5 算法分析与设计 第五讲 分治法及相关实例分析(续)

合集下载

算法设计与分析(王晓东)

算法设计与分析(王晓东)
方法 abs(x) ceil(x) cos(x) exp(x) floor(x) log(x) 功能 x的绝对值 不小于x的最小整数 x的余弦 ex 不大于x的最大整数 x的自然对数 方法 max(x,y) min(x,y) pow(x,y) sin(x) sqrt(x) tan(x) 功能 x和y中较大者 x和y中较小者 xy x的正弦 x的平方根 x的正切
a b a b
(2)方法重载:Java允许方法重载,即允许定义有不同签名的同名方法。
上述方法ab可重载为:
public static double ab(double a, double b) { return (a+b+Math.abs(a-b))/2.0; } 12
4.异常
1.3 描述算法
6
1.2 表达算法的抽象机制
2.抽象数据类型
抽象数据类型是算法的一个数据模型连同定义在该模型上 并作为算法构件的一组运算。
抽象数据类型带给算法设计的好处有:
(1)算法顶层设计与底层实现分离; (2)算法设计与数据结构设计隔开,允许数据结构自由选择; (3)数据模型和该模型上的运算统一在ADT中,便于空间和时间耗费的折衷; (4)用抽象数据类型表述的算法具有很好的可维护性; (5)算法自然呈现模块化; (6)为自顶向下逐步求精和模块化提供有效途径和工具; (7)算法结构清晰,层次分明,便于算法正确性的证明和复杂性的分析。
中国计算机学会 “21世纪大学本科计算机专业系列教材”
算法设计与分析
王晓东 编著
1
主要内容介绍
• • • • • • 第1章 第2章 第3章 第4章 第5章 第6章 算法引论 递归与分治策略 动态规划 贪心算法 回溯法 分支限界法

算法设计与分析复习题目及答案详解

算法设计与分析复习题目及答案详解

算法设计与分析复习题目及答案详解分治法1、二分搜索算法是利用(分治策略)实现的算法。

9.实现循环赛日程表利用的算法是(分治策略)27、Straen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是(分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除(栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。

三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。

设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

第7章-分治算法C版

第7章-分治算法C版
cin >> n >> m; for (int i=1; i<=n; i++) cin >> a[i]; a[0]=-1; for (int i=1; i<=m; i++) {
int x; int left=1,right=n,mid; cin >> x;
while (left <= right) {
的函数值为0,则确定x/100为根
printf(“%.2f”,x/100);
}
其中函数f(x)计算x3+b*x2+c*x+d:
double f(double x)
//计算x3+b*x2+c*x+d
{
f=x*x*x+b*x*x+c*x+d;
}
//f函数
2.分治法 枚举根的值域中的每一个整数x(-100≤x≤100)。由于根与根之差的绝
6 10 11 8 4 1 9 7
一趟快速排序后:
此时i>j,并且i左边的数字都小于等于key,j右边的数字都大于 等于key,进而接下来可以分别对左边段[0, j]和右边段[i,N-1]利 用同样的方法排序。
【程序实现】
void qsort(int le,int ri)
{
int i=le, j=ri, mid=a[(le+ri)/2];
5 1 3 样例输出: 4 1 3
分析: 我们用Left表示询问区间的左边界,用Right表示询问区间的右边界,
[Left,Right]组成询问区间。一开始Left=1,Right=n,我们可以把原始序列 的左边想象成若干个无穷小的数,把序列的右边想象成无穷大的数,这样比较 好理解。序列已经按照升序排好,保证了二分的有序性。

算法概念介绍及举例说明

算法概念介绍及举例说明

二、算法分析的要点
1、确定使用的运算和执行这些运算所用的时间。
运算分为两类
时间是固定量
时间是变化量
(1)基本运算;(2)“组合”运算—由基本运算组成。
2、确定能反映出算法在各种情况下工作的数据集—构造 出能产生最好、最坏和有代表性情况的数据配置。
三、算法分析的两个阶段 1、事前分析—求出该算法的一个时间限界函数。
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题:
(1)模型是否清楚地表达了与问题有关的所有重要 的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
对于货郎担问题,其数学模型是带权图,与此图相关的 是费用矩阵。
第一章 算法引论
1.1 算法的基本概念 一、什么是算法及其与程序的区别
例子:给定两个正整数m和n,求它们的最大公因子 算法:欧几里德算法 输入:正整数m、n 输出:m和n的最大公因子
S1:保证m>=n,如果m<n,则m、n的值互换,否则转 S2.
S2:求余数。令r=m mod n,(0<=r<n)
则记为f(n)=Ω(g(n))。
定义1.4 如果存在两个正常数c1 ,c2,和n0,对于所有的n> n0,有 c1 g(n) | f (n) | c2 | g(n) |
则记为f(n)=Θ(g(n))。
一个算法的f(n)=Θ(g(n))意味着该算法在最好和最坏情况 下的计算时间就一个常因子范围内而言是相同的。
二、算法的特征 1、确定性 2、能行性 3、输入 4、输出 5、有穷性:一个算法总是在有限步之后结束,且每一步都 可在有穷时间内完成.

算法分析与设计及案例习题解析

习 题 解 析第1章1. 解析:算法主要是指求解问题的方法。

计算机中的算法是求解问题的方法在计算机上的实现。

2. 解析:算法的五大特征是确定性、有穷性、输入、输出和可行性。

3. 解析:计算n ⎢⎥⎣⎦的算法,其中n 是正整数。

可以取循环变量i 的值从1开始,算i 的平方,取平方值最接近且小于或者等于n 的i 即可。

4. 解析:可以使用反证法,设i=gcd(m, n)=gcd(n, m mod n),则设m=a*i ,n=b*i ,且a 与b 互质,这时m mod n=(a-x*b )*i ,只需要证明b 和a-x*b 互质,假设二者不互质,可以推出a 与b 不互质,因此可以得到证明。

5. 解析:自然语言描述:十进制整数转换为二进制整数采用“除2取余,逆序排列”法。

具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

流程图:如图*.1开始输入n长度len=(logn/log2)len>=0Y输出(n>>len)&1)len=len-1N结束图*.1 十进制整数转换成二进制整数流程图6. 解析:a.如果线性表是数组,则可以进行随机查找。

由于有序,因此可以进行折半查找,这样可以在最少的比较次数下完成查找。

b.如果线性表是链表,虽然有序,则只能进行顺序查找,从链表头部开始进行比较,当发现当前节点的值大于待查找元素值,则查找失败。

7. 解析:本题主要是举例让大家了解算法的精确性。

过程中不能有含糊不清或者二义性的步骤。

大家根据可行的方式总结一下阅读一本书的过程即可。

8. 解析:数据结构中介绍的字典是一种抽象数据结构,由一组键值对组成,各个键值对的键各不相同,程序可以将新的键值对添加到字典中,或者基于键进行查找、更新或删除等操作。

算法总结---最常用的五大算法(算法题思路)

算法总结---最常⽤的五⼤算法(算法题思路)算法总结---最常⽤的五⼤算法(算法题思路)⼀、总结⼀句话总结:> 【明确所求:dijkstra是求点到点的距离,辅助数组就是源点到⽬标点的数组】> 【最简实例分析:⽐如思考dijkstra:假设先只有三个点】1、贪⼼算法是什么?> 当前看来最好的选择> 局部最优解> 可能得到整体最优解或是最优解的近似解贪⼼算法(⼜称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪⼼算法不是对所有问题都能得到整体最优解,但对范围相当⼴泛的许多问题他能产⽣整体最优解或者是整体最优解的近似解。

2、贪⼼算法实例?> 求最⼩⽣成树的Prim算法:【边集中依次选取那些权值最⼩的边】> 求最⼩⽣成树的Kruskal算法:【和求最短路径有点相似:不过这⾥是求两个集合之间的距离】:【⼀维中间数组记录到当前已经选择顶点的最短距离】:【⼆维表记录每个点到每个点的最短距离】> 计算强连通⼦图的Dijkstra算法:【和最⼩⽣成树Kruskal类似】【⼆维表记录每个点到每个点的最短距离】【明确所求:dijkstra是求点到点的距离,辅助数组就是源点到⽬标点的数组】【每次从辅助数组中选择最⼩的,⽤选出的点来更新辅助数组】【最简实例分析:⽐如思考dijkstra:假设先只有三个点】> 构造huffman树的算法:【每次都选取权值⼩的两个点合成⼆叉树】Kruskal算法简述在带权连通图中,不断地在边集合中找到最⼩的边,如果该边满⾜得到最⼩⽣成树的条件,就将其构造,直到最后得到⼀颗最⼩⽣成树。

假设 WN=(V,{E}) 是⼀个含有 n 个顶点的连通⽹,则按照克鲁斯卡尔算法构造的过程为:先构造⼀个只含 n 个顶点,⽽边集为空的⼦图,若将该⼦图中各个顶点看成是各棵树上的根结点,则它是⼀个含有 n 棵树的⼀个森林。

五大常用算法资料课件


02
搜索算法
线性搜索
最基础的搜索算法,逐个元素进行查找。
线性搜索是一种最基本的搜索算法,它从数据结构的一端开 始,逐个检查每个元素,直到找到目标元素或检查完所有元 素为止。线性搜索的时间复杂度为O(n),其中n为数据结构 中元素的数量。
二分搜索
在有序数组中查找某一特定元素的搜索算法。
二分搜索是一种高效的搜索算法,它适用于有序数组。在 每一步迭代中,算法将数组分为两半,并排除一半的元素 ,从而缩小搜索范围。二分搜索的时间复杂度为O(log n) ,其中n为数组中元素的数量。
要点一
总结词
二分查找是一种在有序数组中查找特定元素的搜索算法, 它将数组分成两半,比较中间元素与目标值,如果中间元 素等于目标值则查找成功,如果目标值小于中间元素则在 前半部分数组中继续查找,如果目标值大于中间元素则在 后半部分数组中继续查找。
要点二
详细描述
二分查找的主要思想是将数组分成两半,比较中间元素与 目标值,如果中间元素等于目标值则查找成功,如果目标 值小于中间元素则在前半部分数组中继续查找,如果目标 值大于中间元素则在后半部分数组中继续查找。这个过程 递归进行,直到找到目标值或搜索区间为空。二分查找的 时间复杂度为O(logn),是一种高效的搜索算法。
THANKS
感谢观看
哈希搜索
通过哈希函数将关键字直接映射到数 据结构中的位置进行查找的算法。
VS
哈希搜索利用哈希函数将关键字转换 为数据结构中的位置,从而快速定位 目标元素。哈希搜索的时间复杂度取 决于哈希函数的设计和冲突解决策略 ,通常情况下为O(1)或O(log n)。
03
图算法
Dijkstra算法
• Dijkstra算法是一种用于解决单源最短路径问题的图算法。

算法设计与分析习题答案1-6章

习题11.图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点 输出:相同的点 1, 一次步行2, 经过七座桥,且每次只经历过一次 3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法 1.r=m-n2.循环直到r=0 2.1 m=n 2.2 n=r 2.3 r=m-n 3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C ++描述。

//采用分治法//对数组先进行快速排序 //在依次比较相邻的差 #include <iostream> using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档