比例黄金分割、平行线分线段成比例定理
线段的比与比例线段的概念

线段的比与比例线段的概念、比例的性质和黄金分割I 梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分 线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1. 线段的比的定义 在同一单位长度下,两条线段2. 比例线段的定义在四条线段中,如果其中两条线段的_______________________________________ 等于另外两条线段的 _____ ,那么这四条线段叫做 成比例线段,简称 ____________ .在 a : b = c : d 中,a 、d 叫做比例的 ___ , b 、c 叫做比例 的 _____ ,称d 为a 、b 、c 的 _____________ .3. 比例的性质(1)比例的基本性质:如果a : b = c : d ,那么 则b 叫a , c 的比例中项.⑵合份)比性质:若a⑶等比性质:若一b4.黄金分割(1) 黄金分割的意义:如图,点 那么称线段 AB 被点C 黄金分割.其中点C 叫做线段AB 的 做 .(2) 黄金分割的作法【例题讲解】 例1.(1)已知1,厉,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 ___________ .⑵在比例尺为1: n 的某市地图上,规划出一块长 5cm X 2cm 的矩形工业区,则该工业区的实际面积是平方米.例 2.(1)已知 X : y : z = 3 : 4 : 5,①求-—y的值;②若 x +y + z = 6, za(2)已知a 、b 、c 、d 是非零实数,且 --------b c d的值•的比叫做这两条线段的比•特别地,若a : b = b : C,即 ,则C 把线段AB 分成两条线段 AC 和BC,如果 __________________ , ,AC 与AB 的比叫求 X 、y 、z.C bad一d一k ,求 ka b c求x 的值.黄金分割点吗为什么【同步测试】 一、选择题1. 已知一矩形的长 a = 1.35m , (A)9 : 400(B)9 : 402. 下列线段能成比例线段的是( b = 60cm ,贝U a : b 的值为((C)9 : 4(D)90 : 4)(A)1cm,2cm,3cm,4cm (B)1cm, 72 cm,V 2 cm,2cm (C b/2 cm,亦cm, J 3 cm,1cm(D)2cm,5cm,3cm,4cm3. 如果线段a = 4, (A)84. 已知- b 3 (A)- 25. 已知 (A)— 2(B)16 2 2,则3 4 (B)4 y : z = 1 (B)2b = 16,c = 8, (C)24 「 的值为b5 (C)5 :2 : 3,且 (C)3 那么a 、b 、c 的第四比例项d 为( (D)32 3 (D)- 5 2x + y — 3z =— 15,贝U x 的值为( (D)— 3 6. 在比例尺为1 : 38000的南京交通游览图上,玄武湖隧道长约为 7cm ,它的实际长度约为()(A)0.226km (B)2.66km (C)26.6km (D)266km 7. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是 影长是1米,旗杆的影长是 8米,则旗杆的高度是( ) (A)12 米 8. 已知点 1.5 米, (B)11 米 (C)10 米 C 是AB 的黄金分割点(AC >BC , (B)(6 — 2也)cm (D)9 米 若AB = 4cm ,贝U AC 的长为( (C)詰—1)cm AD AE (A)(2A /5 — 2)cm )(D)(3 —75 )cm 9.若D 、E 分别是△ ABC 的边AB 、AC 上的点,且AB =疋,那么下列各式中正确的是 ((3)若a 、b 、c 是非零实数,并满足ab c ,且 xa(a b)(b c)(c a)abc例3.(1 )已知线段AB = a ,在线段 AB 上有一点C,若则点 C 是线段AB 的(A)AD DEDB = BCAB(B)A DAE=A CDB AB(C)Ec = ACAD AE(D)DB = AC10.若k丄空 b 2c a + b+ CM0,k的值为((A)—1 (B)2 (C)1 (D) —二、填空题11.在(5 +x):2中的x= (5—x) : x 中的x=12.若10 813.若a : 3 = b : 4 = c : 5 ,且a + b —c= 6,贝U a=,b= c=14.已知x : y :z= 4 : 5 ,且x+ y+ z= 12,那么x= ,y=z=15.若b16.已知ace,②(x + y) : (y + z)17.若x 2y18.图纸上画出的某个零件的长是是32 mm,如果比例尺是 1 : 20,这个零件的实际长19.如图,已知AB : DB = AC:EC, AD = 15 cm , AB = 40 cm , AC = 28 cm ,贝U AEA20.已知,线段 2 cm, c (2 73) cm, 则线段a、c的比例中项b是三、解答题21.已知x3 0,求下列各式的值:(1)2x 3y 4z⑵5x 3y za22.已知——x0,求x+y+ z 的值.23.若△ ABC 的三内角之比为 1 : 2 : 3,求^ ABC 的三边之比.24.已知 a 、b 、c 为^ ABC 的三边,且 a + b + c = 60cm , a : b : c = 3 : 4 : 5,求^ ABC 的面 积.25.已知线段AB = 10cm , C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考DE = 12 , BC = 15, GH = 4,求 AH .ABCD,取 AB 的中点 P ,连结 PD ,在BA 的延 长线上取点F ,使PF =PD,以AF 为边作正方形 AMEF ,点M 在AD 上(1)求AM 、MD 的长;1、若一c-a bA . 12B . 1C .— 1则k 的值为()D .-或一12AGABC 中,2、如图,△ 匹,且。
图形的相似章末重难点题型(举一反三)(原卷版)

【考点1 比例线段】【方法点拨】对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a:b=c:d(即ad=bc),这四条线段是成比例线段,简称比例线段.【例1】(秋•朝阳区校级月考)下面四组线段中,成比例的是()A.a=2,b=3,c=4,d=5B.a=1,b=2,c=2,d=4C.a=4,b=6,c=5 d=10D.a=√2,b=√3,c=3,d=√2【变式1-1】(•成都模拟)已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm【变式1-2】(•龙岗区校级模拟)若a是2,4,6的第四比例项,则a=;若x是4和16的比例中项,则x=.【变式1-3】(秋•皇姑区期末)已知四条线段a ,3,a +1,4是成比例线段,则a 的值为 . 【考点2 黄金分割】【方法点拨】黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB≈0.618AB ,并且线段AB 的黄金分割点有两个.【例2】(•福建模拟)在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACAB=BC AC,那么点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点,当MN =1时,PM 的长是 . 【变式2-1】(秋•静安区期中)如果点C 是线段AB 的黄金分割点,那么下列线段比的值不可能是√5−12的为( ) A .AC BCB .BC ACC .BCABD .AB BC【变式2-2】(春•相城区期末)如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,若S 1表示AE 为边长的正方形面积,S 2表示以BC 为长,BE 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,则S 3:S 2的值为( )A .√5−12B .√5+12C .3−√52D .3+√52【变式2-3】(•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【考点3 比例的基本性质】【方法点拨】解决此类问题通常利用设k 法即可有效解决,注意方程思想以及分类讨论思想的灵活运用. 【例3】(•徐汇区一模)已知:a :b :c =2:3:5 (1)求代数式3a−b+c 2a+3b−c的值; (2)如果3a ﹣b +c =24,求a ,b ,c 的值.【变式3-1】(秋•永登县期末)已知a 、b 、c 是△ABC 的三边,且满足a+43=b+32=c+84,且a +b +c =12,请你探索△ABC 的形状.【变式3-2】(秋•碑林区校级月考)已知2a b+c+d=2b a+c+d=2c a+b+d=2d a+b+c=k ,求k 值.【变式3-3】(秋•雁江区校级月考)已知a 、b 、c 均为非零的实数,且满足a+b−c c=a−b+c b=−a+b+ca,求(a+b)(b+c)(c+a)abc的值.【考点4 平行线分线段成比例】【方法点拨】平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【例4】(•下城区二模)如图,直线l 1∥l 2∥l 3,AC 分别交l 1,l 2,l 3于点A ,B ,C ;DF 分别交l 1,l 2,l 3于点D ,E ,F ;AC 与DF 交于点O .已知DE =3,EF =6,AB =4. (1)求AC 的长;(2)若BE :CF =1:3,求OB :AB .【变式4-1】(•亳州模拟)如图,已知AB ∥CD ∥EF ,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE =10,那么CE 等于( )A .103B .203C .52D .152【变式4-2】(•哈尔滨模拟)如图,在△ABC 中,AD ∥BC ,点E 在AB 边上,EF ∥BC ,交AC 边于点F ,DE 交AC 边于点G ,则下列结论中错误的是( )A .AE BE=AF CFB .AG GF=DG EGC .AG GF=AE EBD .AEAB=AF AC【变式4-3】(秋•平房区期末)已知,在△ABC 中,点D 为AB 上一点,过点D 作DE ∥BC ,DH ∥AC 分别交AC 、BC 于点E 、H ,点F 是BC 延长线上一点,连接FD 交AC 于点G ,则下列结论中错误的是( )A .AD DB=AE DHB .CFDE=DH CGC .FD FG=EC CGD .CH BC=AE AC【考点5 相似三角形的判定】【方法点拨】相似三角形的判定方法汇总:1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似【例5】(秋•瑞安市期末)如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.【变式5-1】(•农安县一模)在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【变式5-2】(秋•顺义区期末)如图,在正方形网格上有5个三角形(三角形的顶点均在格点上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,与①相似的三角形是()A.②④B.②⑤C.③④D.④⑤【变式5-3】(秋•灌云县期末)如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C 、D 、E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(4,2)B .(6,0)C .(6,3)D .(6,5)【考点6 相似三角形的性质(周长)】【方法点拨】掌握相似三角形周长比等于对应边的比是解题关键.【例6】(•利辛县模拟)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,点E 在AD 上,如果∠ABE =∠C ,AE =2ED ,那么△ABE 与△ADC 的周长比为( )A .1:2B .2:3C .1:4D .4:9【变式6-1】(•海南)如图,在▱ABCD 中,AB =10,AD =15,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,若BG =8,则△CEF 的周长为( )A .16B .17C .24D .25【变式6-2】(•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .42【变式6-3】(•平顶山一模)如图,已知平行四边形ABCD ,点E 在DC 上,DE :EC =2:1,连接AE 交BD 于点F ,则△DEF 与△BAF 的周长之比为( )A .4:9B .1:3C .1:2D .2:3【考点7 相似三角形的性质(面积)】【方法点拨】掌握相似三角形面积比是对应边比的平方的性质是解题关键.【例7】(秋•商河县期末)如图,在△ABC 中,DE ∥BC ,BE 和CD 相交于点F ,且S △EFC =3S △EFD ,则S△ADE:S △ABC 的值为( )A .1:3B .1:8C .1:9D .1:4【变式7-1】(•海珠区一模)如图,在平行四边形ABCD 中,点E 在DA 的延长线上,且AE =13AD ,连接CE 交BD 于点F ,交AB 于点G ,则S △BGC :S 四边形ADCG 的值是( )A .35B .53C .57D .34【变式7-2】(•松桃县模拟)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △DOE 与S △COE 的比是( )A .1:25B .1:5C .1:4D .1:3【变式7-3】(秋•汝阳县期末)已知如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB于点Q,那么S△CPE:S△ABC=.【考点8 相似基本模型(A字型)】【方法点拨】基础模型:A字型(平行)反A字型(不平行)【例8】(•松江区一模)已知:如图,点D,F在△ABC边AC上,点E在边BC上,且DE∥AB,CD2=CF•CA.(1)求证:EF∥BD;(2)如果AC•CF=BC•CE,求证:BD2=DE•BA.【变式8-1】(秋•青羊区校级月考)如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB 的长; (2)求FG 的长.【变式8-2】(•东明县模拟)如图所示,在△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3. (1)求CE 的长.(2)在△ABC 中,点D ,E ,Q 分别是AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .小明认为DP BQ=PE QC,你认为小明的结论正确吗?请说明你的理由.【变式8-3】(•东莞市一模)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,线段AG 分别交线段DE ,BC 于点F ,G ,且AD AC=DF CG.(1)求证:△ADF ∽△ACG ; (2)若AD AC=37,求AF FG的值.【考点9 相似基本模型(X字型)】【方法点拨】基础模型:X字型(平行)反X字型(不平行)【例9】(秋•滨江区期末)如图,AD与BC交于点O,EF过点O,交AB与点E,交CD与点F,BO=1,CO=3,AO=32,DO=92.(1)求证:∠A=∠D.(2)若AE=BE,求证:CF=DF.【变式9-1】(秋•花都区期末)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.【变式9-2】(秋•朔城区期末)如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求GEED的值【变式9-3】(秋•黄浦区期中)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.【考点10 相似基本模型(AX型)】【方法点拨】A字型及X字型两者相结合,通过线段比进行转化.【例10】(•丛台区校级三模)如图,△ABC中,D.E分别是AB、AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【变式10-1】(•江夏区模拟)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果CE BE=23,求FEEG的值.【变式10-2】(秋•五华县期末)已知,如图,在平行四边形ABCD 中,M 是BC 边的中点,E 是边BA 延长线上的一点,连接EM ,分别交线段AD 于点F 、AC 于点G . (1)求证:△AFG ∽△CMG ; (2)求证:GF GM=EF EM.【变式10-3】(•黄浦区一模)如图,已知AB ∥CD ,AC 与BD 相交于点E ,点F 在线段BC 上,AB CD=12,BF CF=12.(1)求证:AB ∥EF ;(2)求S △ABE :S △EBC :S △ECD .【考点11 相似基本模型(作平行线)】【方法点拨】解决此类问题的关键是作平行线去构造相似三角形从而利用相似三角形的性质去解决问题. 基础模型:【例11】(•长丰县一模)如图,△ABC 中,D 为BC 中点,E 为AD 的中点,BE 的延长线交AC 于F ,则AF FC为( )A .1:5B .1:4C .1:3D .1:2【变式11-1】(•金华模拟)如图,D 、E 分别是△ABC 的边BC 、AB 上的点,AD 、CE 相交于点F ,AE =15EB ,BD =13BC ,则CF :EF = .【变式11-2】(秋•福田区校级期末)如图,AD 是△ABC 的中线,点E 是线段AD 上的一点,且AE =13AD ,CE 交AB 于点F .若AF =2cm ,则AB = cm .【变式11-3】(•青白江区模拟)如图,等边三角形ABC 中,AB =3,点D 是CB 延长线上一点,且BD =1,点E 在直线AC 上,当∠BAD =∠CDE 时,AE 的长为 .【考点12 相似基本模型(双垂直型)】【方法点拨】直角三角形被斜边上的高分成两个直角三角形与原三角形相似,即△ACD ∽△ABC ∽△CBD.【例12】(•越城区一模)如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD =6,那么BC :AC 是( )A .3:2B .2:3C .3:√13D .2:√13.【变式12-1】(•张家口模拟)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB=12,△CEF的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( )A .116B .15C .14D .125【变式12-2】(秋•玉田县期末)边长为1的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为316,则CE 的长为 .【变式12-3】(•南岗区二模)如图,AC是矩形ABCD的对角线,过点B作BE⊥AC于点E,BE的延长线交AD于点F,若DF=EF,BC=2,则AF的长为.【考点13 相似基本模型(手拉手型)】【方法点拨】基础模型:旋转放缩变换,图中必有两对相似三角形.【例13】(秋•福田区校级期末)如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√3【变式13-1】(秋•昭平县期末)如图,AB=3,AC=2,BC=4,AE=3,AD=4.5,DE=6,∠BAD=20°,则∠CAE的度数为()A.10°B.20°C.40°D.无法确定【变式13-2】(秋•漳浦县期末)如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB =4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④【变式13-3】(•亳州模拟)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD =AF ,AE •CE =DE •EF . (1)求证:△ADE ∽△ACD ;(2)如果AE •BD =EF •AF ,求证:AB =AC .【考点14 相似基本模型(一线三等角型)】【方法点拨】基础模型:如图1,∠B=∠C=∠EDF 推出△BDE ∽△CFD (一线三等角) 如图2,∠B=∠C=∠ADE 推出△ABD ∽△DCE (一线三等角)如图3,特别地,当D 时BC 中点时:△BDE ∽△DFE ∽△CFD 推出ED 平分∠BEF ,FD 平分∠EFC. 【例14】(•肥东县二模)如图,在△ABC 中,AB =AC =6,D 是AC 中点,E 是BC 上一点,BE =52,∠AED =∠B ,则CE 的长为( )A .152B .223C .365D .649【变式14-1】(秋•资阳区期末)如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,BP =2,CD =1,则△ABC 的边长为( )A .3B .4C .5D .6【变式14-2】(秋•杨浦区校级月考)如图,已知在△ABC 中,AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作∠DEF =∠B ,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.【变式14-3】(•嘉定区二模)已知:△ABC ,AB =AC ,∠BAC =90°,点D 是边BC 的中点,点E 在边AB 上(点E 不与点A 、B 重合),点F 在边AC 上,联结DE 、DF . (1)如图1,当∠EDF =90°时,求证:BE =AF ; (2)如图2,当∠EDF =45°时,求证:DE 2DF 2=BE CF.【考点15 相似三角形中的动点问题】【例15】(春•文登区期末)如图,Rt △ABC ,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿CA 向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一个点随之停止.(1)求经过几秒后,△PCQ 的面积等于△ABC 面积的25?(2)经过几秒,△PCQ 与△ABC 相似?【变式15-1】(秋•渭滨区期末)如图所示,在等腰△ABC 中,AB =AC =10cm ,BC =16cm .点D 由点A 出发沿AB 方向向点B 匀速运动,同时点E 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1cm /s .连接DE ,设运动时间为t (s )(0<t <10),解答下列问题: (1)当t 为何值时,△BDE 的面积为7.5cm 2;(2)在点D ,E 的运动中,是否存在时间t ,使得△BDE 与△ABC 相似?若存在,请求出对应的时间t ;若不存在,请说明理由.【变式15-2】(•晋安区一模)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠B =∠ADE =∠C .(1)证明:△BDA ∽△CED ;(2)若∠B =45°,BC =2,当点D 在BC 上运动时(点D 不与B 、C 重合),且△ADE 是等腰三角形,求此时BD 的长.【考点16 相似三角形中的折叠问题】【例16】(•渝中区校级三模)如图,在△ABC 中,∠ACB =90°,点D 、E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,若BC =12,AB =20,则CD 的长为( )A .193B .254C .258D .6【变式16-1】(•台安县一模)在正方形ABCD 中,点E 为BC 边的中点,把△ABE 沿直线AE 折叠,B 点落在点B ′处,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC .下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠CB ′D =135°;④BB ′=BC ;⑤AB 2=AE •AF .其中正确的个数为( )A .2B .3C .4D .5【变式16-2】(•拱墅区二模)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(填写正确结论的序号)【变式16-3】(春•文登区期末)已知,矩形ABCD,点E是AD上一点,将矩形沿BE折叠,点A恰好落在BD上点F处.(1)如图1,若AB=3,AD=4,求AE的长;(2)如图2,若点F恰好是BD的中点,点M是BD上一点,过点M作MN∥BE交AD于点N,连接EM,若MN平分∠EMD,求证:DN•DE=DM•BM.【考点17 相似三角形的实际应用】【方法点拨】解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题,利用相似及方程思想有效解决.【例17】(•莲湖区二模)数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;【变式17-1】(•山西一模)“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D 处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【变式17-2】(•凉山州)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【考点18 作图—位似变换】【方法点拨】掌握画位似图形的一般步骤为(先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形).【例18】(•长丰县一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2).请解答下列问题:(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的右侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点的坐标;(3)如果点D(a,b)在线段BC上,请直接写出经过(2)的变化后对应点D2的坐标.【变式18-1】(春•文登区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【变式18-2】(春•南关区校级期末)如图,在平面直角坐标系中,给出了格点△ABC(顶点均在正方形网格的格点上),已知点A的坐标为(﹣4,3).(1)画出△ABC关于y轴对称的△A1B1C1.(2)以点O为位似中心,在给定的网格中画△A2B2C2,使△ABC与△A2B2C2位似,且点A2的坐标为(8,﹣6).(3)△ABC与△A2B2C2的位似比是.【变式18-3】(•合肥二模)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.。
相似三角形知识点归纳(全)精选全文完整版

可编辑修改精选全文完整版《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质E BD DB C(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
相似知识总结讲解

相似知识总结知识点一:放缩与相似形1图形的放大或缩小,称为图形的放缩运动。
2、把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴、相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵、相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶、我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷、若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.1. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1 )有关概念1、比:选用同一长度单位量得两条线段。
a、b的长度分别是m n,那么就说这两条线段的比是a:b= m: n (或—m)b n2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,女口a -b d4、比例外项:a在比例一c(或a:b = c:d)中a、d叫做比例外项。
b d5、比例内项:在比例- c(或a:b = c:d)中b、c叫做比例内项。
b d6、第四比例项:在比例a■—(或a:b = c:d)中, d叫a、b、c的第四比例项。
b da b7、比例中项:如果比例中两个比例内项相等,即比例为(或a:b = b:d时,我们把bb d叫做a和d的比例中项。
8、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长a c度的比相等,即一一(或a:b=c: d),那么,这四条线段叫做成比例线段,简称比例线b d段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)4、合比性质:--b d a b~b~ (分子加(减)分母,分母不变)1)定义:在线段AB上,点C把线段AB分成两条线段AC 和BC(AC >BC),如果ACABBCAC,(2 )比例性质1、基本性质:a:bc d ad bc (两外项的积等于两内项积)2、反比性质:a c b d一(把比的前项、后项交换)b d a c3、更比性质(交换比例的内项或外项):a-,(交换内项)c dd -,(交换外项)b ad b•(同时交换内外项)c a注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b a d c发生同样和差变化比例仍成立•如:a cb d a a bc cd 'a b c d5、等比性质: (分子分母分别相加,比值不变.)a c如果_ —b d 邑m(b df nf n 0),a书[7 Ac e m a那么b d f n b注意:(1)、此性质的证明运用了“设k法”,这种方法是有关比例计算,变形中一种常用方法;(2)、应用等比性质时,要考虑到分母是否为零;(3)、可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割即AC2=AB X BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,ACU5 1与AB的比叫做黄金比。
2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。
8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。
9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。
说明:两个论是比积相等的式子叫做等积式。
比例的基本性质及推例式与等积式互化的理论依据。
11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。
13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。
北师大数学九年级上册第四章比例线段

第01讲_比例线段知识图谱比例与比例线段知识精讲一.比例的性质1.比例的基本性质:a cad bc b d =⇔=; 2.反比定理:a c b db d ac =⇔=;3.更比定理:a c a b b d c d =⇔=(或d cb a =);4.合比定理:a c a b c db d b d ++=⇔=; 5.分比定理:a c a b c db d b d --=⇔=; 6.合分比定理:a c a b c db d a bcd ++=⇔=--; 7.等比定理:(0)a c m a c m ab d n b d n b d n b++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+.二.成比例线段1.比例线段:对于四条线段a b c d ,,,,如果其中两条线段的比与另两条线段的比相等,如a cb d=(即::a b c d =),那么这四条线段a b c d ,,,叫做成比例线段,简称比例线段. 2.比例的项:在比例式a cb d =(::a bcd =)中,a d ,称为比例外项,b c ,称为比例内项,d 叫做a b c ,,的第四比例项.三条线段a bb c=(2b ac =)中,b 叫做a 和c 的比例中项.3.黄金分割:如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中510.618AC AB AB -=≈,350.382BC AB AB -=≈,AC 与AB 的比叫做黄金比.三点剖析一.考点:比例与成比例线段二.重难点:比例的性质三.易错点:注意等比定理在运用时的时候一定要对分母为0或不为0进行讨论.比例的基本性质例题1、已知23a b=(0ab≠),下列比例式成立的是()A.32ab= B.32a b= C.23ab= D.32ba=【答案】B【解析】本题考查比例的基本性质,内项积等于外项积。
九上数学-第24章-24.1~24.3-知识点
1九上数学-第24章-24.1~24.3-知识点1、比例的基本性质:①外项之积等于 内项之积 ,(或者说交叉 相乘 的结果会相等), ②第一 比例项和第四 比例项可以互换,第二 比例项和第三 比例项也可以互换; ③左右两边式子的倒数 相等; ④分子比分子 ,等于分母 比分母 。
2、等积式化为比例式,将相乘的因式放在 交叉 位即可。
如果 a:b=b:c ,则称b 是a 和c 的比例中项.3、合比性质:如果d c b a =,那么 d d c b b a ±=± ,等比性质:如果k d c b a ==,那么k d b c a =++ 。
已知一个比例式的值,求其他变形式的值,通常可用 特殊值(赋值) 法, 设K (参数) 法,也可利用 合比 性质和 等比 性质,通过变形得出。
4、黄金分割:线段AB 上有一点P (AP >BP ),如果满足AP BP AB AP = ,则称点P 是线段AB 的黄金分割点,其中AB AP= 215- ,约等于 0.618 ,AB BP= 253- ,约等于_0.382_.一条线段有 2_个黄金分割点。
5、三角形的重心是三角形三条 中线 的交点,重心到顶点的距离是其到对边中点距离的 2 倍,重心与三个顶点的连线段,将三角形的面积 三 等分。
6、三角形一边的平行线性质定理简记:已知A 字形,或者X 形,如果平行,则对应线段成比例.所得两个三角形的三边对应边成比例 ,其逆定理(即判定定理)可简记为如果 对应线段成比例 ,则 平行 .特别要注意的是,A 字形中,底之比 等于腰之比,不能推平行。
7、平行线分线段成比例(井形)定理:两条直线被三条 平行线 所截,截得的 对应线段成比例 。
特殊地,如果一条直线上截得的线段相等,则另一条直线上截得的线段 相等 。
8、已知线段a 、m 、n ,且ax=mn ,求作x ,下面作法正确的是 C )关键点为:①相乘的两因式要放在 交叉位,②求做的线段x 必须放在 远 端(远/近)。
相似三角形、三角函数、反比例函数知识点总结(导学案)
相似三角形知识点总结 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c da b c d a d b c a c ==()a 、d 叫 ,b 、c 叫 ,如果b=c ,那么b 叫做a 、d 的 。
把线段AB 分成两条线段AC 和BC ,使 ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
黄金比(黄金数)是 .例:线段AB=10m,点P是线段AB 的黄金分割点,则AP= .2. 比例性质:(1)基本性质 (2)合比性质 (3)等比性质3、相似比:相似多边形对应边长度的比叫做相似比(比例系数).4、 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===5、平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
BC DE AC AE AB AD ==( A 字型 ) (X 字型)6、 相似三角形的判定:① 对应相等,两个三角形相似 ② 对应成比例且 相等,两三角形相似 ③ 对应成比例,两三角形相似④如果一个直角三角形的 和 与另一个直角三角形的和 对应成比例,那么这两个直角形相似。
⑤ 三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似。
【注:三角形相似是证明乘积式、比例式的有效工具,同时也是三角形中求线段长的重要手段】7、相似三角形的性质:①相似三角形的 相等 ②相似三角形的 成比例③相似三角形 的比、 的比和 的比都等于相似比E B D (3)B CA E④相似三角形比等于相似比,比等于相似比的平方8、位似:如果两个图形不仅是图形,而且每组都交于一点,那么这样的两个图形叫做位似图形.【注:位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点,位似图形是相似图形,但相似图形是位似图形. 位似图形的对应边互相平行或共线位似图形上任意一对对应点到的距离之比等于相似比.】9、画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形.10、在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么对应点的坐标为(,) 【同向位似图形】或 (,) 【反向位似图形】,锐角三角函数1、锐角∠A的三角函数(按右图Rt△ABC填空)∠A的正弦:sin A = ,∠A的余弦:cos A = ,∠A的正切:tan A = ,∠A的余切:cot A =2、锐角三角函数值,都是实数(正、负或者0);3、正弦、余弦值的大小范围:<sin A<;<cos A<4、tan A•cot A = ; tan B•cot B = ;5、sin A =cos(90°- );cos A = sin( -)6、填表7、在Rt △ABC 中,∠C =90゜,AB =c ,BC =a ,AC =b ,1)、三边关系(勾股定理):2)、锐角间的关系:∠ +∠ = 90°3)、边角间的关系:sin A = ; sin B = ;cos A = ; cos B = ; tan A = ; tan B = ;4)、倒数关系: ;5)、商的关系: ;6)、平方和的关系: ;8、图中角 可以看作是点A 的 角也可看作是点B 的 角; 9、(1)坡度(或坡比)是坡面的 高度(h )和 长度(l )的比。
线段的比与比例线段的概念
线段的比与比例线段的概念、比例的性质和黄金分割 Ⅰ梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1.线段的比的定义在同一单位长度下,两条线段 的比叫做这两条线段的比.2.比例线段的定义在四条线段中,如果其中两条线段的 等于另外两条线段的 ,那么这四条线段叫做成比例线段,简称 .在a :b =c :d 中,a 、d 叫做比例的 ,b 、c 叫做比例的 ,称d 为a 、b 、c 的 .3.比例的性质(1)比例的基本性质:如果a ∶b =c ∶d ,那么 .特别地,若a ∶b =b ∶c ,即 ,则b 叫a ,c 的比例中项.(2)合(分)比性质:若dc b a =,则 . (3)等比性质:若nm f e d c b a ==== ,且 ,则 . 4.黄金分割(1)黄金分割的意义:如图,点C 把线段AB 分成两条线段AC 和BC ,如果 ,那么称线段AB 被点C 黄金分割.其中点C 叫做线段AB 的 ,AC 与AB 的比叫做 .(2)黄金分割的作法【例题讲解】例1.(1)已知1,5,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 .(2)在比例尺为1:n 的某市地图上,规划出一块长5cm ×2cm 的矩形工业区,则该工业区的实际面积是 平方米.例2.(1)已知x ∶y ∶z =3∶4∶5,①求z y x +的值;②若x +y +z =6,求x 、y 、z.(2)已知a 、b 、c 、d 是非零实数,且k cb a d d a bcd c a b d c b a =++=++=++=++,求k 的值.(3)若a 、b 、c 是非零实数,并满足a c b a b c b a c c b a ++-=+-=-+,且abc a c c b b a x ))()((+++=,求x 的值.例3.(1)已知线段AB =a ,在线段AB 上有一点C ,若AC =a 253-,则点C 是线段AB 的黄金分割点吗?为什么?【同步测试】一、选择题1.已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b 的值为( )(A)9∶400 (B)9∶40 (C)9∶4 (D)90∶42.下列线段能成比例线段的是( ) (A)1cm,2cm,3cm,4cm (B)1cm,2cm,2cm,2cm (C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm3.如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)324.已知32=b a ,则bb a +的值为( ) (A)23 (B)34 (C)35 (D)53 5.已知x ∶y ∶z =1∶2∶3,且2x +y -3z =-15,则x 的值为( )(A)-2 (B)2 (C)3 (D)-36.在比例尺为1∶38000的南京交通游览图上,玄武湖隧道长约为7cm ,它的实际长度约为( )(A)0.226km (B)2.66km (C)26.6km (D)266km7.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是( )(A)12米 (B)11米 (C)10米 (D)9米8.已知点C 是AB 的黄金分割点(AC >BC),若AB =4cm ,则AC 的长为( ) (A)(2 5 -2)cm (B)(6-2 5 )cm (C)( 5 -1)cm (D)(3- 5 )cm9.若D 、E 分别是ΔABC 的边AB 、AC 上的点,且AD AB =AE AC,那么下列各式中正确的是( ) (A)AD DB =DE BC (B)AB AD =AE AC (C)DB EC =AB AC (D)AD DB =AE AC10.若ba c a cbc b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21 (C)1 (D)- 12 二、填空题11.在x ∶6= (5 +x)∶2 中的x = ;2∶3 = ( 5-x)∶x 中的x = .12.若9810z y x ==, 则 ______=+++zy z y x . 13.若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .14.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = , z = .15.若43===f e d c b a , 则______=++++fd be c a . 16.已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x +y)∶(y +z)= .17.若322=-y y x , 则_____=yx . 18.图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .19.如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE = ;20.已知,线段a = 2 cm ,)32(-=c cm ,则线段a 、c 的比例中项b 是 .三、解答题21.已知0753≠==z y x ,求下列各式的值:(1)y z y x +- (2)z y x z y x +-++35432.22.已知0≠-=-=-za c y cb x b a ,求x +y +z 的值.23.若ΔABC 的三内角之比为1∶2∶3,求ΔABC 的三边之比.24.已知a 、b 、c 为ΔABC 的三边,且a +b +c =60cm ,a ∶b ∶c =3∶4∶5,求ΔABC 的面积.25.已知线段AB =10cm ,C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考1、若k ca b c b a b a c =+=+=+=k ,则k 的值为( ) A .12 B .1 C .-1 D .12或-1 2、如图,△ABC 中,AG DE AH BC =,且DE =12,BC =15,GH =4,求AH .3、 以长为2的定线段AB 为边作正方形ABCD ,取 AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上(1)求AM 、MD 的长;(2)你能说明点M 是线段AD 的黄金分割点吗?。
相似三角形-基本知识点+经典例题
相似三角形-基本知识点+经典例题(完美打印版)知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)假如两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念(1)假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,假如说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,假如b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 现在有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 差不多性质:注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =⇔=. (4)合、分比性质:a c a b c d b d b d ±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. (5)等比性质:假如)0(≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )如此能够减少未知数的个数,这种方法是有关比例运算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b a f d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或 注: ①重要结论:平行于三角形的一边,同时和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.B此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. ③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF, 可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 注:平行线分线段成比例定理的推论: 平行线等分线段定理:两条直线被三条平行线所截,假如在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB2
1
黄金分割及平行线分线段成比例 一、黄金分割 黄金分割
如图,点C把线段AB分成两条线段AC和BC,如果ACBCABAC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点.AC与AB的比叫做黄金比. 黄金比 黄金比值的求法:
因为ACBCABAC,且BC=AB-AC,所以ACACABABAC, 解得AC=AB215,或AC≈0.618AB,即得黄金比215ABAC或0.618 求作黄金分割点 求已知线段AB的黄金分割点。 方法一:如图 1、经过点B作BD⊥AB,且BD= 2、连接AD,在DA上截取DE=DB. 3、在AB上截取AC=AE, 所以点C是线段AB的黄金分割点.
理由:设AB=1,则BD=1/2,AD=25, AC=215,BC=253 所以215ACBCABAC ,所以点C是线段AB的黄金分割点. 方法二:如图 1、在线段AB上作正方形ADCB 2、取AD的中点E,连接EB. 3、延长DA至F,使EF=EB. 4、以线段AF为边作正方形AFGH. 所以点H是线段AB的黄金分割点.
理由:设AB=1,则AE=21,所以EFBE25 →AF215=AH,BH=253 所以215AHHBABAH,所以点H是线段AB的黄金分割点. 方法三:如图 1、以AB为腰作等腰△ABD,使∠A=36° 2、作∠ADB的角平分线交AB于点C 所以,点C是线段AB的黄金分割点. 理由:作图的理由在本章学完就知道,对这一基本图形我们将会非常熟悉,此等腰三角形叫做黄金三角形
例1:如图所示,矩形ABCD是黄金矩形(即BCAB=215≈0.618),如果在其内作正方形CDEF,得到一个小矩形ABFE,试问矩形ABFE是否也是黄金矩形? 、 例2:以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示, (1)求AM,DM的长, (2)试说明AM2=AD·DM (3)根据(2)的结论,你能找出图中的黄金分割点吗?
练习题 一、请你填一填 (1)如图,若点P是AB的黄金分割点,则线段AP、PB、AB满足 关系式________,即AP是________与________的比例中项. (2)黄金矩形的宽与长的比大约为________(精确到0.001). (3)如果线段d是线段a、b、c的第四比例项,其中a=2 cm,b=4 cm,c=5 cm,则d=_____________cm.
(4)已知O点是正方形ABCD的两条对角线的交点,则AO∶AB∶AC=________. 二、认真选一选
1、有以下命题:①如果线段d是线段a,b,c的第四比例项,则有dcba ②如果点C是线段AB的中点,那么AC是AB、BC的比例中项 ③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB与BC的比例中项
④如果点C是线段AB的黄金分割点,AC>BC,且AB=2,则AC=5-1 其中正确的判断有( ) A.1个 B.2 个 C.3个 D.4个 2、已知P为线段AB的黄金分割点,且AP<PB,则( ) A、PBABAP2; B、PBAPAB2; C、ABAPPB2; D、222ABBPAP 3、.已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是( ) A. AM∶BM=AB∶AM B. AM=215AB C. BM=215AB D. AM≈0.618AB A.1个 B.2个 C.3个 D.4个 4、已知P、Q是线段AB的两个黄金分割点,且AB=10cm,则PQ长为( )
A、)15(5 B、)15(5 C、)25(10 D、)53(5
三、好好想一想 1、已知点C是线段AB的黄金分割点AC=555,且AC>BC,求线段AB与BC的长。 2、E、F为线段AB的黄金分割点,已知AB=10 cm,求EF的长度.
3、如果一个矩形ABCD(AB<BC)中,215BCAB≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图1),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.
二、平行线分线段成比例
知识梳理 平行线分线段成比例定理及其推论 1. 平行线分线段成比例定理 如下图,如果1l∥2l∥3l,则BCEFACDF,ABDEACDF,ABACDEDF. 2. 平行线分线段成比例定理的推论: 如图,在三角形中,如果DEBC∥,则ADAEDEABACBC
3. 平行的判定定理:如上图,如果有BCDEACAEABAD,那么DE∥ BC。 专题讲解 专题一、平行线分线段成比例定理及其推论基本应用 【例1】 如图,DEBC∥,且DBAE,若510ABAC,,求AE的长。
_ A _ B_ C _ D _ E_ E_ D _ C _ B
_ A
A E F
B 【例2】 如图,已知////ABEFCD,若ABa,CDb,EFc,求证:111cab. 【巩固】如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD,垂足为F.证明:111ABCDEF.
【巩固】如图,找出ABDS、BEDS、BCDS之间的关系,并证明你的结论. 【例3】 如图,在梯形ABCD中,ABCD∥, 129ABCD,,过对角线交点O作 EFCD∥交ADBC,于EF,,求EF的长。 【巩固】(上海市数学竞赛题)如图,在梯形ABCD中,ADBC∥,ADaBCbEF,,,分别是ADBC,的中点,AF交BE于P,CE交DF于Q,求
PQ的长。 专题二、定理及推论与中点有关的问题 【例4】 (2007年北师大附中期末试题)
(1)如图(1),在ABC中,M是AC的中点,E是AB上一点,且14AEAB,
连接EM并延长,交BC的延长线于D,则BCCD_______. (2)如图(2),已知ABC中,:1:3AEEB,:2:1BDDC,AD与CE相交于F,则EFAFFCFD 的值为( )
A.52 B.1 C.32 【例5】 (2001年河北省中考试题)如图,在ABC中,D为BC边的中点,E为 AC边上的任意一点,BE交AD于点O.
(1)当1A2AEC时,求AOAD的值 。 (2)当11A34AEC、时,求AOAD的值;
(3)试猜想1A1AECn时AOAD的值,并证明你的猜想. 【例6】 (2003年湖北恩施中考题)如图,AD是ABC的中线,点E在AD上,F 是BE延长线与AC的交点.
(1)如果E是AD的中点,求证:12AFFC;
(2)由(1)知,当E是AD中点时,12AFAEFCED成立,若E是AD上任意一点(E与A、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由. 【巩固】(天津市竞赛题)如图,已知ABC中,AD是BC边上的中线,E是AD
上的一点,且BEAC,延长BE交AC于F。求证:AFEF。 【例7】 (宁德市中考题)如图,ABC中,D为BC边的中点,延长AD至E, 延长AB交CE的延长线于P。若2ADDE,求证:3APAB。
EDCB
AO【巩固】(济南市中考题;安徽省中考题)如图, ABC中,BCa,若11DE,分 别是ABAC,的中点,则1112DEa; 若22DE、分别是11DBEC、的中点,则2213224aDEaa; 若33DE、分别是22DBEC、的中点,则33137248DEaaa; ………… 若nnDE、分别是-1-1nnDBEC、的中点,则nnDE_________. 专题三、利用平行线转化比例 【例8】 如图,在四边形ABCD中,AC与BD相交于点O,直线l平行于BD,且 与AB、DC、BC、AD及AC的延长线分别相交于点M、N、R、S和P. 求证:PMPNPRPS
【巩固】已知,如图,四边形ABCD,两组对边延长后交于E、F,对角线BDEF∥,
AC的延长线交EF于G.求证:EGGF. 【例9】 已知:P为ABC的中位线MN上任意一点,BP、CP的延长线分别交对
边AC、AB于D、E,求证:1ADAEDCEB 【例10】 在ABC中,底边BC上的两点E、F把BC三等分,BM是AC上的中 线,AE、AF分别交BM于G、H两点,求证:::5:3:2BGGHHM 【例11】 如图,M、N为ABC边BC上的两点,且满足BMMNNC,一条 平行于AC的直线分别交AB、AM和AN的延长线于点D、E和F. 求证:3EFDE. 【例12】 已知:如图,在梯形ABCD中,//ABCD,M是AB的中点,分别连 接AC、BD、MD、MC,且AC与MD交于点E,DB与MC交于F. (1)求证://EFCD(2)若ABa,CDb,求EF的长
【巩固】如图,在梯形ABCD中,ADBC∥,396ADBCAB,,,4CD,若EFBC∥,且梯形AEFD与梯形EBCF的周长相等,求EF的长。 【例13】 (山东省竞赛题)如图,ABCDY的对角线相交于点O,在AB的延 长线上任取一点E,连接OE交BC于点F,若ABaADcBEb,,,求BF的值。 【例14】 已知等腰直角ABC中,E、D分别为直角边BC、AC上的点,且 CECD,过E、D分别作AE的垂线,交斜边AB于L,K.
求证:BLLK. 【习题1】 如已知DEAB∥,2OAOCOE,求证:ADBC∥. 【习题2】 在ABC中,BDCE,DE的延长线交BC的延长线于P, 求证:ADBPAECP. 【习题3】 如图,在ABC的边AB上取一点D,在AC取一点E,使ADAE,
直线DE和BC的延长线相交于P,求证:BPBDCPCE
EnDn
E3D
3
E2
D
2
E1
D
1
CB
A
PEDCBA