初一数学易错题带答案

合集下载

【易错题】初一数学上期末试卷(带答案)

【易错题】初一数学上期末试卷(带答案)

【易错题】初一数学上期末试卷(带答案)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或22.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( )A .16号B .18号C .20号D .22号3.下面的说法正确的是( )A .有理数的绝对值一定比0大B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等4.若x =5是方程ax ﹣8=12的解,则a 的值为( )A .3B .4C .5D .65.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.A .2B .3C .4D .56.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .7.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .2 8.下列结论正确的是( )A .c>a>bB .1b >1cC .|a|<|b|D .abc>0 9.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 201510.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .7cmB .3cmC .7cm 或3cmD .5cm 11.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙)A .75︒B .105︒C .120︒D .125︒ 12.已知x =y ,则下面变形错误的是( )A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 二、填空题13.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____.14.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.15.-3的倒数是___________16.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.17.如图,两个正方形边长分别为a 、b ,且满足a+b =10,ab =12,图中阴影部分的面积为_____.18.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.19.某同学做了一道数学题:“已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他误将“A ﹣B”看成了“A+B”,结果求出的答案是 x ﹣y ,那么原来的 A ﹣B 的值应该是 .20.若a -2b =-3,则代数式1-a +2b 的值为______.三、解答题21.已知a b 、满足2|1|(2)0a a b -+++=,求代数式()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦的值. 22.如图,数轴上A B 、两点对应的数分别为30-、16,点P 为数轴上一动点,点P 对应的数为x .(1)填空:若34x =-时,点P 到点A 、点B 的距离之和为_____________. (2)填空:若点P 到点A 、点B 的距离相等,则x =_______.(3)填空:若10BP =,则AP =_______.(4)若动点P 以每秒2个单位长度的速度从点A 向点B 运动,动点Q 以每秒3个单位长度的速度从点B 向点A 运动两动点同时运动且一动点到达终点时另一动点也停止运动,经过t 秒14PQ =,求t 的值.23.已知在数轴上A ,B 两点对应数分别为-3,20.(1)若P 点为线段AB 的中点,求P 点对应的数.(2)若点A 以每秒3个单位,点B 以每秒2个单位的速度同时出发向右运动多长时间后A ,B 两点相距2个单位长度?(3)若点A ,B 同时分别以2个单位长度秒的速度相向运动,点M (M 点在原点)同时以4个单位长度/秒的速度向右运动.①经过t 秒后A 与M 之间的距离AM (用含t 的式子表示)②几秒后点M 到点A 、点B 的距离相等?求此时M 对应的数.24.解方程:(1)4x ﹣3(20﹣x )=3(2)12y -=225y +- 25.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案.【详解】∵x 是3-的相反数,y 5=,∴x=3,y=±5,当x=3,y=5时,x+y=8,当x=3,y=-5时,x+y=-2,故选C.【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.3.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.4.B解析:B【解析】【分析】把x=5代入方程ax-8=12得出5a-8=12,求出方程的解即可.【详解】把x=5代入方程ax﹣8=12得:5a﹣8=12,解得:a=4.故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.5.B解析:B【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.6.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.7.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812=4;第7次输出的结果为412⨯=2; 第8次输出的结果为212⨯=1; 第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.8.B解析:B【解析】【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案.【详解】解:由图可知1,01,1a b c <-<<>∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B .【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.9.C解析:C【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n-1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是2n 1n x -(),所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为20154029x .故选C考点:探索规律10.D解析:D【解析】【分析】先根据题意画出图形,再利用线段的中点定义求解即可.【详解】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =-=-==. 故选:D .【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键. 11.D解析:D【解析】【分析】【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角.故选D .【点睛】本题考查角的计算.12.D解析:D【解析】解:A .B 、C 的变形均符合等式的基本性质,D 项a 不能为0,不一定成立.故选D .二、填空题13.83元【解析】【分析】设该商品的进价是x 元根据售价﹣进价=利润列出方程并解答【详解】设该商品的进价是x 元依题意得:1079﹣x =30x 解得x =83故答案为:83元【点睛】本题考查一元一次方程的应用读解析:83元【解析】【分析】设该商品的进价是x元,根据“售价﹣进价=利润”列出方程并解答.【详解】设该商品的进价是x元,依题意得:107.9﹣x=30%x,解得x=83,故答案为:83元.【点睛】本题考查一元一次方程的应用,读懂题意,掌握好进价、售价、利润三者之间的关系是解题的关键.14.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒据此可得答案【详解】∵图①中火柴数量为5=1+4×1图②中火柴数量为9=1+4×2图③中火柴数量为13=1+4×3……∴摆第n解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.15.【解析】【分析】乘积为1的两数互为相反数即a的倒数即为符号一致【详解】∵-3的倒数是∴答案是解析:1 3【解析】【分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是1 3 -∴答案是1 3 -16.两点确定一条直线【解析】【分析】根据直线的公理确定求解【详解】解:答案为:两点确定一条直线【点睛】本题考查直线的确定:两点确定一条直线熟练掌握数学公理是解题的关键解析:两点确定一条直线【解析】【分析】根据直线的公理确定求解.【详解】解:答案为:两点确定一条直线.【点睛】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键.17.32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积求出即可【详解】∵a+b=10ab=12∴S阴影=a2+b2-a2-b(a+b)=(a2+b2-ab)=(a+b)2-3ab解析:32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积,求出即可.【详解】∵a+b=10,ab=12,∴S阴影=a2+b2-12a2-12b(a+b)=12(a2+b2-ab)=12[(a+b)2-3ab]=32,故答案为:32.【点睛】此题考查了整式混合运算的应用,弄清图形中的关系是解本题的关键.18.12【解析】【分析】设乙现在的年龄是x岁则甲的现在的年龄是:2x岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x 岁则甲的现在的年龄是:2x岁依题意得:2x-6=3(x-6)解解析:12【解析】【分析】设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,根据6年前,甲的年龄是乙的3倍,可列方程求解.【详解】解:设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,依题意得:2x-6=3(x-6)解得:x=12∴2x=24故:甲现在24岁,乙现在12岁.故答案为:24,12【点睛】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.19.﹣5x+3y【解析】【分析】先根据题意求出多项式A然后再求A-B【详解】解:由题意可知:A+B=x-y∴A=(x-y)-(3x-2y)=-2x+y∴A-B=(-2x+y)-(3x-2y)=-5x+3解析:﹣5x+3y.【解析】【分析】先根据题意求出多项式A,然后再求A-B.【详解】解:由题意可知:A+B=x-y,∴A=(x-y)-(3x-2y)=-2x+y,∴A-B=(-2x+y)-(3x-2y)=-5x+3y.故答案为:-5x+3y.【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.20.4【解析】【分析】因为a-2b=-3由1-a+2b可得1-(a-2b)=1-(-3)=4即可得出【详解】解:∵a-2b=-3 ∴1-a+2b=1-(a-2b)=1-(-3)=4故答案为4【点睛】此题解析:4【解析】【分析】因为a-2b=-3,由1-a+2b可得1-(a-2b)=1-(-3)=4即可得出.【详解】解:∵a-2b=-3,∴1-a+2b=1-(a-2b)=1-(-3)=4,故答案为4.【点睛】此题考查代数式的值,要先观察已知式子与所求式子之间的关系,加括号时注意符号三、解答题21.31【解析】【分析】根据非负数的性质求出a ,b 的值,然后对所求式子进行化简并代入求值即可.【详解】解:∵2|1|(2)0a a b -+++=,∴10a -=,20a b ++=,∴1a =,3b =-, ∴()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦ 221128222a ab ab a ab ⎛⎫=-+-- ⎪⎝⎭ 221128222a ab ab a ab =--+- 249a ab =-()241913=⨯-⨯⨯-31=.【点睛】本题考查了非负数的性质,整式的加减运算,熟练掌握运算法则是解题的关键.22.(1)54;(2)7-;(3)56或36;(4)t 的值为325或12 【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)根据数轴上两点的中点公式即可求解;(3)根据10BP =求出P 点表示的数,故可得到AP 的长;(4)根据P,Q 的运动速度及14PQ =分P ,Q 相遇前和相遇后分别列方程求解.【详解】(1) 34x =-时,点P 到点A 、点B 的距离之和为16(34)30(34)--+---=54 故答案为:54;(2)若点P 到点A 、点B 的距离相等,则x=16(30)2+-=-7 故答案为:7-;(3)∵10BP =∴P 点表示的数为:6或26则AP =6-(-30)=36或26-(-30)=56即AP=36或56故答案为:56或36;(4)解:∵16(30)46AB =-=当P ,Q 相遇前,得234614t t +=- 解得325t = 当P ,Q 相遇后,得234614t t +=+时解得12t =t ∴的值为325或12. 【点睛】此题主要考查数轴与一元一次方程的应用,解题的关键是根据题意找到等量关系列式求解.23.(1)8.5;(2)25秒;(3)①2t+3;②172或23. 【解析】【分析】(1)求出AB 中点表示的数即可;(2)设运动x 秒后A ,B 两点相距2个单位长度,根据题意列出方程,求出方程的解即可得到结果;(3)①表示出AM 即可;②根据AM=BM 求出t 的值即可.【详解】 (1)根据题意得:3202-+=8.5, 则点P 对应的数为8.5; (2)设运动x 秒后A ,B 两点相距2个单位长度,根据题意得:|(-3+3x )-(20+2x )|=2,整理得:|x-23|=2,即x-23=2或x-23=-2,解得:x=25或x=-21(舍去),则运动25秒后A ,B 两点相距2个单位长度;(3)①根据题意得:AM=4t-(-3+2t )=2t+3;故答案为:2t+3;②根据题意得:BM=AM ,即|(20-2t )-4t|=2t+3,整理得:20-6t=2t+3或20-6t=-2t-3,解得:t=178或t=234, 此时M 对应的数为172或23.【点睛】此题考查了一元一次方程的应用,数轴,以及列代数式,弄清题意是解本题的关键.24.(1)x =9;(2)y =3.【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)去括号得:4x ﹣60+3x =3,移项合并得:7x =63,解得:x =9;(2)去分母得:5(y ﹣1)=20﹣2(y +2),去括号得:5y ﹣5=20﹣2y ﹣4,移项合并得:7y =21,解得:y =3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.25.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】()()223x xy 2y 2x 3y ----223x 3xy 6y 2x 6y =---+2x 3xy =-.当x 1=-,y 2=时, ()()22x 3xy 1312-=--⨯-⨯ 167=+=.【点睛】本题考查整式的加减-化简求值,熟练掌握运算法则是解题关键.。

人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。

七年级数学易错题讲解及答案

七年级数学易错题讲解及答案

初一数学易错题汇总第一章有理数易错题练习一•判断⑴a 与-a 必有一个是负数.⑵在数轴上,与原点 0相距5个单位长度的点所表示的数是 5. ⑶在数轴上,A 点表示+ 1与A 点距离3个单位长度的点所表示的数是 4.⑷在数轴的原点左侧且到原点的距离等于 6个单位长度的点所表示的数的绝对值是-6.⑸绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x=- (-11),那么 x= -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是 1个.⑼若a 0,则a 0.b⑽绝对值等于本身的数是 1. 二.填空题⑴若1 a =a-1,则a 的取值范围是: __________ .⑵式子3-5 | x |的最 ____ 值是 ________ .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 _______________ . ⑷水平数轴上的一个数表示的点向右平移 6个单位长度得到它的相反数,这个数是 ___________ ⑸在数轴上的A 、B 两点分别表示的数为 5和7,将A 、B 两点同时向左平移相同的单位长 度,得到的两个新的点表示的数互为相反数,则需向左平移 ______________ 个单位长度.⑹已知 |a | =5, | b | =3, |a+b | =a+b ,贝U a-b 的值为 _______ ;如果 |a+b | = -a-b ,贝U a-b 的值为 _______ .⑺化简-| n 3 | = ______ . ⑻如果a v b v 0,那么1_1 .a b⑼在数轴上表示数-1丄的点和表示 5丄的点之间的距离为: _____________ .321⑽a —1,则a 、b 的关系是 __________ .b (11) ____________________ 若 a v 0, b v 0,贝U ac 0.b c(12) ____________________________________________ —个数的倒数的绝对值等于这个数的相反数,这个数是 ______________________________________. 三•解答题⑴已知a 、b 互为倒数,-c 与d 互为相反数,且|x | =4,求2ab-2c+d+-的值.23⑵数a 、b 在数轴上的对应点如图,化简:III■[■ a -1b 1⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.a-b | + |b-a | + | b | - | a- | a | . |⑶已知 | a+5 | =1, | b-2 | =3,求 a-b 的值. 值.⑷若 |a|=4, |b|=2,且 |a + b|=a + b , 求 a- b 的①(-7)- (-4)- ( + 9) + (+ 2)- (-5); ②(-5) - ( + 7)- (-6) + 4.⑹改错(用红笔,只改动横线上的部分 ): ⑺比较4a 和-4a 的大小① 已知 5.0362=25.36,那么 50.362=253.6, 0.050362=0.02536; ② 已知 7.4273=409.7,那么 74.273=4097,0.074273=0.04097; ③ 已知 3.412=11.63,那么(34.1)2=116300;④ 近似数2.40X 104精确到百分位,它的有效数字是2, 4;⑤ 已知 5.4953=165.9, x 3=0.0001659,贝U x=0.5495. ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价 1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若 x 、y 是有理数,且 |x|-x=0, |y|+y=0, |y|>|x|,化简 |x|-|y|-|x+y|.⑽已知abcd z 0试说明ac 、-ad 、be 、bd 中至少有一个取正值,并且至少有一个取负值(11)已知 a<0, b<0, c>0,判断(a+b)(c-b)和(a+b)(b-c)的大小.(12)已知:1+2+3……+33=17X 33,计算 1-3+2-6+3-9+4- 12+……+31 -93+32-96+33-99 的值.四.计算下列各题:有理数•易错题练习「.多种情况的问题(考虑问题要全面)(1) ______________________________________ 已知一个数的绝对值是3,这个数为 ____________________________________________ ; 此题用符号表示:已知x 3,则x= __________ ; x 5,则x= ___________ ; (2) 绝对值不大于4的负整数是 _________ ; (3) 绝对值小于4.5而大于3的整数是 __________(4) ______________________________________________________ 在数轴上,与原点相距5个单位长度的点所表示的数是 _________________________ ;⑴(-42.75) (-27.36)-(-72.64) (+42.75)⑵1 213 3344(35 7 9)5⑷ 200056 2 3 199940003 41.43 0.57 (6)(6)11 ⑺ 9 X 181814 (1 22 0.5)3(3)2⑽-24-(-2)41( 3 2)33 23⑶(5) ________________________________________________________________ 在数轴上,A点表示+ 1,与A点距离3个单位长度的点所表示的数是 ______________1 2 1⑹平方得21的数是;此题用符号表示:已知X 2~,则x= ___________________ ;4 4⑺若|a|=|b| ,则a,b的关系是 ___________ ;(8)若|a|=4,|b|=2,且|a + b|=a + b,求a— b 的值.二•特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示(正数,从三类数中各取1―― 2个特值代入检验,做出正确的选择1 0'负数(1)______________________ 若a是负数,贝U a ________ —a;a是一个 ;(2) ____________________________ 已知X X,则x满足___________ ;若X X,则x满足______________________________ ;若x=-x,x满足________ ;若a 2,化简a 2 _ ;⑶有理数a、b在数轴上的对应的位置如图所示:则( )a b------ 4 --------- 1 ---------- 1 •:------------------1 0 1A . a + b v 0B . a + b >0;C . a —b = 0D . a—b>0(4)如果a、b互为倒数,c、d互为相反数,且m 3 ,则代数式2ab- (c+d)III 3,+&= ______ 。

【易错题】初一数学上期中试题含答案 (2)

【易错题】初一数学上期中试题含答案 (2)

【易错题】初一数学上期中试题含答案 (2)一、选择题1.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 2.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 3.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a 4.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--= 5.23的相反数是 ( ) A .32 B .32- C .23 D .23- 6.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 7.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1 8.下列数中,最小的负数是( )A .-2B .-1C .0D .1 9.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|10.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我11.如图所示几何体的左视图是( )A.B.C.D.12.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=二、填空题13.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.15.已知x=3是方程ax﹣6=a+10的解,则a= .16.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a b-”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y表示的数为______.17.小华在计算14a-时,误把“-”看成“+”,求得结果为5-,则14a-=____________.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.正整数按如图的规律排列,请写出第10行,第10列的数字_____.20.点,A B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①0b a -<;②0a b +>;③a b <;④0ab >.其中正确的是____________.(填序号)三、解答题21.春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含6310⨯个病菌,已知1毫升杀菌剂可以杀死5210⨯个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?22.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+… 23.解下列方程:(1)x-7=10 - 4(x+0.5) ; (2)132123x x -+-=. 24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?25.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na ,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.C解析:C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.3.C解析:C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.4.C解析:C【解析】试题分析:方程两边同乘以6得2(2x+1)-3(5x-3)=6,故答案选C.考点:去分母.5.D解析:D【解析】【分析】只有符号不同的两个数互为相反数.【详解】2 3的相反数是23故选:D【点睛】考核知识点:相反数.理解定义是关键.6.C解析:C【解析】665 575 306≈6.66×108.故选C.7.D解析:D【解析】【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y3-4y-6-(3y2-2y-5)= 5y3-4y-6-3y2+2y+5= 5y3-3y2-2y-1.故答案为D.【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.8.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵最小的负数,∴ C、D不对,->-,∵21绝对值大的反而小,∴-2最小.故选A考点:正数和负数.9.D解析:D【解析】【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.∴选D.10.D解析:D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.D解析:D【解析】【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣13,所以B选项错误;C、由x=y得xm=ym(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以262955x y--=,所以D选项正确.故选:D.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.二、填空题13.m(n+1)【解析】【分析】【详解】解:观察可得3=1×(2+1)15=3×(4+1)35=5×(6+1)所以x=7×(8+1)=63y=m(n+1)故答案为:63;y=m (n+1)【点睛】本题考查解析:m(n+1)【解析】【分析】【详解】解:观察可得,3=1×(2+1),15=3×(4+1),35=5×(6+1),所以x=7×(8+1)=63,y=m(n+1).故答案为:63;y=m (n+1).【点睛】本题考查规律探究题.14.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.15.8【解析】【分析】将x=3代入方程ax ﹣6=a+10然后解关于a 的一元一次方程即可【详解】∵x=3是方程ax ﹣6=a+10的解∴x=3满足方程ax ﹣6=a+10∴3a ﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax ﹣6=a+10,然后解关于a 的一元一次方程即可.【详解】∵x=3是方程ax ﹣6=a+10的解,∴x=3满足方程ax ﹣6=a+10,∴3a ﹣6=a+10,解得a=8.故答案为8.16.-9【解析】【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为:-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【解析】【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x =?=-,2(1)79y =?-=-.故答案为:-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 17.33【解析】【分析】先根据错解求出a 的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.18.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.19.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是14916 25…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数1491625解析:91【解析】【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【详解】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第10行第1列的数为:102=100.又每行的数个数与对应列的数的个数相等.所以第10行第9列的数为100﹣9=91.故答案为:91.【点睛】此题考查规律型:数字的变化类的知识,解题关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.20.①③【解析】【分析】根据有理数的加法法则判断两数的和差及积的符号用两个负数比较大小的方法判断【详解】①:由数轴有0<a <3b <﹣3∴b﹣a <0①正确②:∵0<a <3b <﹣3∴a+b<0②错误③:∵0解析:①③【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【详解】①:由数轴有,0<a <3,b <﹣3,∴b ﹣a <0,①正确,②:∵0<a <3,b <﹣3,∴a+b <0②错误,③:∵0<a <3,b <﹣3,∴|a|<|b|,③正确,④:∵0<a <3,b <﹣3,∴ab <0,④错误.故答案为:①③【点睛】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.三、解答题21.需900毫升杀菌剂【解析】【分析】根据题意首先求出该房间的体积,由此即可得出该房间内的细菌数,最后进一步计算出需要多少杀菌剂即可.【详解】由题意可知该房间体积为:354360m ⨯⨯=,∴该房间中所含细菌数为:6860310 1.810⨯⨯=⨯(个),∴所需杀菌剂为:()851.810210900⨯÷⨯=(毫升),答:需900毫升杀菌剂.【点睛】本题主要考查了有理数混合运算的实际应用,熟练掌握相关方法是解题关键.22.(1)-15;(2)0.【解析】【分析】(1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算; (2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.【详解】 解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++L=0.【点睛】本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.23.(1)3;(2)15-【解析】【分析】(1)首先将原方程去掉括号,然后进一步移项化简,最后通过系数化1即可求出解; (2)首先将原方程去掉分母,再去掉括号,然后进一步移项化简,最后通过系数化1即可求出解.【详解】(1)去括号可得:71042x x -=--,移项可得:41072x x +=+-,化简可得:515x =,解得:3x =;(2)去分母可得:()()312326x x --+=,去括号可得:33646x x ---=,移项可得:34636x x -=++,化简可得:15x -=,解得:15x =-.【点睛】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.24.①最高分:92分;最低分70分;②低于80分的学生有5人,所占百分比50%;③10名同学的平均成绩是80分.【解析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.25.35【解析】 解方程1322x x +=-,可得x=1,由于解互为倒数,把x=1代入23x m m x -=+可得23x m m x -=+,可得1123m m -=+,解得m=-35. 故答案为-35. 点睛:此题主要考查了一元一次方程的解,利用同解方程,可先求出一个方程的解,再代入第二个含有m 的方程,从而求出m 即可.。

初中数学易错题(含参考答案)汇总

初中数学易错题(含参考答案)汇总

初中数学 易错题专题一、选择题(本卷带*号的题目可以不做)1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( )A 、2aB 、2bC 、2a-2bD 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线不是平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,图像有一个交点B 、1±≠m 时,肯定有两个交点C 、当1±=m 时,只有一个交点D 、图像可能与x 轴没有交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列数轴中正确的是( )9、有理数中,绝对值最小的数是( )A 、-1B 、1C 、0D 、不存在 10、21的倒数的相反数是( ) A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数 12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大 B 、a 2比a 小 C 、a 2与a 相等 D 、a 2与a 的大小不能确定 16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( ) A 、-1 B 、0 C 、1 D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( ) A 、12cm B 、10cm C 、8cm D 、4cm 18、21-的相反数是( ) A 、21+ B 、12- C 、21-- D 、12+- 19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=253+, x 3=253-O a bA B C C B A C A B B A C20、解方程04)1(5)1(322=-+++x x x x 时,若设yx x =+1,则原方程可化为( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4 B 、4 C 、-8 D 、8 23、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( )A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个S-t 函数示意图象,符合以上情况的是( )27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s 2 B 、x , s 2 C 、k x , ks 2 D 、k 2x , ks 2 28、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±1 29、下列图形中既是中心对称图形,又是轴对称图形的是( ) A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( ) A 、d c b a d c b a ++=-- B 、db ca d c 33++= C 、bd ac b a 23++=D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、300 B 、450 C 、550 D 、600 32、已知三角形内的一个点到它的三边距离相等,那么这个点是( ) A 、三角形的外心 B 、三角形的重心 C 、三角形的内心 D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( ) A 、3πcm B 、32πcm C 、6πcm D 、2πcm35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定O O O O OBA A BDC E37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,两段弧满足AB=2CD ,那么弦AB 和弦CD 的关系是( ) A 、AB=2CD B 、AB>2CD C 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( ) A 、300 B 、600 C 、1500 D 、300或1500 40、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( ) A 、x>2 B 、x>-2 C 、x<2 D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0没有实数根,则m 的取值范围是( )A 、m<1/3B 、m ≤1/3C 、m ≥1/3D 、m ≥1/3且m ≠1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是右图中的( ) (注:从左到右依次为ABCD)46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( ) A 、1个 B 、2个 C 、3个 D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上,则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x1.0 D 、5a49、下列计算哪个是正确的( ) A 、523=+ B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值()A 、1B 、±21C 、21D 、-2153*、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( ) A 、18 B 、6 C 、23 D 、±23 54、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似 ⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个ABCDEEABC二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

(完整word版)人教版七年级数学易错题讲解及答案

(完整word版)人教版七年级数学易错题讲解及答案

第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个.⑼ 若0,a =则0ab=. ⑽绝对值等于本身的数是1.二.填空题⑴若1a -=a -1,则a 的取值范围是: . ⑵式子3-5│x │的最 值是 . ⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 .⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= .⑻如果a <b <0,那么1a 1b .⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b ⋅=-,则a 、b 的关系是________.⑾若a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5);②(-5) - (+7)- (-6)+4. ④近似数2.40×104精确到百分位,它的有效数字是2,4;⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小. 四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-有理数·易错题练习一.多种情况的问题(考虑问题要全面) (1)已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________. (4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______;(7)若|a|=|b|,则a,b 的关系是________; (8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a________-a ;a --是一个________数; (2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

【精选】七年级数学一元一次方程易错题(Word版 含答案)

【精选】七年级数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.3.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。

已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【答案】(1)解:设原计划租用x辆45座客年根据题意,得45x+15=60(x-1)解得x=5则45x+15=45×5+15=240.答:这批游客共240人,原计划租5辆45座客车。

七年级数学有理数与无理数易错题含答案

七年级数学有理数与无理数易错题含答案

一、选择1.实数π是( )A.整数B.分数C.有理数D.无理数【考点】无理数.【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【解答】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.2.在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为( )A.3 B.4 C.5 D.6【考点】有理数.【分析】分别根据实数的分类及有理数、无理数的概念进行解答.【解答】解:在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的是0,,﹣(﹣),,0.3,.故选D.【点评】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.3.下列语句正确的是( )A.0是最小的数B.最大的负数是﹣1C.比0大的数是正数D.最小的自然数是1【考点】有理数.【分析】根据正数、自然数、负数、0的定义与特点分别对每一项进行分析即可.【解答】解:A、没有最小的数,故本选项错误;B、最大的负整数是﹣1,故本选项错误;C、比0大的数是正数,故本选项正确;D、最小的自然数是0,故本选项错误;故选:C.【点评】此题考查了有理数,用到的知识点是正数、自然数、负数、0的定义与特点,是一道基础题.4.下列各数中无理数的个数是( ),0.1234567891011…(省略的为1),0,2π.A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数,由此即可判定选择项.【解答】解:下列各数中,0.1234567891011…(省略的为1),0,2π.无理数是2π,共1个.故选A.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列说法中,正确的是( )A.有理数就是正数和负数的统称B.零不是自然数,但是正数C.一个有理数不是整数就是分数D.正分数、零、负分数统称分数【考点】有理数.【分析】根据有理数的定义和特点进行判断.【解答】解:A、有理数包括正数、负数和0,故A错误;B、零是自然数,但不是正数,故B错误;C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确;D、零是整数,不是分数,故D错误.故选C.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个.A.1 B.2 C.3 D.4【考点】有理数.【分析】利用分数的定义判断即可.【解答】解:在,3.14,0,0.313 113 111.…,0.43五个数中分数有3.14,0.43,故选B.【点评】此题考查了实数,熟练掌握分数的定义是解本题的关键.二、填空7.最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0.【考点】有理数.【分析】根据正整数的定义,可得答案;根据负整数的定义,可得答案;根据非负数的定义,可得答案.【解答】解:最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0,故答案为:1,﹣1,0.【点评】本题考查了有理数,利用了有理数的分类,注意没有最小的整数,没有最大的整数.8.有理数中.是整数而不是正数的数是0和负整数;是整数而不是负数的数是0和正整数.【考点】有理数.【专题】常规题型.【分析】解答本题的关键是理解掌握有理数定义,以及有理数包括整数和分数,零既不是正数也不是负数.【解答】解:零既不是正数也不是负数故在理数中,是整数而不是正数的数是(0和负整数);是整数而不是负数的数是:(0和正整数).【点评】本题主要考查的是有理数的定义以及零既不是正数也不是负数,题型比较容易.9.若一个正方形的面积为5,则其边长可能是无理数.【考点】算术平方根;无理数.【分析】直接利用正方形面积公式以及算术平方根和无理数的概念得出即可.【解答】解:∵一个正方形的面积为5,∴其边长是:,它是无理数.故答案为:无理.【点评】此题主要考查了正方形面积以及算术平方根和无理数的概念,正确求出正方形边长是解题关键.10.给出下列数:﹣18,,3.1416,0,2001,﹣,﹣0.14,95%,其中负数有﹣18,﹣,﹣0.14,整数有﹣18,0,2001,负分数有﹣0.14.【考点】有理数.【分析】根据小于零的数是负数,可得答案;根据整数的定义,可得答案;根据小于零的分数是负分数,可得答案.【解答】解:负数有﹣18,﹣,﹣0.14,整数有﹣18,0,2001,负分数有﹣0.14,故答案为:﹣18,﹣,﹣0.14;﹣18,0,2001;﹣0.14.【点评】本题考查了有理数,利用了有理数的分类,注意分数的分子分母都是整数.11.有六个位:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=6.【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定无理数x的值,根据整数的定义非负数的定义即可判定y、z的值,然后即可求解.【解答】解:无理数有:﹣2π,0.1020020002…共2个,则x=2;没有整数:则y=0;非负数有:0.123,3.1416,,0.1020020002…共4个;则z=4.则x+y+z=6.【点评】本题主要考查实数的分类.无理数和有理数统称实数.有一定的综合性.12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.(1)1,﹣2,4,﹣8,16,﹣32.64,﹣128,256…(2)4,3,2,1,0,﹣1,﹣2.﹣3,﹣4,﹣5…(3)1,2,﹣3,4,5,﹣6,7,8,﹣9,10,11,﹣12…【考点】规律型:数字的变化类.【分析】(1)利用已知数是(﹣2)的次数变化得到,进而得出答案;(2)利用已知数据可得出后面是连续的负数进而得出答案;(3)利用已知数绝对值是连续正整数,每三个中最后一个是负数,进而得出答案.【解答】解:(1)∵1,(﹣2)1,(﹣2)2=4,(﹣2)3=﹣8,(﹣2)4=16,(﹣2)5=﹣32.∴(﹣2)6=64,(﹣2)7=﹣128,(﹣2)8=256;故答案为:64,﹣128,256;(2)∵4,3,2,1,0,﹣1,﹣2,∴后面三个数是:﹣3,﹣4,﹣5;故答案为:﹣3,﹣4,﹣5;(3)∵1,2,﹣3,4,5,﹣6,7,8,﹣9,∴后面三个数是:10,11,﹣12.故答案为:10,11,﹣12.【点评】此题主要考查了数字变化规律,根据题意得出数字变化规律是解题关键.三、解答13.有一面积为5π的圆的半径为x,x是有理数吗?说说你的理由.【考点】实数.【分析】根据圆的面积公式得出圆的半径长,进而得出答案.【解答】解:x不是有理数,理由:因为x2=5,故x=,则x既不是整数,也不是分数,而是无限不循环小数.【点评】此题主要考查了实数有关定义,得出半径长是解题关键.14.把下列各数填在相应的大括号内:,0,,314,﹣,,,﹣0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.【考点】实数.【分析】分别利用正数以及负数、有理数和无理数的定义分析得出即可.【解答】解:正数集合:{,,314,,,8,1.121 221 222 1…(两个1之间依次多一个2),0.211,201,999,…};负数集合:{﹣,一0.55,…};有理数集合:{,0,314,,,﹣,﹣0.55,8,0.2111,201,999,…};无理数集合:{,1,121 221 222 1…(两个1之间依次多一个2)…}.【点评】此题主要考查了实数有关定义,正确把握相关定义是解题关键.15.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={﹣2,﹣3,﹣8,6,7},B={﹣3,﹣5,1,2,6},C={﹣1,﹣3,﹣8,2,5},请把这些数填在图中相应的位置.【考点】有理数.【分析】根据每个集合中的元素,可得答案.【解答】解:如图所示..【点评】本意考察了有理数,利用了韦恩图法表示集合,注意各集合的公共元素.16.“十•一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单位:万人+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)9月30日外出旅游人数记为a,用a的代数式表示10月2日外出旅游的人数;(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?【考点】列代数式.【专题】应用题.【分析】(1)10月2日外出旅游的人数=9月30日外出旅游人数+10月1日增加的人数+10月2日增加的人数.(2)易得最多的是10月3日,最少的是10月7日.算出的人数相减即可求得相差人数.把10月3日的人数=3即可算出9月30日出去旅游的人数有多少.【解答】解:(1)由题意可知10月2日外出旅游的人数为:a+1.6+0.8=a+2.4(万人);(2)最多的是10月3日,人数为a+1.6+0.8+0.4=a+2.8(万人).最少的是10月7日,人数为a+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2=a+0.6(万人).它们相差为a+2.8﹣a﹣0.6=2.2万人.如果最多一天有出游人数3万人,即a+2.8=3,a=0.2万人,故9月30日出去旅游的人数有0.2万人.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,列出代数式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一代数易错练习1.已知数轴上的A 点到原点的距离为2,那么数轴上到A 点距离是3的点表示的数为1、-1、5、-52.一个数的立方等于它本身,这个数是 1 。

3.用代数式表示:每间上衣a 元,涨价10%后再降价10%以后的售价 变低 ( 变低,变高,不变 )4.一艘轮船从A 港到B 港的速度为a,从B 港到A 港的速度为b,则此轮船全程的平均速度为 二分之a 加b 。

5. 青山镇水泥厂以每年产量增长10%的速度发展,如果第一年的产量为a,则第三年的产量为 一加百分之十乘a 再加百分之十再乘a 。

6.已知a b =43,x y =12,则代数式374by ax ay by +-的值为 57.若|x|= -x,且x=1x,则x= -1 8.若||x|-1|+|y+2|=0,则xy= 二分之一或负二分之一 。

9.已知a+b+c=0,abc ≠0,则x=||a a +||b b +||c c +||abc abc,根据a,b,c 不同取值,x 的值为 0 。

10.如果a+b<0,且b>0,那么a,b,-a,-b 的大小关系为 负A 大于B 大于负B 大于A 。

11.已知m 、x 、y 满足:(1)0)5(2=+-m x , (2)12+-y ab与34ab 是同类项.求代数式:)93()632(2222y xy x m y xy x +--+-的值 44 .12.化简-{-[-(+2.4)]}= -24 ;-{+[-(-2.4)]}= -2.413.如果|a-3|-3+a=0,则a 的取值范围是 小于等于三 14.已知-2<x<3,化简|x+2|-|x -3|= 2x-115.一个数的相反数的绝对值与这个数的绝对值的相反数的关系式 0 在有理数,绝对值最小的数是 -1 ,在负整数中,绝对值最小的数是 -1 16. 由四舍五入得到的近似数17.0,其真值不可能是( D ) A 17.02 B 16.99 C 17.0499 D16.4917.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标准的80%)优惠卖出,结果每作服装仍可获利15元,则这种服装每件的成本是 12518.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝 矿泉水 519.观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理由。

(1)-23,-18,-13, -8 , -3 (2)28,316-,432,564-, 一百二十八分之六 , 负的二百五十六分之七 . 20.简便计算(1) (+55)+(-81)+(+15)+(-19)=-30(2) (+6.1)+(-3.7)-(+4.9)-(-1.8)=-0.7(3) (-123)×(-4)+125×(-5)-127×(-4)-5×75=0 21. 已知2x-y=3, 那么1-4x+2y= -522. 已知|a|=5,|b|=7且|a-b|=b-a,2a-3b 的值为 -11或-31 23. 1-2+3-4+5-6+7-8+……99-100= -50 24. -2-22-23-24-……25……-218-219+220=225. 1+2+3+4+5+6……+100=m,则2+4+6+……+100= (m —50)÷2 26. 设y=ax 5+bx 3+cx-5,其中a,b,c,为常数,已知当x= -1时,y=7,求当x=-1时,y= -17 . 27. 设a 为一个二位数,b 为一个三位数,则a 放在b 的左边得一个五位数,则此五位数是 1000a+b28.已知 ,=,=,=,=,=,=,=218737293243381327393337654321推测203的个位数字是____1____。

29. 在1:50 000 000的地图上两地的距离是1.3厘米,用科学计数法表示两地的实际距离为 6.5×107 ( )千米 。

30. 若|ab-2|+(b-1)2=0,求代数式1ab +1(1)(1)a b +++1(2)(2)a b +++……+1(2002)(2002)a b ++的值。

=二零零四分之二零零三31.我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非。

”如图6-2,在边长为1的正方形纸板上,依次贴上面积为21,41,81,…,n 21的长方形彩色纸片(n 为大于1的整数),请你用“数形结合”的思想,依数形变化的规律,计算+++814121…+n 21=___________. 32. 如图,大正方形是由两个小正方形和两个长方形拼成的.(1) 请你用两个不同形式的代数式(需简化)表示这个大转关系的面积;(2) 由(1)可得到关于a 、b 的关系,利用得到的这个等式关系计算:22679.0679.0321.42321.4+⨯⨯+的值.33.观察月历 下列问题请你试一试。

你一定行。

请你探究:有阴影方框中的9个数与方框中间的数有什么关系吗?这个关系对任意一个这样的方框都成立吗?.6-4答案答案仅作参考!1.-5,-1,1,5。

提示:A点可能为-2,2。

到2距离为3的点为-1,5,故到-2距离为3的点为1,-5。

2.-1,1,0。

提示:一个数的立方等于它本身的数有三个。

3 .变低。

提示:涨价10%后再降价10%以后的售价为99 100a.4 .2aba b+。

提示:设路程为s,则总时间为t=s sa b+.平均速度为st=2aba b+,不是2a b+。

5 .121100a.提示:a(1+10%)(1+10%)=121100a.不是65a。

6 .916;提示:a=43b,x=12y,带入得374by axay by+-=9167 .-1;提示:x=1x,x= ±1,但由|x|= -x得x<0.8 .±12;提示:x=±1,y= -2。

9.0; 提示:不妨设a>b>c.当a>0,b>0,c<0, x=||aa+||bb+||cc+||abcabc=1+1-1-1=0;当a>0,b<0,c<0时,x=||aa+||bb+||cc+||abcabc=1-1-1+1=0。

10.a<-b<b<-a. 提示:由a+b<0得,且b>0,|a|>|b|,然后在数轴上将其表示出来。

11.44,提示:x=5,m=0,y=2.12. -2.4,-2.4;提示:数负号的个数,负号为奇数个则为负数,负号为偶数个则为正数。

13 .a≤3。

提示:|a-3|=3-a14.2x-1。

提示:x+2>0,x-3<0.15.两者的和为零,0,-1。

提示:设这个数为a,|-a|-|a|=0.绝对值大于等于零。

16. D.提示:近似数的取法满足四舍五入规则。

17.125.提示:设每件衣服x元。

则有75×45x-x=15x=12518 .5。

提示:4个矿泉水空瓶可以换矿泉水一瓶,喝完后又得到一个瓶。

相当于3个瓶换一瓶水。

所以16瓶换5瓶水。

19. (1)-8,-3 (2)6128,7256- 20 . (1)-30 ,。

提示:将55与15结合在一块,将-81与-19结合在一块 (2)-0.7。

提示:将6.1与-1.8结合在一起。

(3)0。

提示:将第一项与第三项结合起来;第二项与第四项结合起来。

21. -5. 提示:将2x-3y 作为一个整体。

1-2(2x+y)=-5. 22 . -11或-31. 提示:b>a.b=7,a=5;或者b=-5,a=-7. 23 -50; 提示:每相邻两项和为-1。

24. 2。

提示:后一项减前一项总是等于前一项。

220-219=219;219-218=218…..22-2=2. 25 .2m +25.提示:设1+3+5+……+99=x, 则2+4+6+……+100=x+50.即2x+50=m,x=2m-25, 2+4+6+……+100=x+50=2m+25 26. -17提示:当x= -1时, -a-b-c= 7+5= 12. x= -1时,y= -(-a-b-c)-5=-17. 27. 1000a+b.提示:相当于a 的后面加了3个零。

所以结果是1000a+b. 28. 1。

提示:3的n 次幂循环周期是4。

所以320与34的个位数字相同。

29 6.5×102.提示:1.3×50 000 000=6.5×107厘米。

30 解得a=2,b=11ab +1(1)(1)a b +++1(2)(2)a b +++……+1(2002)(2002)a b ++=112⨯+123⨯+134⨯+145⨯+……+120032004⨯ =1-12+12-13+13-14+14-15+……+12003-12004=20032004提示:111(1)1n n n n =-++,从而引起连锁反应。

31. 1-n 21。

提示:从图中可看出。

剩下的一小块面积总是等于等式左边最后一块的面积。

即12=1-12。

1124+=1-1432.(1)图中大正方形的面积等于(a+b)2=a 2+b 2+2ab(2)22679.0679.0321.42321.4+⨯⨯+=(4.321+0.679)2=2533. 和中间方框在同一直线且相邻的两方框的和是中间方框的2倍。

这个关系对任意一个这样的方框都成立。

第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个.⑼ 若0,a =则0ab=. ⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: . ⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= .⑻如果a <b <0,那么1a 1b .⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b ⋅=-,则a 、b 的关系是________.⑾若a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值. ①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分): ⑺比较4a 和-4a 的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536; ②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097; ③已知3.412=11.63,那么(34.1)2=116300; ④近似数2.40×104精确到百分位,它的有效数字是2,4; ⑤已知5.4953=165.9,x 3=0.0001659,则x =0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值.⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦ ⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x,x 满足________; 若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

相关文档
最新文档