退火、去除应力退火、再结晶退火,以及稳定化退火、磁场退火等等。
注: 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。
故退火与正火同样能达到零件性能要求时,尽可能选用正火。
大部分中、低碳钢的坯料一般都采用正火热处理。
一般合金钢坯料常采用退火,若用正火,由于冷却速度较快,使其正火后硬度较高,不利于切削加工。
淬火:将钢件加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
球墨450-10的热处理工艺
球墨450-10的热处理工艺
qt450-10是一种不锈钢,常用的热处理方法主要有以下几种:
1.高温退火(Stressreliefannealing):在约590°C下进行退火可以缓解因冷作工或焊接造成的残余应stress。
可以提高材料韧性。
2.完全退火(Fullannealing):在约1010~1080°C下退火可以完全除去残余应力和残余畸变,可以恢复材料的力学性能和韧性。
3.正规退火(Normalizing):在约980~1050°C下进行退火再行快速冷却。
可以使晶粒粗大、可塑性和韧性增加。
4.
淬火(Hardening):将材料加热到约1020°C再进行油冷、水冷或盐浴氮化以淬火。
可以提高材料的硬度、强度和弹性模量。
5.回火(Tempering):在约540~720°C下继续加热已淬火的材料。
可以提高材料的韧性和屈服强度,同时降低脆性。
6.推焊回火(Postweldingheattreatment):在约580~620°C下进行推焊部位的回火以缓解因焊接产生的应力。
热处理原理及工艺
热处理原理及工艺热处理是一种用于改善材料性能的重要工艺。
通过控制材料的加热和冷却过程,可以改变材料的晶体结构、力学性能和化学性能,从而提高材料的强度、硬度、耐腐蚀性等。
热处理的原理是基于固体材料的晶体结构与物理性能之间的关系。
晶体结构是由原子或分子的周期性排列所组成,不同的结构会导致不同的物理性能。
在加热过程中,材料中的原子或分子会随着温度的升高而具有更高的热运动能力,从而使晶体结构发生变化。
通过控制加热温度和时间,可以实现晶体结构的改变。
常见的热处理工艺包括退火、淬火、回火、表面处理等。
退火是将材料加热到特定温度,然后缓慢冷却至室温,目的是消除内部应力和改善材料的韧性。
淬火是在材料加热到高温后,迅速冷却至室温,通过快速冷却可以使材料形成硬脆结构,提高材料的硬度和强度,但也会导致内部应力增大,需要进行回火处理来消除应力。
回火是将淬火后的材料加热到适当温度,然后保温一段时间,最后缓慢冷却,目的是降低材料的硬度,提高韧性。
表面处理是在材料表面形成一层特定的化合物或合金层,用于改善材料的耐磨性、耐腐蚀性等。
热处理工艺的选择要根据材料的组成和应用要求进行。
不同材料具有不同的热处理敏感性和适用温度范围。
合理选择热处理工艺可以使材料在满足力学性能和物理性能要求的同时,减少成本和能源消耗。
总之,热处理是一种通过控制材料的加热和冷却过程,改善材料性能的重要工艺。
通过热处理可以改变材料的晶体结构和物理性能,提高材料的强度、硬度、韧性和耐腐蚀性等。
选择合适的热处理工艺对于提高材料的性能和使用寿命至关重要。
热处理是一种将金属或合金材料通过加热和冷却处理来改变其物理和机械性能的工艺。
它是材料加工中非常重要的一部分,因为可以通过控制热处理工艺,使材料的硬度、强度、韧性、耐腐蚀性等性能得到改善。
热处理的核心原理是通过控制材料的加热温度和冷却速度,使材料的晶体结构发生变化。
材料的晶体结构决定了其宏观性能。
例如,在晶体结构较均匀的钢中,碳原子分布均匀,这样就有利于提高钢材的硬度和强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用热处理工艺
名称 代号及标注实例 说明 应用
退火
Th 加热到临界温度以上30~50℃(一般是710~715℃,个别合金钢是800~900℃),保温一段时间,然后缓慢冷却(一般在炉中冷却)。 消除铸、锻、焊零件的
内应力;降低硬度,便于切
削加工;细化金属晶粒,改
善组织;增加韧性。
正火
Z 加热到临界温度以上30~50℃,保温一段时间,然后在空气中冷却,冷却速度比退火为快。 用来处理低、中碳结构
钢及渗碳零件。
细化晶粒;增加强度与
韧性;改善切削加工性;为
淬火或球化退火作好显微组
织准备。
淬火
C62(淬火后回火至HRC60~65) Y35(油冷淬火后回火至HRC30~40) 加热到临界温度以上,保温一段时间后,再在冷却剂(水、盐水、油,个别材料在空气)中急速冷却,使其得到高硬度。 用于高、中碳钢
提高硬度和强度极限;
提高耐磨性
会引起内应力使钢变
脆,所以淬火后必须回火。
回火 回火 将淬火后的钢件重新加热到临界温度以下某一温度,保温一段时间,然后冷却到室温。 高碳钢制的工具、量具、刃具用低温(150~250℃)回火,弹簧用中温(270~450℃)回火。
消除淬火后的脆性和内
应力,提高其塑性和冲击韧
性。
调质 T235(调质至HB220~250) 淬火后在450~650℃进行高温回火,称为调质。 获得高的韧性和足够的强度,获得较高的综合机械
性能。
表
面
淬
火
火焰淬
火
H54(火焰淬火后,回火至HRC52~58) 用火焰或高频电流将零件表面迅速加热至临界温度以上,急速冷却。 提高零件表面的硬度及
耐磨性,而心部保持一定的
韧性,使零件既耐磨又能承
受冲击,常用来处理齿轮
等。
高频淬
火
G52(高频淬火
后,回火至
HRC50~55)
渗碳淬火
S0.5-C59(渗碳层深0.5,淬火在渗碳剂中加热到900~950℃,停留一定提高钢件耐磨性能、表
面强度、抗拉强度及疲劳极
硬度HRC56~62) 时间,将碳渗入钢表面,深度约为0.5~2mm,再淬火后回火。 限等。适用于低碳、中碳
(C<0.40%)结构钢的中小型零
件。
氮化
D0.3-900(氮化深度0.3,硬度大于HV850) 在500~600℃通入氮气的炉子里加热,向钢的表面渗入氮原子的过程。氮化层为0.025~0.8mm,氮化时间需40~50h。 提高耐磨性能、表面硬
度、疲劳极限和抗蚀能力。
适用于合金钢、碳钢、铸铁
件,如机床主轴、丝杠以及
在潮湿碱水和燃烧气体介质
的环境工作的零件。
氰化
Q59(氰化淬火后,回火至HRC56~62) 在820~860℃炉内通入碳和氮,保温1~2h,使钢件的表面同时渗入碳、氮原子,可得到0.2~0.5mm的氰化层。 增加表面硬度、耐磨
性、疲劳强度和耐蚀性。用
于要求硬度高、耐磨的中、
小型及薄片零件和刀具等。
时效 时效处理 机件精加工之前,加热到100~160℃,保温10~40h。对铸件也可用天然时效(放在露天中一年以上)。 消除内应力和稳定形状,用于量具、精密丝杠、床身导轨、床身等。
冰冷处理 冰冷处理 将淬火钢继续冷却到室温以下的处理方法。 进一步提高硬度、耐磨性,并使其尺寸趋于稳定。
发蓝发黑 发蓝或发黑 将金属零件放在很浓的碱和氧化剂溶液中加热氧化,使金属表面形成一层氧化铁所组成的保护性薄膜。 防腐蚀、美观。 用于一般连接的标准件和其他电子类零件。
硬度
HB(布氏硬度) 材料抵抗硬物压入其表面的能力称“硬度”。根据测定的方法不同,可分为布氏硬度、洛氏硬度、维氏硬度。 用于经退火、正火、调
质的零件及铸件的硬度检
验。
HRC(洛氏硬度) 用于经淬火回火及表面
渗碳、渗氮等处理的零件的
硬度检验。
HV(维氏硬度) 用于薄层硬化零件的硬
度检验。
金属的表面处理
表面处理是在金属表面增设保护层的工艺方法。它起着防蚀、装饰和改善表面
的机械物理性能(耐磨、导电、绝缘、反光等方面的能力)等作用。
1. 钢零件的保护层
1)镀锌。镀锌零件在空气中有良好的耐蚀性,且其费用低廉,应用广泛。
为了避免使钢件直接与铝、镁或铜合金接触,也使用镀锌法保护。锌本色日久变
暗,故不作装饰之用。
2)镀镉。镀镉件比镀锌件稳定,在海水及其蒸汽中有很强的耐蚀性。镉层柔
软,且有弹性,对零件贴合封严极为有利,但不耐磨。镉盐有毒且稀少,宜慎用。
3)镀铬。铬层耐蚀并耐磨,镀铬也用于修复零件表面磨损了的表面,外观美,
能耐潮湿大气、碱、硝酸和多种气体的腐蚀作用。镀铬层孔隙大,故单层镀铬可靠
性差,因此,镀铬前一般先以镀铜或镀镍作为底层。
4)镀镍。镍在大气、海水,尤其在碱中有良好的抗蚀性。镍层抛光后外表美
观。
5)发蓝(发黑)。使钢件表面形成一层氧化膜。发蓝主要用于良好大气条件下
工作的零件,涂油可提高其防护性能。氧化膜极薄,对粗糙度和尺寸精度影响很
小,所以常用于尺寸精确或需黑色表面的零件。
2. 铝、镁合金保护层
镁、铝合金进行表面处理的主要方法是阳极化,即将零件作为直流电路的阳
极,进行氧化处理。阳极化可提高铝、镁合金的防蚀和耐磨能力。由于这样处理
时,还可将氧化膜染成黄、黑、蓝、红、绿或紫色,所以它也是带有装饰性的处理
方法。
3. 铜合金的保护层
铜合金的保护层基本上与钢相似,可以镀锌、镉、铬、镍或锡等,还可予以钝
化处理,使铜合金表面形成氧化膜。