离群点分析 ppt课件

合集下载

离群点的判定

离群点的判定

离群点的判定摘要本文首先对离群点进行了定义,离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。

因此,也称之为歧异值,有时也称其为野值。

深入了解了形成离群点的原因,并建立数学模型来找出一维、n维数据中的离群点,主要利用聚类的离群挖掘法。

针对问题一,考虑到数据的杂乱性,先对数据进行排序,由于在实际生活中我们需要处理的数据量往往比较多,离群点的个数也不确定,就考虑对数据进行分类处理,利用离群值跳跃度比较大的特点,采用斜率比较的方法进行分类,在分类的过程中我们就会很容易的发现离群点。

最后再对完成分类的数据进行分析。

完成分类的数据往往差距更小,可以近似的认为数据服从正态分布,利用正态分布的性质可以找出每类数据中的离群点,这样就找出了数据中所有的离群点。

针对问题二,我们主要采用具体的数据绘制具体的图形来分析存在的离群点,并说明离群点带来的影响。

针对问题三,我们主要利用基于聚类的离群挖掘方法,先利用一趟算法对数据集进行聚类;然后再计算每个簇的离群因子,并按离群因子对簇进行排序,最终确定离群簇,也即确定离群对象。

确定算法以后再利用具体的数据进行检测,看该模型是否可行。

关键词:数据的分类处理聚类的离群挖掘方法(CBOD)一、问题重述A题:离群点的判定离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。

因此,也称之为歧异值,有时也称其为野值。

形成离群点的主要原因有:首先可能是采样中的误差,如记录的偏误,工作人员出现笔误,计算错误等,都有可能产生极端大值或者极端小值。

其次可能是被研究现象本身由于受各种偶然非正常的因素影响而引起的。

例如:在人口死亡序列中,由于某年发生了地震,使该年度死亡人数剧增,形成离群点;在股票价格序列中,由于受某项政策出台或某种谣传的刺激,都会出现极增,极减现象,变现为离群点。

不论是何种原因引起的离群点对以后的分析都会造成一定的影响。

从造成分析的困难来看,统计分析人员说不希望序列中出现离群点,离群点会直接影响模型的拟合精度,甚至会得到一些虚伪的信息。

离群值分析与处理

离群值分析与处理

离群值分析与处理在数据分析与机器学习的领域,离群值(Outlier)指的是与其他数据点显著不同的数据点。

这些数据点可能是因为测量错误、数据录入错误,或是由于样本的特殊性质而出现。

离群值的存在往往会对数据分析结果和模型性能产生重大影响,因此在实际工作中,对离群值的分析与处理显得尤为重要。

在这篇文章中,我们将深入探讨离群值的定义、检测方法、处理策略以及在实际应用中的注意事项。

离群值的定义离群值简单来说是指在一组数据中,个别数据点显著偏离其他观测值的现象。

例如,在一个身高数据集里,大部分人的身高在150-190厘米之间,而有几个测量值为220厘米,那么这些220厘米的数据便可被视为离群值。

离群值的影响可能会使我们对整体趋势的理解产生偏差,因此在分析数据时,需要认真对待离群值的问题。

离群值的来源测量误差:一些数据点由于仪器故障或操作不当等原因,导致数据录入错误,这类错误通常较为随机,但也可能导致明显偏差。

样本特性:某些特定样本可能会天然形成离群。

例如,在医学研究中,少数病人可能因特殊病史而具有极端症状,这些个别现象便形成了离群值。

环境变化:随着外部环境的变化,某些变量可能会突变,从而极大地影响部分数据点。

比如经济危机、自然灾害等因素都能导致特定案例的数据异常。

不准确的模型假设:如果我们在使用某种统计模型进行分析时,该模型假设不正确或未涵盖全部的重要因素,也可能导致离群值出现。

离群值检测方法合理检测离群值是确保模型质量和分析准确性的第一步。

常用的检测方法包括以下几种:统计方法Z-Score 方法: Z-Score 是一种标准化方法,通过计算每个数据点与样本均值相比有多远来识别离群值。

公式为:[ Z = ]其中,(X) 是样本数据点,() 是均值,() 是标准差。

当 |Z| > 3 时,通常认为该点为离群值。

IQR(四分位距)算法: IQR 是一种基于分位数的方法。

首先计算第一四分位数(Q1)和第三四分位数(Q3),接着计算四分位距(IQR = Q3 - Q1)。

离群分析报告

离群分析报告

离群分析报告摘要离群分析是数据挖掘领域的一种重要技术,用于发现异常或离群的数据点。

本报告将介绍离群分析的概念、常用算法和实际应用,并通过一个示例说明离群分析在现实生活中的作用。

引言随着数据的爆炸式增长,如何从海量数据中发现有价值的信息成为一项挑战。

离群分析作为一种数据挖掘技术,能够识别出与大多数数据点不同的异常或离群数据点,对于异常检测、欺诈检测、网络安全等领域具有重要意义。

概念离群分析的目标是识别那些与大多数数据点有很大不同的观测值。

这些观测值可能是真正的异常,也可能是数据收集或处理中的错误。

离群点通常具有以下特征:•离群值与其他数据点的距离较远;•离群值违反了数据分布的统计规律;•离群值对于整体数据的影响较大。

离群分析的核心任务是将离群点与正常点分开,以便进一步分析。

离群分析算法常见的离群分析算法包括:1. Z-ScoreZ-Score是一种常用的统计方法,利用数据的标准差和均值将数据点标准化为Z分数。

Z分数表示一个数据点与平均值之间的差异,通过设定阈值,我们可以将超出阈值的数据视为离群点。

2. 基于距离的方法基于距离的方法通过计算数据点与其他数据点之间的距离来判断离群程度。

常见的方法包括KNN(k近邻)、LOF(局部离群因子)等。

3. 箱线图法箱线图是一种可视化方法,通过绘制数据分布的箱线图来判断是否存在离群点。

箱线图通常包括上下四分位数、中位数和异常值,通过设定阈值,我们可以将超出阈值的数据点视为离群点。

4. 异常点检测算法异常点检测算法利用机器学习和统计方法来发现异常点。

常见的算法包括孤立森林、One-Class SVM等。

实际应用离群分析在许多领域都有广泛的应用:1. 欺诈检测银行、网络支付等领域常常遭受欺诈行为的威胁。

通过离群分析算法,我们可以识别出异常的交易行为,及时发现欺诈行为。

2. 网络安全离群分析可以用于检测网络异常,及时发现恶意攻击或异常行为。

通过监控网络流量、用户行为等数据,我们可以识别出异常的网络流量,并采取相应的安全措施。

离群点判断算法

离群点判断算法

离群点判断算法
离群点判断算法主要用于检测数据集中与大多数观测值显著不同的异常值。

简要介绍如下:
1. 四分位数法则:基于箱线图原理,若数据点小于下四分位数(Q1)减去1.5倍四分位距(IQR),或大于上四分位数(Q3)加上1.5倍IQR,则视为离群点。

2. Z-score方法:计算每个数据点与其均值的偏差(即标准分数),若绝对值超过预定阈值(如3),则视为离群点。

3. DBSCAN聚类算法:通过密度连接度识别核心对象和边界对象,不满足邻域密度要求的数据点被视为离群点。

4. LOF(Local Outlier Factor):比较数据点与周围邻居的局部密度,LOF值过高表示该点可能为离群点。

5. Isolation Forest:利用随机森林构建隔离树,孤立于树结构顶层的数据点更可能是离群点。

这些算法可应用于数据分析、故障检测等多个领域,有助于发现潜在问题或异常现象。

检查离群点的方法

检查离群点的方法

检查离群点的方法
离群点是指某一样本与其他样本相比具有显著偏离的特征值。

为了检查离群点,可以使用以下几种方法:
1. 箱线图检测法:通过绘制箱线图来判断是否存在离群点。

在箱线图中,离群点是位于上下限之外的数据点。

2. Z-score检测法:通过计算Z分数,即数据点与平均值的偏差除以标准差,来判断是否存在离群点。

一般情况下,大于3或小于-3的数据点可以被认为是离群点。

3. 离散值检测法:通过计算数据点与邻近点之间的差值,来判断是否存在离群点。

如果与邻近点的差值大于某一个阈值,则被认为是离群点。

以上三种方法都可以用来检测离群点,但要根据具体情况选择合适的方法。

同时,需要注意的是,在使用这些方法时,需要先对数据进行预处理,如去除缺失值和异常值,以确保得到的结论准确可靠。

L O F 离 群 点 检 测 算 法

L O F 离 群 点 检 测 算 法

数据挖掘(五)离群点检测5 异常检测方法异常对象被称作离群点。

异常检测也称偏差检测和例外挖掘。

异常检测的方法:(1)基于模型的技术:首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。

(2)基于邻近度的技术:通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。

(3)基于密度的技术:仅当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。

(1)统计方法。

统计学方法是基于模型的方法,即为数据创建一个模型,并且根据对象拟合模型的情况来评估它们。

大部分用于离群点检测的统计学方法都是构建一个概率分布模型,并考虑对象有多大可能符合该模型。

离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。

这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。

异常检测的混合模型方法:对于异常检测,数据用两个分布的混合模型建模,一个分布为普通数据,而另一个为离群点。

聚类和异常检测目标都是估计分布的参数,以最大化数据的总似然(概率)。

聚类时,使用EM算法估计每个概率分布的参数。

然而,这里提供的异常检测技术使用一种更简单的方法。

初始时将所有对象放入普通对象集,而异常对象集为空。

然后,用一个迭代过程将对象从普通集转移到异常集,只要该转移能提高数据的总似然(其实等价于把在正常对象的分布下具有低概率的对象分类为离群点)。

(假设异常对象属于均匀分布)。

异常对象由这样一些对象组成,这些对象在均匀分布下比在正常分布下具有显著较高的概率。

优缺点:(1)有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;(2)对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。

(2)基于邻近度的离群点检测。

一个对象是异常的,如果它远离大部分点。

挖掘建模之离群点检测

挖掘建模之离群点检测
Python数据分析与挖掘实战
第5章 挖掘建模之离群点检测
2020-10-15
目录
1
分类与预测
2
聚类分析
3
关联规则
4
时序模式
5
离群点检测
6
小结
2
离群点检测
l 就餐饮企业而言,经常会碰到这样的问题: • 如何根据客户的消费记录检测是否为异常刷卡消费? • 如何检测是否有异常订单?
l 这一类异点检测方法
x
1
x 2
e 2 2 x R
2
10
离群点检测——基于模型的离群点检测方法
11
离群点检测——基于模型的离群点检测方法
(2) 混合模型的离群点检测 l 混合是一种特殊的统计模型,它使用若干统计分布对数据建模。每一个
分布对应一个簇,而每个分布的参数提供对应簇的描述,通常用中心和 发散描述。 l 混合模型将数据看作从不同的概率分布得到的观测值的集合。概率分布 可以是任何分布,但是通常是多元正态的,因为这种类型的分布不难理 解,容易从数学上进行处理,并且已经证明在许多情况下都能产生好的 结果。这种类型的分布可以对椭圆簇建模。
基于密度 基于聚类
考虑数据集可能存在不同密度区域 这一事实,从基于密度的观点分析 ,离群点是在低密度区域中的对象 。一个对象的离群点得分是该对象 周围密度的逆。
给出了对象是离群点的定量度量,并 且即使数据具有不同的区域也能够很 好的处理;大数据集不适用;参数选 择是困难的。
一种是利用聚类检测离群点的方法 是丢弃远离其他簇的小簇;另一种 更系统的方法,首先聚类所有对象 ,然后评估对象属于簇的程度(离 群点得分)。
基于聚类技术来发现离群点可能是高 度有效的;聚类算法产生的簇的质量 对该算法产生的离群点的质量影响非 常大。

简述离群点检测方法,以及各个方法的优缺点_概述说明

简述离群点检测方法,以及各个方法的优缺点_概述说明

简述离群点检测方法,以及各个方法的优缺点概述说明1. 引言1.1 概述离群点检测是一种数据分析的方法,它旨在识别样本中的异常值。

这些异常值通常与其余的数据点有明显不同的特征或行为。

离群点检测可以应用于各个领域,如金融欺诈检测、网络入侵检测、医学异常检测等。

1.2 文章结构本文将介绍几种常用的离群点检测方法,并对它们的优缺点进行比较。

首先,第二节将详细阐述各种离群点检测方法的原理和过程。

接下来,在第三节和第四节中,我们将分别讨论方法一和方法二的优缺点。

最后,在结论部分,我们将总结各个方法的适用场景和限制。

1.3 目的本文的目标是帮助读者了解不同离群点检测方法之间的差异,并通过对比它们的优缺点来选择合适的方法。

这将有助于研究人员和从业者在实际应用中更好地解决离群点问题,提高数据质量和决策准确性。

2. 离群点检测方法离群点检测是数据挖掘和异常检测领域的一个重要任务,它旨在发现与其他数据点不一致的异常观测值。

在本节中,我们将介绍几种常见的离群点检测方法。

2.1 孤立森林算法(Isolation Forest)孤立森林算法是一种基于树的离群点检测方法。

该方法通过随机选择特征和随机划分来构建一些孤立树,并利用路径长度度量样本的异常值程度。

相比于传统基于距离的方法,孤立森林在处理高维数据上效果更好,并且能够有效地应对大规模数据集。

优点:- 可以有效地处理大规模数据集;- 在处理高维数据时表现较好;- 不受数据分布影响。

缺点:- 对于较小的样本集效果可能不如其他算法;- 对噪声敏感。

2.2 K均值算法(K-means)K均值算法是一种常用的聚类算法,但也可以用于离群点检测。

该方法通过将观测值归类到最近的质心,并计算每个观测值与其所属簇的平均距离,来确定是否为离群点。

如果观测值的平均距离超过了给定的阈值,就将其标记为离群点。

优点:- 简单且易于实现;- 对于有着明显聚类结构的数据集有效。

缺点:- 对初始质心的选择敏感;- 对噪声和孤立样本敏感;- 对数据分布不均匀的情况效果较差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 离群点检测遇到的困难
第一, 在时间序列样本中发现离群点一般比较困难,因为这 些离群点可能会隐藏在趋势、季节性或者其他变化中; 第二, 对于维度为非数值型的样本,在检测过程中需要多加 考虑,比如对维度进行预处理等; 第三, 针对多维数据,离群点的异常特征可能是多维度的组 合,而不是单一维度就能体现的。
2.1.1 不和谐检验
不和谐检验需要检查两个假设:工作假设和备择假设。 工作假设H,假设n个对象的整个数据集来自一个初始的分布 模型F,即:
不和谐检验就是检查对象 关于分布F是否显著地大(或小)。 如果某样本点的某个统计量相对于数据分布的是显著性概率充 分小,那么我们则认为该样本点是不和谐的,工作假设被拒绝, 此时备用假设被采用,它声明该样本点来自于另一个分布模型。 如果某个样本点不符合工作假设,那么我们认为它是离群点。 如果它符合某个备择假设,那么它就是符合这一备择假设分布
阈值=均值±2×标准差 则在[4.5 ,13.7]区间以外的数据都是潜在的离群点, 将最大值取整为13。所以年龄为14的孩子可能是个例外。而且 由均值可知,此地的孩子普遍上学较晚.教育部门以后可据此 作一些政策上的改进。
2.1.2 基于统计分布的离群点检测的优缺点
优点 建立在非常标准的统计学原理之上,当数据和检验的类型十分 充分时,检验十分有效。
与DB (p, d)离群点一样,DS离群点使用同样的距离公式,如绝 对距离或欧式距离,但不根据pct和dmin来判定孤立点,而是 先计算数据对象两两之间的距离,再计算每个对象与其他对象 的距离之和。
设M为用户期望的孤立点个数,则距离之和最大的前M个对象 即为要挖掘的孤立点,这样可消除用户设置参数pct和dmin的 需要。
1) 在样本空间中,至少存在k个对象q,使得d(p,q)<= d(p,o);
2) 在样本空间中,至多存在k-1个对象q,使得 d(p,q)<d(p,o)。
1.2 离群点的来源
一、测量或执行误差所导致的。比如:某人的年龄-999岁, 这就是明显由误操的工资肯定是明显高于其他普通员工的工资,于是 CEO变成为了由于数据本身可变性所导致的离群点。
数据行为不一致的离群点,往往预示着欺诈行为,因此成为执 法者所关注的。此外,在销售中确定极高和极低收入的客户的 销售行为,或者在医疗分析中发现对各种医疗处置的不寻常的 反应。
如果数据集合D中,对象至少有pct部分与对 象o的距离大于dmin,则称对象o是以pct和 dmin为参数的基于距离的离群点。即DB (pct,dmin)离群点。
(2)嵌套—循环算法 嵌套一循环算法和基于索引的算法有相同的计算复杂度,但是 它避免了索引结构的构建,它把内存的缓冲空间分为两半,把 数据集合分为若干个逻辑块。通过精心选择逻辑块装入每个缓 冲区域的顺序,能够提高效率。 (3)基于单元的算法 基于单元的算法中,数据空间被划为边长等于 dmin /( 2 k)的单 元。每个单元有两个层围绕着它。第一层的厚度是一个单元, 而第二层的厚度是 [2 k 1。] 该算法逐个单元地对离群点计数, 而不是逐个对象地进行计数。
第2节 离群点的检测方法
2.1 基于统计分布的离群点检测
基于统计分布的检测方法是为数据集构建一 个概率统计模型(例如正态、泊松、二项式 分布等,其中的参数由数据求得),然后根 据模型采用不和谐检验识别离群点。不和谐 校验过程中需要样本空间数据集的参数知识 (例如假设的数据分布),分布的参数知识 (例如期望和方差)以及期望的离群点数目。
2.2.3 基于距离的离群点检测的优缺点 基于距离的方法与基于统计的方法相比,不需要用户拥有任何 领域知识,与序列异常相比,在概念上更加直观。 三种类型的基于距离的离群检测算法中,都要求用户设置参数 pct和dmin,寻找这些参数的合适设置可能涉及多次的试凑, 复杂度高。
2. 2.4 基于距离和(DS)检测算法:
2.3 基于密度的离群点检测
基于密度的离群 点检测能够检测 出基于距离的异 常算法所不能识 别的一类异常数 据——局部离群 点。
2图.31.2中局,部O1离相群当点于C因2的子密(度LO来F说)是一个局部离群点,这就形成
了基于密度的局部离群点检测的基础。此时,评估的是一个对 象是离群点的程度,这种“离群”程度就是作为对象的局部离 群点因子(LOF),然后计算 。为了定义局部离群点因子,需 要引入以下几个概念: (1)对象p的k距离 对于正整数k,对象p的第k距离可记作k-distance(p)。在样本空间 中,存在对象o,它与对象p之间的距离记作d(p,o)。如果满足 以下两个条件,我们则认为k-distance(p)= d(p,o):
缺点 第一, 绝大多数检验是针对单个属性的,不适合多维度空间, 这也是一个主要的缺点; 第二, 需要预先知道样本空间中数据集的分布特征,而这部 分知识很可能是在检测前无法获得的,就不能确保所有的离群 点被发现。
2.2 基于距离的离群点检测
2.2.1 基于距离的离群点含义 基于距离的离群点检测,也叫基于近邻的离 群点检测。此时离群点就是远离大部分对象 的点,即与数据集中的大多数对象的距离都 大于某个阈值的点。即:
的离群点。
例1 假如我们设儿童上学的具体年龄总体服从正态分布,所 给的数据集是某地区随机选取的开始上学的20名儿童的年龄具 体的年龄特征如下:
年龄={6,7,6,8,9,10,8,11,7,9,12,7,11,8,13,7,8,14,9,12} 那么.相应的统计参数是:
均值=9.1; 标准差=2.3 如果选择数据分布的阈值为:
离群点分析
离群点分析
1 离群点的简数介据处理方法 一

2 离群点的检测方法
2.1 基于统计分布的离群点检测

2.2 基于距离的离群点的检测
2.3 基于密度的离群点的检测 2.4 基于偏差的离群点的检测
第1节 离群点的简介
1.1 离群点的含义
在数据库中包含着少数的数据对象,它们与数据的一般 行为或特征不一致,这些数据对象叫做离群点。
相关文档
最新文档