高一模拟试题4

合集下载

浙江省宁波市九校2024届高一上数学期末复习检测模拟试题含解析

浙江省宁波市九校2024届高一上数学期末复习检测模拟试题含解析

故选:A.
3、B 【解析】根据函数的特征,建立不等式求解即可.
【详解】要使
f
x
ln 1 x
1 x
有意义,则
1 1
x x
0 0
x x
1
,所以函数
1
f
x 的定义域是
x, 1 1,1 .
故选:B 4、D
【解析】将 v0
11m
/
s,
g
10m
/
s2 代入 h
v0t
1 2
gt 2
,得出时间
t,再求间隔时间即可.
2
点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数
由 f x +f x 0 恒成立求解,(2)偶函数由 f x f x 0 恒成立求解;二是利用特殊值:奇函数一般由
f 0 0 求解,偶函数一般由 f 1 f 1 0 求解,用特殊法求解参数后,一定要注意验证奇偶性.
用时间为1s .且最高点与最低点间的距离为10cm
(1)求小球相对平衡位置 高度 h (单位: cm )和时间 t (单位: s )之间的函数关系;
(2)小球在 t0s 内经过最高点的次数恰为 50 次,求 t0 的取值范围
19.已知函数 f x ax 2x 1( a 0 ,且 a 1). (1)求 f 0 的值,并证明 f x 不是奇函数;
f
x 在 R 上是增函数,若 a f
log2
1 5

b
f
log2 4.1, c
f
20.8
,则 a , b , c 的大小
关系为___________.
14.在区间[1, 2] 上随机取一个实数 x ,则事件"1 2x 2"发生的概率为_________.

模拟题4答案

模拟题4答案

模拟试题四答案一、单项选择题1.当两种证券完全正相关时,由此所形成的证券组合( B )。

A.能适当地分散风险B.不能分散风险C.证券投资组合风险小于单项证券风险的加权平均。

D.可分散掉全部风险2.已知某证券的β系数等于2,则表明( D )。

A.无风险B.风险很低C.与金融市场所有证券平均风险一致D.比金融市场所有证券平均风险高3.贝他系数反映的是( B )。

A.公司的特有风险B.个别股票的市场风险C.整个股市的平均风险D.公司的经营风险4.某公司股票的β系数为2.0,无风险利率为4%,市场上所有股票的平均报酬率为10%,则该股票的期望报酬率为( C )。

A.8%B.14%C.16%D.20%二、多项选择题1.非系统风险又叫( AC )。

A.可分散风险B.不可分散风险C.公司特有风险D.市场风险2.下列各种风险属于系统性风险的是( ABD )。

A.宏观经济状况的变化B.国家货币政策变化C.公司经营决策失误D.税收法律变化3.导致债券到期收益率不同于票面利率的原因主要有( BC )。

A.平价发行每年付一次利息B.溢价发行C.折价发行D.平价发行到期一次还本付息4.与股票内在价值呈同方向变化的因素有(AB )。

A.年增长率B.年股利C.预期的报酬率D.β系数5..按照资本资产定价模型,影响股票预期收益的因素有( ABC )。

A.无风险收益率B.所有股票的市场平均收益率C.特定股票的β系数D.营业杠杆系数6.下列情况下,会引起证券价格下跌的有( AB )。

A.银行利率上升B.通货膨胀持续降低C.银行利率下降D.通货膨胀持续增长三、判断题1.当股票种类足够多时,几乎可以把所有的系统风险分散掉。

(错)2.β系数反映的是公司特有风险,β系数越大,则公司特有风险越大。

(错)3.证券组合风险的大小,等于组合中各个证券风险的加权平均。

(错)4.通货膨胀情况下,普通股比债券能更好地避免购买力风险。

(对)5.在计算长期证券收益率时,应考虑资金时间价值因素。

2023-2024学年山西省太原市高一下学期分班测评数学质量检测模拟试题(含答案)

2023-2024学年山西省太原市高一下学期分班测评数学质量检测模拟试题(含答案)

2023-2024学年山西省太原市高一下册分班测评数学试题一、单选题1.集合{|15}A x x =-<≤,{}1,2,3,6B =-,则A B ⋂等于()A .{}1,2,3-B .{2,3}C .{0,1,2,3,4}D .(1,5]-【正确答案】B【分析】从集合A 中找出集合B 的元素即可.【详解】由题意发现集合B 中元素2,3A A ∈∈,所以{2,3}A B = ,B 正确.故选:B2.已知函数210()(3)0x x f x f x x ⎧+≥=⎨+<⎩,,,则(1)f -=()A .5B .3C .2D .2-【正确答案】A【分析】分段函数求值,根据自变量的取值范围代相应的对应关系【详解】因为()()21,03,0x x f x f x x ⎧+≥⎪=⎨+<⎪⎩所以()()212215f f -==+=故选:A3.sin15cos 45sin105sin135︒︒+︒︒=()A .12B .2C .2D .1【正确答案】C【分析】利用诱导公式及两角和的正弦公式计算可得.【详解】解:sin15cos 45sin105sin135︒︒︒+︒()()sin15cos 45sin 9015sin 18045︒=︒︒+︒+︒︒-sin15cos 45cos15sin 45=︒︒+︒︒()sin 1545sin 602=︒+︒=︒=.故选:C4.在ABC ∆中,已知D 是边AB 上的一点,若2AD DB = ,13CD CA CB λ=+,则λ=A .13B .23C .12D .34【正确答案】B【详解】试题分析:由已知得,因此,答案选B.向量的运算与性质5.通过实验数据可知,某液体的蒸发速度y (单位:升/小时)与液体所处环境的温度x (单位:C ︒)近似地满足函数关系e ax b y +=(e 为自然对数的底数,a ,b 为常数).若该液体在10C 的蒸发速度是0.2升/小时,在20C ︒的蒸发速度是0.4升/小时,则该液体在30℃的蒸发速度为()A .0.5升/小时B .0.6升/小时C .0.7升/小时D .0.8升/小时【正确答案】D【分析】由题意可得1020e 0.2e 0.4a b a b ++⎧=⎨=⎩,求出,a b ,再将30x =代入即可得解.【详解】由题意得1020e 0.2e 0.4a b a b ++⎧=⎨=⎩,两式相除得10e 2a =,所以e 0.1b =,当30x =时,()33010e e e 0.8a b a b +=⋅=,所以该液体在30C ︒的蒸发速度为0.8升/小时.故选:D.6.已知函数()f x 与()g x 的部分图象如图1(粗线为()f x 部分图象,细线为()g x 部分图象)所示,则图2可能是下列哪个函数的部分图象()A .()()y f g x =B .()()y f x g x =C .()()y g f x =D .()()f x yg x =【正确答案】B【分析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知()f x 为偶函数,()g x 为奇函数,A 选项,()()()()()()f g x f g x f g x -=-=,所以()()y f g x = 2.A2.A 符合图2.A 错.C 选项,()()()()g f x g f x -=,所以()()y g f x = 2.C2.C 符合图2.C 错.D 选项,()00g =,所以()()f x yg x =的定义域不包括02.D2.D2.D 错.B 选项,()()()()f x g x f x g x --=-,所以()()y f x g x =是奇函数,符合图2,所以B 符合.故选:B7.已知函数()()πsin R,04f x x x ωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,将()y f x =的图像向左平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的一个值是()A .π2B .3π8C .π4D .π8【正确答案】D【分析】利用最小正周期公式求出ω,再利用平移变换得到平移后的函数结合正弦函数图像和性质求解即可.【详解】因为()f x 最小正周期为π,所以2ππω=,解得2ω=,所以()πsin 24f x x ⎛⎫=+ ⎪⎝⎭;将()y f x =图像向左平移ϕ个单位长度得()πsin 224f x x ϕϕ⎛⎫+=++ ⎝⎭,因为()f x ϕ+图像关于y 轴对称,所以()ππ2πZ 42k k ϕ+=+∈,解得()82k k Z ππϕ=+∈,则当0k =时,π8ϕ=,其他选项不满足题意,故选:D.8.已知544547,117<<.设7481log 7,log 11,log 243a b c ===,则()A .a b c <<B .b a c <<C .b<c<aD .c a b<<【正确答案】C【分析】先根据指对数的互化结合指数函数的单调性可判断,a b 的大小关系,再利用对数的运算即可判断.【详解】由4log 7a =可得:47a =,由7log 11b =可得:711b =,所以4447a =,44711b =,由544547,117<<可得:45,45a b ><,解得:54a b >>,因为443log 7log 82a =<=,所以5342b a <<<,又因为458135log 243log 34c ===,所以b<c<a ,故选.C 二、多选题9.下列说法正确的有().A .若a b >,则22ac bc >B .若22a bc c >,则a b >C .若a b >,则a c b c ->-D .若a b >,则22a b >【正确答案】BC【分析】AD 可举出反例,BC 可通过不等式基本性质得到求解.【详解】A 选项,当2,1,0a b c ===时,满足a b >,故22ac bc =,故A 错误;B 选项,若22a b c c>,故20c >,不等式两边同乘以2c ,得到a b >,故B 正确;C 选项,若a b >,不等式两边同减去c 得:a c b c ->-,C 正确;D 选项,当0,1a b ==-时,满足a b >,此时22a b <,D 错误.故选:BC10.已知向量a ,b满足1a b == 且|2|b a -= )A .||a b -=B .2a b += C .,60a b 〈〉=︒D .a b⊥ 【正确答案】AD【分析】先对条件|2|b a -= 进行化简得到a b ⋅,再结合选项逐个判定可得答案.【详解】因为|2|b a -= ,所以22445b a b a -⋅+= ;因为1a b == ,所以0a b ⋅= ,所以,90a b =︒,故C 错误,D 正确;因为222||22a b a a b b -=-⋅+= ,所以||a b -= A 正确;因为22222a a b b b a +⋅+=+= ,所以a b += B 错误;故选:AD.11.已知函数()f x 是定义在R 上的偶函数,当0x ≥时()22f x x x =-,则()A .()f x 的最小值为-1B .()f x 在()2,0-上单调递减C .()0f x >的解集为()(),22,∞∞--⋃+D .存在实数x 满足()()20f x f x ++-=【正确答案】ACD【分析】根据题意当0x ≥时()22f x x x =-,作出其图象,然后再由偶函数的性质作出0x <的图象,通过观察函数图象即可判断.【详解】依题意,作出函数()f x 的图象,如图所示:观察图象可得:()f x 的最小值为-1,A 正确;()f x 在(),1-∞-和()0,1上单调递减,B 错误;()0f x >的解集为()(),22,∞∞--⋃+,C 正确;令2x =,则有()()()()020200f f f f ++=+=,D 正确;故选:ACD.12.已知函数()()πcos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是()A .3πϕ=-B .()f x 图象的对称中心为5,0,Z1π2π2k k ⎛⎫+∈ ⎪⎝⎭C .直线π3x =是()f x 图象的一条对称轴D .()y f x =的图象与2y =的图象有3个交点【正确答案】ABD【分析】根据图像求出函数的解析式,然后逐项进行验证即可求解.【详解】由图可知:11π5ππ212122T =-=,所以π,2T ω==,又因为5π5π()cos(2)01212f A ϕ=⨯+=,所以5ππ2π,Z 122k k ϕ⨯+=+∈,也即ππ,Z 3k k ϕ=-∈,因为π2ϕ<,所以π3ϕ=-,则()cos 23π(f x A x =-,又因为2(0)cos()23πf A A -===,所以4A =,则π()4cos(2)3f x x =-,故选项A 正确;令ππ2π,Z 32x k k -=+∈则π5π,Z 212k x k =+Î,所以函数()f x 图象的对称中心为5,0,Z 1π2π2k k ⎛⎫+∈⎪⎝⎭,故选项B 正确;令π2π,Z 3x k k -=∈则ππ,Z k x k =+∈26,所以函数()f x 图象的对称轴为ππ,Z k x k =+∈26,所以直线π3x =不是()f x 图象的一条对称轴,故选项C 错误;在同一坐标系内作出函数()y f x =与2y =的图象,根据函数的图像可知:点7π(,4)4C ,27π7π()66A ,13π(,4)6F ,213π113π(,log )626D ,因为当7π6x =时,2227π7π2log 2log 4466y ==<=,所以函数()y f x =的图象与2y =的图象在7π6x =附近有两个交点,又2213π2log 2log 446>=,所以函数()y f x =的图象与2y =的图象在13π6x =附近没有交点,结合图象可知:函数()y f x =的图象与2y =的图象有3个交点,故选项D 正确,故选.ABD 三、填空题13.函数()51log 21y x =-的定义域是__________.【正确答案】()1,11,2⎛⎫+∞ ⎪⎝⎭【分析】根据题意可得出x 所满足的不等式组,进而可得函数的定义域.【详解】由题意可得()5210log 210x x ->⎧⎨-≠⎩,解得12x >且1x ≠.因此,函数()51log 21y x =-的定义域是()1,11,2⎛⎫+∞ ⎪⎝⎭.故答案为.()1,11,2⎛⎫+∞ ⎪⎝⎭14.若命题“2000R,0x x x a ∃∈+-=”为假命题,则实数a 的取值范围为______.【正确答案】1,4⎛⎫-∞- ⎪⎝⎭【分析】命题“2000R,0x x x a ∃∈+-=”为假命题,等价于“方程20x x a +-=无实根”,则140a ∆=+<,求解即可.【详解】命题“2000R,0x x x a ∃∈+-=”为假命题,等价于“方程20x x a +-=无实根”,则140a ∆=+<,解得14a <-,即实数a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.故1,4⎛⎫-∞- ⎪⎝⎭.15.《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB 和弦AB 所围成的图中阴影部分.若弧田所在圆的半径为1,圆心角为23π,则此弧田的面积为____________.【正确答案】34π-【分析】根据题意所求面积为=AOB S S S - 阴影扇,再根据扇形和三角形面积公式,进行求解即可.【详解】易知AOB 为等腰三角形,腰长为1,底角为6π,AB =所以1sin 26AOB S AB OA π=⋅=弧田的面积即图中阴影部分面积,根据扇形面积及三角形面积可得:所以212=123434AOB S S S ππ-=⋅⋅-=-阴影扇.故答案为.34π-16.已知函数()1223x f x x x m -=-+⋅有唯一零点,则m =__________,()3f x m <的解集为__________.【正确答案】1()0,2【分析】根据函数特征可知将1x -看成整体,即()()21113x f x x m --=-+⋅,再利用换元法根据函数奇偶性和单调性即可求得参数m 的值,进而解出不等式.【详解】令1x t -=,则()213tg t m t -=+⋅,所以()g t 为偶函数;又函数有唯一零点,由对称性可知()001g m -=+=,解得1m =;易知函数()f x 的图象关于1x =对称,且在[)1,+∞上单调递增,()()023f f ==,则不等式()3f x m <即为()3f x <,由对称性可得02x <<.故1,()0,2关键点点睛:本题关键在于将()f x 看成是由22y x x =-和13x y m -=⋅合成的函数,且两个函数都关于1x =对称,再利用换元法判断出函数奇偶性和单调性即可求解.四、解答题17.已知,,a b c是同一平面内的三个向量,其中(1,2)a = .(1)若||b = ,且//a b,求b 的坐标;(2)若c =,且2a c + 与43a c -r r垂直,求a 与c r 的夹角θ.【正确答案】(1)()2,4b =或()2,4b =--.(2)π4θ=.【分析】(1)设(),b x y =,根据两向量平行的坐标关系以及向量的模的计算建立方程组,求解即可;(2)由向量垂直的条件以及向量夹角的计算公式可求得答案.【详解】(1)解:设(),b x y = ,因为//a b ,所以2y x =.①又b = 2220x y +=.②,由①②联立,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,所以()2,4b =或()2,4b =--.(2)解:由()()243a c a c +⊥- ,得()()222438320a c a c a c a c ⋅+-=--⋅=r r r r r r r r,又|||a c r r ,解得5a c ⋅=r r,所以cos [0,π]||||a c a c θθ⋅==∈r r r r ,所以a与c的夹角π4θ=.18.已知22sin 2sin12αα=-(1)求sin 2cos 2αα+的值;(2)已知(0,)απ∈,,2πβπ⎛⎫∈ ⎪⎝⎭,23tan 2tan 1ββ-=,求αβ+的值.【正确答案】(1)15-;(2)74αβπ+=.【分析】(1)由已知求得tan α,再由倍角公式、同角三角函数基本关系式化弦为切求解sin 2cos 2αα+的值;(2)求解一元二次方程可得tan β,由两角和的正切求tan()αβ+,结合角的范围可得αβ+的值.【详解】解:(1)由已知得22sin 2sin1cos 2ααα=-=-,所以1tan 2α=-,22222sin cos cos sin sin 2cos 22sin cos cos 2sin cos ααααααααααα+-+=+=+222tan 1tan 1tan 15ααα+-==-+;(2)由23tan 2tan 1ββ-=,可得1tan 3β=-或tan 1β=,,2πβπ⎛⎫∈ ⎪⎝⎭,1tan 3β∴=-,则11tan tan 23tan()1111tan tan 123αβαβαβ⎛⎫⎛⎫-+- ⎪ ⎪+⎝⎭⎝⎭+===--⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭,因为(0,)απ∈,1tan 02α=-<,则,2παπ⎛⎫∈ ⎪⎝⎭,则,()2αβππ+∈,所以74αβπ+=.19.某游泳馆拟建一座占地面积为200平方米的矩形泳池,其平面图形如图所示,池深1米,四周的池壁造价为400元/米,泳池中间设置一条隔离墙,其造价为100元/米,泳池底面造价为60元/平方米(池壁厚忽略不计),设泳池的长为x 米,写出泳池的总造价()f x ,问泳池的长为多少米时,可使总造价()f x最低,并求出泳池的最低造价.【正确答案】225()80012000,((0,))f x x x x ⎛⎫=⨯++∈+∞ ⎪⎝⎭,泳池的长设计为15米时,可使总造价最低,最低总造价为36000元.【分析】根据矩形面积公式列出函数表达式,结合基本不等式即可求解.【详解】因为泳池的长为x 米,则宽为200x米.则总造价200200()4002210060200((0,))f x x x x x ⎛⎫=⨯+⨯+⨯+⨯∈+∞ ⎪⎝⎭,整理得到225()800120001600151200036000((0,))f x x x x ⎛⎫=⨯++≥⨯+=∈+∞ ⎪⎝⎭,当且仅当15x =时等号成立.故泳池的长设计为15米时,可使总造价最低,最低总造价为36000元.20.在ABC 中,a b c 、、分别为内角、、A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C=+++(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断ABC 的形状.【正确答案】o 120,等腰三角形【详解】试题分析:(1)利用正弦定理,化简得222a b c bc =++,在利用余弦定理,求解1cos 2A =-,即可求解角A 的大小;(2)由(1),利用两角差的正弦函数,化简得0sin sin sin(60)BC B +=+,即可求解sin sin B C +的最大值.试题解析:(1)由已知,根据正弦定理得22(2)(2)a b c b c b c=+++即222a b c bc =++,由余弦定理得2222cos a b c bc A=+-故1cos 2A =-,0120A =(2)由(1)得:001sin sin sin sin(60)sin sin(60)2B C B B B B B +=+-=+=+故当030B =时,sin sin B C +取得最大值1,此时三角形为等腰三角形.正弦定理;余弦定理.21.设函数()f x 是定义在R 上的增函数,对于任意,x y ∈R 都有()()()f x y f x f y +=+.(1)证明()f x 是奇函数;(2)解不等式()211()(3)22f x f x f x ->.【正确答案】(1)证明见解析(2)()()05,-∞+∞,【分析】(1)对,x y 赋值,利用奇函数的定义进行证明;(2)先化简目标式为()2(5)f x f x >,结合函数单调性可求答案.【详解】(1)证明:令0x =,则由()()()f x y f x f y +=+,得()()()0f y f f y =+,即()00f =;令y x =-,则由()()()f x y f x f y +=+,得()()()00f f x f x ==+-,即得()()f x f x -=-,故()f x 是奇函数.(2)()211()(3)22f x f x f x ->,所以()22()(3)f x f x f x ->,则()22()(3)f x f x f x >+,即()2()()(3)f x f x f x f x >++,因为()()()f x y f x f y +=+,所以()()()()35f x f x f x f x ++=,所以()2(5)f x f x >,又因为函数()f x 是增函数,所以25x x >,所以0x <或5x >.所以x 的解集为()()05,-∞+∞,.22.已知函数()()11cos cos cos 222f x x x x x =--+,x R ∈.(1)求()f x 的最小正周期和单调递增区间;(2)求方程()()10f x a a =-<<在[]0,2π内的所有实数根之和.【正确答案】(1)最小正周期为π,增区间为(),63Z k k k ππππ⎡⎤-+∈⎢⎥⎣⎦(2)103π【分析】(1)利用三角恒等化简函数解析式为()2sin 26f x x π⎛⎫=- ⎪⎝⎭,利用正弦型函数的周期公式可求得函数()f x 的最小正周期,解不等式()222Z 262k x k k πππππ-≤-≤+∈可得出函数()f x 的增区间;(2)232,626t x πππ⎡⎤=-∈-⎢⎥⎣⎦,数形结合可知函数y a =与函数2sin y t =在23,66ππ⎡⎤-⎢⎥⎣⎦上的图象有4个交点,利用对称性可求得这4个交点横坐标之和,进而可求得方程()()10f x a a =-<<在[]0,2π内的所有实数根之和.【详解】(1)解:()2111cos 211cos cos cos 2sin 2cos 222222x f x x x x x x x +=--+--+2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,所以,函数()f x 的最小正周期为22T ππ==,由()222Z 262k x k k πππππ-≤-≤+∈得()Z 63k x k k ππππ-≤≤+∈,所以,函数()f x 的单调递增区间为(),63Z k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)解:当02x π≤≤时,232666x πππ-≤-≤,令26t x π=-,作出函数y a =与函数2sin y t =在23,66ππ⎡⎤-⎢⎥⎣⎦上的图象如下图所示:可知函数y a =与函数2sin y t =在23,66ππ⎡⎤-⎢⎥⎣⎦上的图象有4个交点,设这四个交点的横坐标由小到大依次为1t 、2t 、3t 、4t ,设()21,2,3,46i i x t i π-==,故方程()()10f x a a =-<<在[]0,2π内有四个不等的实根1x 、2x 、3x 、4x ,由图可知,点()1,t a 、()2,t a 关于直线2t π=对称,点()3,t a 、()4,t a 关于直线52t π=对称,所以,12341234522222226666t t t t x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯+=-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,解得1234103x x x x π+++=.。

2023-2024学年新疆乌鲁木齐高一上学期期中考试数学质量检测模拟试题(含答案)

2023-2024学年新疆乌鲁木齐高一上学期期中考试数学质量检测模拟试题(含答案)

2023-2024学年乌鲁木齐高一上册期中考试数学试题一、单选题1.若集合2}2{|0A x x x =+-≤,{|24}B x x =∈-<<Z ,则A B = ()A .{}1,0,1-B .{}|21x x -<≤C .{|21}x x -<<D .{}0,1,2【正确答案】A【分析】求出集合A 、B ,根据交集的运算即可求出答案.【详解】解220x x +-≤可得21x -≤≤,所以{|21}A x x =-≤≤.又{}{|24}1,0,1,2,3B x x =∈-<<=-Z ,所以{}1,0,1A B =- 故选:A.2.下列函数中与1y x =-是同一函数的是()A .y =B .21x y x=-C .211x y x -=+D .1y =【正确答案】D【分析】求出已知函数的定义域,然后根据判断两函数是同一函数的标准,即定义域相同,对应法则相同,对各个选项逐个化简判断即可求解.【详解】函数1y x =-的定义域为R ,1y x ==-,所以与已知函数的解析式不同,故A 错误,21x y x=-定义域为()(),00,∞-+∞U ,与已知函数的定义域不同,故B 错误,211x y x -=+定义域为()(),11,-∞--+∞ ,与已知函数的定义域不同,故C 错误,11y x =-=-,且定义域为R ,与已知函数是同一函数,故D 正确,故选:D .3.已知函数21,0()21,0x x x f x x ⎧+≤=⎨+>⎩,若()3f x =,则x 值为()A .1-或1B .C .1或D 或1【正确答案】C【分析】分别根据0x ≤以及0x >时的解析式,列出方程,求解方程即可得出答案.【详解】因为21,0()21,0x x x f x x ⎧+≤=⎨+>⎩.当0x ≤时,2()1f x x =+,解213x +=,可得x =x =);当0x >时,()12xf x =+,解123x +=,可得1x =.综上所述,x =1x =.故选:C .4.设,a b ∈R ,则“lg lg 0a b +=”是“1ab =”的().A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】A【分析】根据对数的运算性质,结合充分性、必要性的定义进行判断即可.【详解】由lg lg 0a b +=lg 01ab ab ⇒=⇒=且0a >且0b >,故选:A .5.三个数20.320.3,log 0.3,2a b c ===之间的大小关系是()A .a c b <<.B .b a c <<C .a b c <<D .b<c<a【正确答案】B【分析】根据指数函数和对数函数的单调性进行求解,即可比较大小.【详解】解:2000.30.31<<= ,则01a <<,22log 0.3log 10<= ,则0b <,0.30221>= ,则1c >,所以b a c <<.故选:B.6.函数3x y -=与()3log y x =-的图象可能是()A .B .C .D .【正确答案】C【分析】分析两个函数的定义域与单调性,可得出合适的选项.【详解】函数133xxy -⎛⎫== ⎪⎝⎭为R 上的减函数,排除AB 选项,函数()3log y x =-的定义域为(),0∞-,内层函数u x =-为减函数,外层函数3log y u =为增函数,故函数()3log y x =-为(),0∞-上的减函数,排除D 选项.故选:C.7.已知0x >,0y >且211x y+=,若228x y m m +<-有解,则实数m 的取值范围时()A .(-∞,1)(9-⋃,)∞+B .(-∞,][19-⋃,)∞+C .(9,1)--D .[9-,1]【正确答案】A【分析】由已知先利用基本不等式求出2x y +的最小值,然后结合不等式的存在性问题与最值关系进行转化,解二次不等式可求.【详解】因为0x >、0y >,且211x y+=,()212222559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22x y y x =且211x y+=,即3x y ==时取等号,此时2x y +取得最小值9,若228x y m m +<-有解,则298m m <-,解得9m >或1m <-,即实数m 的取值范围为(-∞,1)(9-⋃,)∞+.故选:A .8.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可以是()A .0B .1C .2D .3【正确答案】B【分析】根据已知条件及分段函数分段处理的原则,结合一次函数与二次函数的单调性即可求解.【详解】因为当1x ≤-时,函数2()2f x x a =-+为单调递增函数,又函数()f x 在R 上是单调函数,则需满足0124a a a >⎧⎨-+≤-+⎩,解得503a <≤,所以实数a 的范围为50,3⎛⎤⎥⎝⎦,所以满足范围的选项是选项B.故选:B .9.设函数(1)f x -是定义域在R 上的偶函数,且在[)0,∞+上递减,则(1)f -,(π)f ,(3)f -的大小关系是()A .(π)(1)(3)f f f >->-B .(π)(3)(1)f f f >->-C .(π)(3)(1)f f f <-<-D .(π)(1)(3)f f f <-<-【正确答案】C【分析】令()()1g x f x =-,则()()1f x g x =+.由已知可得出()g x 在[)0,∞+上递减,根据()f x 与()g x 的关系,即可得出大小关系.【详解】令()()1g x f x =-,则()()1f x g x =+.且()g x 是定义域在R 上的偶函数,在[)0,∞+上递减.所以()(1)0f g -=,()()ππ1f g =+,()()()322f g g -=-=.由()g x 在[)0,∞+上递减,可得()()()02π1g g g >>+,即()()()13πf f f ->->.故选:C .10.已知函数()8(0,1)2x xa a f x a a --=+>≠在区间[],ab 上的最小值为10-,则函数()f x 在区间[],b a --上的最大值为()A .10B .26C .10-D .与a 有关【正确答案】B【分析】依题意,可得()f x 在区间[],a b ,区间[],b a --上均为单调函数,利用奇函数()(0,1)2x xa a g x a a --=>≠在区间[],ab 上的最小值为18-,可求得()g x 在区间[],b a --上的最大值,进而可得答案.【详解】()8(0,1)2x xa a f x a a --=+>≠ ,x y a =与x y a -=-单调性相同,()f x ∴在区间[],a b ,区间[],b a --上均为单调函数,又()(0,1)2x xa a g x a a --=>≠,满足()()g x g x -=-,即()g x 为奇函数,()8(0,1)2x xa a f x a a --=+>≠ 在区间[],ab 上的最小值为10-,()(0,1)2x xa a g x a a --∴=>≠在区间[],ab 上的最小值为10818--=-,()g x ∴在区间[],b a --上的最大值为18,∴函数()f x 在区间[],b a --上的最大值为18826+=.故选:B11.已知关于x 的不等式20ax bx c ++≥的解集为[]1,2-,则0ax bcx b+≥-的解集为()A .1,12⎛⎫ ⎪⎝⎭B .1,12⎛⎤⎥⎝⎦C .11,2⎛⎫-- ⎪⎝⎭D .11,2⎛⎫- ⎪⎝⎭【正确答案】B【分析】由题意可得1-和2是方程20ax bx c ++=的两个根,且a<0,再利用韦达定理求出2b ac a =-⎧⎨=-⎩,代入所求不等式求解即可.【详解】 关于x 的不等式20ax bx c ++≥的解集为[]1,2-,1∴-和2是方程20ax bx c ++=的两个根,且a<0,∴1212b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得2b a c a =-⎧⎨=-⎩,∴不等式0ax b cx b +≥-可化为02ax aax a -≥-+,即1021x x -≤-,转化为(1)(21)0x x --≤,且210x -≠,解得112x <≤,即不等式0ax b cx b +≥-的解集为1,12⎛⎤⎥⎝⎦.故选:B .12.已知二次函数()()22,R f x mx x n m n =-+∈,若函数()f x 的值域是[0,)+∞,且(1)2f ≤,则222211m n n m +++的取值范围是()A .[]0,12B .[]1,13C .[]2,12D .[]3,13【正确答案】B【分析】根据二次函数的性质可得1mn =,且0m >,又因为f (1)2≤,所以14m m+≤,再结合基本不等式求解即可.【详解】解: 二次函数()()22,R f x mx x n m n =-+∈的值域是[0,)+∞,Δ440mn ∴=-=,解得1mn =,且0m >,又(1)22f m n =-+≤ ,1n m =,14m m∴+≤,()22222622222222222111111111111m n m n m m m m n m n m m m m m m +∴+=+=+==+-+++++++由14m m+≤,0m >,可得221214m m ≤+≤,221113m m ∴≤+≤即222211m n n m +++的取值范围是[]1,13.故选:B .二、填空题13.已知幂函数()()257mf x m m x =-+是R 上的增函数,则m 的值为______.【正确答案】3【分析】根据幂函数的定义与性质,即可求出m 的值.【详解】由题意()()257mf x m m x =-+是幂函数,2571m m ∴-+=,解得2m =或3m =,又()f x 是R 上的增函数,则3m =.故3.本题考查了幂函数的定义与性质的应用问题,解题的关键是得出关于m 的方程和不等式,是基础题.14.函数x m y a n +=+(0a >且)1a ≠恒过定点(1,2)-,m n +=__.【正确答案】4-【分析】由已知,根据指数函数的性质即可求解.【详解】令0x m +=可得x m =-,此时有1y n =+.由题意可得1m -=,12n +=-,所以1m =-,3n =-,所以4m n +=-.故4-.15.若函数4,1()(21)1,1x x f x x a x x ⎧+≥⎪=⎨⎪--<⎩的值域是R ,则实数a 的取值范围是__.【正确答案】3a ≥【分析】先根据基本不等式求出1x ≥时()f x 的取值范围,然后根据a 的范围得出()f x 在(),1-∞上的单调性,求出值域.根据题意,即可得出答案.【详解】因为函数4,1()(21)1,1x x f x x a x x ⎧+≥⎪=⎨⎪--<⎩.当1x ≥时,有4()4f x x x=+≥,当且仅当2x =时等号成立.当210a -=,即12a =时,有4,1()1,1x x f x x x ⎧+≥⎪=⎨⎪-<⎩,不满足题意;当210a -<,即12a <时,()()211f x a x =--在(),1-∞上单调递减,有()()122f x f a >=-,不满足题意;当210a ->,即12a >时,()()211f x a x =--在(),1-∞上单调递增,有()()122f x f a <=-.要使()f x 的值域是R ,则应有224a -≥,所以3a ≥.综上所述,当3a ≥时,()f x 的值域是R .故答案为.3a ≥16.已知函数22,3()9,3x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若存在实数1x ,2x ,3x ,123x x x <<,有123()()()f x f x f x ==,则12322x xx ++的范围是__.【正确答案】(11,13)【分析】画出函数的图象,123()()()===f x f x f x k ,结合图象可得02k <<.然后求解即可推出12224x x +=.进而得出3x 的范围,即可.【详解】作出函数22,3()9,3x x f x x x ⎧-≤⎪=⎨-+>⎪⎩的大致图象如图:当3x ≤时,()222xf x =-=,解得2x =,令123()()()===f x f x f x k .由图象可知,当02k <<时,满足题意.且11<x ,212x <<.又由12()()f x f x =知,122222x x-=-,所以122222x x -=-,即12224x x +=.所以1233242x xx x ++=+.由3092x <-+<,可得379x <<,所以311413x <+<.故(11,13).三、解答题17.已知全集U =R ,集合{}|3231A x R x =∈-≤-≤,集合1|224x B x R ⎧⎫=∈≤<⎨⎬⎩⎭.(1)求A B ⋂,A B ⋃;(2)求()R A B ⋃ð.【正确答案】(1){|01}A B x x ⋂=≤<,{|22}A B x x ⋃=-≤≤(2)(){|2R A B x x ⋃=>ð或1}x <【分析】(1)解一元一次方程、指数不等式求集合A 、B ,再根据集合的交、并运算求A B ⋂,A B ⋃.(2)由集合补运算求R A ð,再由集合并运算求()R A B ⋃ð即可.【详解】(1)由题意得,{|02}A x x =≤≤,{|21}B x x =-≤<∴{|01}A B x x ⋂=≤<,{|22}A B x x ⋃=-≤≤;(2)由(1)知:(){|2R A x x =>ð或0}x <∴(){|2R A B x x ⋃=>ð或1}x <.18.化简求值:(1)()()20.52303274920.008π18925--⎛⎫⎛⎫-+⨯+- ⎪ ⎪⎝⎭⎝⎭;(2)5log 350.5551log 352log log log 145;50---【正确答案】(1)109(2)1【分析】(1)根据指数幂的运算性质可求出结果;(2)根据对数的运算性质可求出结果.【详解】(1)原式=223712123525--⎛⎫⎛⎫-+⨯+ ⎪ ⎪⎝⎭⎝⎭=4722519325-+⨯+=47393-+=109.(2)原式=555log 351log 50log 143++--53550log 214⨯=-5log 1252=-35log 52=-32=-1=.19.(1)当0a >时,解关于x 的不等式2(1)10ax a x -++>;(2)已知0x >,0y >,当1x y +=时,证明:224y x x y +≥,并指出取等号条件.【正确答案】(1)答案见解析;(2)答案见解析.【分析】(1)先解出2(1)10ax a x -++=的两个根,对根的大小分类讨论,再结合一元二次不等式的解法,即可求解;(2)根据“1”的代换,结合基本不等式的解法,即可证明.然后列出等号成立的条件,求解即可.【详解】(1)由已知0a >,解2(1)10ax a x -++=可得1x =或1x a=.当11a=时,即1a =时,不等式的解集为{}|1x x ≠;当11a>时,即01a <<时,不等式的解集为{|1x x <或1x a ⎫>⎬⎭;当11a <时,即1a >时,不等式的解集为1|x x a ⎧<⎨⎩或}1x >.综上所述,当01a <<时,不等式的解集为{|1x x <或1x a ⎫>⎬⎭;当1a =时,不等式的解集为{}|1x x ≠;当1a >时,不等式的解集为1|x x a ⎧<⎨⎩或}1x >.(2)因为0x >,0y >,1x y +=,所以2222()()y x y x x y x y x y +=++2222y x x y x y y x =+++4≥+=,当且仅当22221y xx y y x x y x y ⎧=⎪⎪⎪⎨=⎪⎪+=⎪⎩,即12x y ==时,等号成立.20.党的二十大报告提出“积极稳妥推进碳达峰碳中和”,降低能源消耗,建设资源节约型社会.日常生活中我们使用的LED 灯具就具有节能环保的作用,它环保不含汞,可回收再利用,功率小,高光效,长寿命,有效降低资源消耗.经过市场调查,可知生产某种LED 灯需投入的年固定成本为3万元,每生产x 万件该产品,需另投入变动成本()W x 万元,在年产量不足6万件时,()212W x x x =+,在年产量不小于6万件时,()81737W x x x=+-.每件产品售价为6元.假设该产品每年的销量等于当年的产量.(1)写出年利润()L x (万元)关于年产量x (万件)的函数解析式.(注:年利润=年销售收入-固定成本-变动成本)(2)年产量为多少万件时,年利润最大?最大年利润是多少?【正确答案】(1)()2153,0628134,6x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪--+≥⎪⎩(2)年产量为9万件时,年利润最大,最大年利润是16万元.【分析】(1)根据已知条件及年利润=年销售收入-固定成本-变动成本即可求解;(2)根据分段函数分段处理的原则,利用二次函数的性质及基本不等式,再比较两者的大小即可求解.【详解】(1)由题可知,()()63L x x W x =--,所以()221163,0653,0622818134,663737,6x x x x x x x L x x x x x x x x ⎧⎛⎫⎧--+<<-+-<< ⎪⎪⎪⎪⎝⎭⎪==⎨⎨⎛⎫⎪⎪--+≥--+-≥ ⎪⎪⎪⎩⎝⎭⎩;(2)当06x <<时,()()221119535222L x x x x =-+-=--+,由二次函数的性质知,对称轴为5x =,开口向下,所以当5x =时,()L x 取得最大值为()21191955222--+=;当6x ≥时,()81343416L x x x =--+≤-+=,当且仅当81x x =,即9x =时,等号成立,因为19162>,所以年产量为9万件时,年利润最大,最大年利润是16万元.21.已知函数()20.51x f x a =-+.(1)求()2f ;(2)探究()f x 的单调性,并证明你的结论;(3)若()f x 为奇函数,求满足2()(3)f ax f x <的x 的范围.【正确答案】(1)85a -;(2)单调递减函数,证明见解析;(3)10,3⎛⎫ ⎪⎝⎭.【分析】(1)令2x =即可求解;(2)先求出函数的定义域,然后判断函数的单调性,再根据单调性的定义证明即可;(3)由已知求出1a =,然后根据函数的单调性得出不等式,解出即可求解.【详解】(1)令2x =,则()22820.515f a a =-=-+.(2)因为0.510x +>恒成立,所以函数()f x 的定义域为R ,函数()f x 在R 上为单调递减函数.证明如下:12,x x ∀∈R ,且12x x <,则()()1212220.510.51x x f x f x a a ⎛⎫-=--- ⎪++⎝⎭()()()121220.50.50.510.51x x x x -=++,因为12x x <,所以120.50.5x x >,所以120.50.50x x ->.又()()120.510.510x x ++>,所以12())0(f x f x ->,即12()()f x f x >,所以函数()f x 在R 上为单调递减函数.(3)由已知()220.50.510.51xx x f x a a -⋅-=-=-++,因为()f x 在R 上为奇函数,所以()()f x f x -=-,所以()()220.52200.510.51xx x f x f x a a a ⋅-+=-+-=-=++,所以1a =,所以()210.51x f x =-+.由(2)知,函数为R 上的单调递减函数,则由不等式2()(3)f ax f x <可得,23x x >,解得103x <<,所以不等式的解集为1(0,3.22.设常数a ∈R ,函数2()12x a f x a=+-.(1)当0a ≥时,讨论函数()y f x =的奇偶性,并说明理由;(2)当0a <时,若函数()f x 在区间[],m n ()m n <上的值域是2,2m n ⎡⎤⎣⎦,求实数a 的取值范围.【正确答案】(1)答案见解析;(2)()3-+.【分析】(1)当0a ≥时,结合函数奇偶性的定义,分类讨论函数()y f x =的奇偶性;(2)根据单调性的定义证明()f x 在R 上单调递增.由题意可得出m ,n 是方程2122x xa a +=-的两个不等的实根,整理可转化为2(2)(1)20x x a a -+-=有两个不等的实根,换元得到一元二次方程,求解即可得出答案.【详解】(1)①当0a =时,()1f x =.故对于任意的实数x 都有()()f x f x -=,此时函数()f x 为偶函数;②当1a =时,21()21x x f x +=-,定义域为{}|0x x ≠.因为2112()()2112x xx x f x f x --++-===-+-,所以,此时函数()f x 为奇函数;③当0a ≠且1a ≠时,函数的定义域为2{|log }x x a ≠.所以,此时函数的定义域不关于原点对称,故函数()f x 既不是奇函数又不是偶函数.综上,当0a =时,函数()f x 为偶函数;当1a =时,函数()f x 为奇函数;当0a ≠且1a ≠时,函数()f x 既不是奇函数又不是偶函数.(2)因为2()12x a f x a=+-,当0a <时,函数定义域为R .12x x ∀<,则()121222()1122x x a a f x f x a a -=+----()()211222222x x x x a a a -=⋅--.因为12x x <,所以1222x x <,所以21220x x ->.又0a <,所以120x a ->,220x a ->,所以()12()0f x f x -<,所以()12()f x f x <,所以()f x 在R 上单调递增.则由题意可得2122m m a a +=-,2122n n a a+=-,所以m ,n 是方程2122x x a a +=-的两个不等的实根,即2(2)(1)20x x a a -+-=有两个不等的实根.令20x t =>,则方程2(1)0t a t a -+-=有两个不相等的正实根,故2Δ(1)40100a a a a ⎧=++>⎪+>⎨⎪->⎩,解得30a -+<<,所以,实数a的取值范围为()3-+.。

高一下学期语文期末模拟测试题

高一下学期语文期末模拟测试题

高一下学期语文期末模拟测试题高一下学期语文期末模拟测试题一、根底知识题(每题3分,共15分)1.以下词语中,加点字的注音有误的一项为哪一项( )A.提防(dī) 亲眷(juàn) 珠玑(jī) 鳏寡孤独(ɡuān)B.伺候(shì) 缜密(zhěn) 谂知(shěn) 阿谀逢迎(yū )C.抱怨(mán ) 栖迟(qī) 樯橹(qiáng) 繁文缛节(rù)D.自诩(xǔ) 吝啬(lìn sè ) 纶巾(ɡuān) 刎颈之交(wěn)2.以下各组中有错别字的一项为哪一项( )A.谛听淋漓报应残羹冷炙无可置疑B.枯燥鲁莽国粹晓风残月礼尚往来C.教诲斟酒暮蔼灰飞烟灭舞榭歌台D.料峭骸骨玉簪咄咄逼人良辰好景3.依次填入以下横线处的词语,恰当的一组是( )①写文章要_______搜集和引用第一手材料,决不贪图方便,随意录用第二手、第三手材料。

②老人没有喝茶,点起一支香烟,很有_______地吐了一口烟雾。

③中国人的________、韧性、吃苦耐劳真是举世无双。

A.尽力气派耐心B.尽量气度耐心C.尽量气派耐性D.尽力气度耐性4.以下各句中,加点的成语使用恰当的一项为哪一项( )A.这次班长竞选,他作了充分准备,竞选演说那天,他粉墨登场,受到了同学们的欢迎。

B.集、电脑、相机、信誉卡等功能于一体,手机在生活中的作用被发挥得酣畅淋漓。

C.在2023年南非世界杯6月25日晚22点的“意大利—斯洛伐克”小组对抗赛中,新军斯洛伐克队以3比2战胜了意大利队;意大利队追2球难救卫冕冠军,意大利队2-3负垫底出局,意大利队在观众的眼中真是差强人意。

D.上海世博会开幕式那天晚上,上海城万人空巷,人们兴高采烈走上街头,庆贺上海世博会开幕成功。

5.以下句子中,没有语病的一项为哪一项( )A.以“城市,让生活更美妙”为主题的上海世博会,让肤色不同、语言不同的人们在这样一个宏大的平台上共同寻找答案。

物理化学模拟试题-4

物理化学模拟试题-4

物理化学模拟试题-4模拟试题四一、单项选择题1、对于同一电解质的水溶液,当浓度逐渐增加时,何种性质讲一定随之增加()A.溶液的渗透压B.摩尔导电率C.电解质的例子平均活度系数D.离子的淌度2、苯在一个刚性的绝热容器中燃烧:C6H6(l)则有()A.U0,H0,Q0B.U0,H0,Q0C.U0,H0,Q0D.U0,H0,W015O2(g)6CO2(g)3H2O(g)2,半衰期t1/2,速率常数k13、反应:反应物初始浓度c0,半衰期t1/2,速率常数k2反应Ⅱ:反应物初始浓度c0/22t1k2,下列结论正确的是()/2c0c0k1t1A.Ⅰ为零级,Ⅱ为二级B.Ⅰ为一级,Ⅱ为二级C.Ⅰ为零级,Ⅱ为三级D.Ⅰ为二级,Ⅱ为零级4、某一反应在一定条件下最大转化率为50%,在同样条件下,当加入催化剂后,其转化率将()A.大于50%B.小于50%C.等于50%D.不确定5、已知某反应为一级,则可认定该反应必定是()A.基元反应B.单分子反应C.非基元反应D.上述都有可能6、对于光化反应,下列说法中不正确的是()A.光化反应的速率都与光强有关D.光化反应次级过程的活化能必触及过程的小7、对于热力学是体系状态的单值函数概念,错误的理解是()A.系统处于一定的状态,具有一定的热力学能B.对应于某一状态,热力学能只能有数值不能有两个以上的数值C.状态发生变化,热力学能也一定跟着变化D.对应于一个热力学能值,可以有多个状态8、等压下,反应aAbB═dDeE的rCp=0,则()A.rHm与T无关,rSm与T无关,rGm与T无关B.rHm与T无关,rSm与T无关,rGm与T有关C.rHm与T无关,rSm与T有关,rGm与T有关D.rHm与T无关,rSm与T有关,rGm与T无关9、设反应A()═D(g)+G(g)的rGm/(Jmol1)=-4500+11T/K,要防止反应发生,温度必须()A.高于409KB.低于136KC.高于136K而小于409KD.低于409K10、下列叙述中错误的是()A.水的冰点温度是0oC(273.15K),压力是101325PaB.三相点的温度和压力仅由系统决定,不能任意改变C.水的三相点的温度是273.15K,压力是610.62PaD.水的三相点f0,而冰点f1二、名词解释1、标准摩尔生产焓2、正规溶液3、自由度4、链反应5、离子强度6、接触角三、简答1、热力学第一定律的表达式是什么?各符号的意义。

高一英语模拟试题(含答案)

龙凤家教培训中心暑期补课高一英语考试命题人:xxx时间:120分钟满分:120分一,选择填空(20分)1.A boy with two dogs_____ when the earthquake rocked the city.A. were sleepingB. is asleepC. was sleepingD. are asleep2.Yesterday I was just to go out _____ someone telephoned me.A. whenB. whileC. asD. that3.The pupils hurried to the classroom______ the bell rang.A. untilB. as soon asC. ifD. so that4.-What do you think of my answer to the questions?-Sorry. What’s that? I______ about something el se.A. thoughtB. had thoughtC. am thinkingD. was thinking5.-This dress was last year’s style.-I think it still looks perfect____ it has gone out this year.A. so thatB. even thoughC. as ifD. ever since6.-Where are we going to have dinner this evening?-I’d like to have some ______ in a Japanese restaurant.A. hamburgersB. fish and chipsC. pizzaD. sushi7. -Can you tell me Kitty’s address.-I don’t know, either. But I’ll tell you her address as soon as she ______ to me.A. writesB. writeC. wroteD. written8.-I’m going on a trip to Japan after the exam.-Really? ___________!A. Have a nice timeB. CongratulationsC. OKD. It’s nice of you9. ______ nice holiday the Turners have had!A. WhatB. HowC. What aD. How a10.The driver hurt the girl_____ badly_____ she had to see a doctor.A. so, thatB. either, orC. too, toD. neither, nor. 二,完型填空(40分)Do you like to go camping(野营)? Do you know how to start a fire? If you don’t know howto start a fire, you 1 your food, and can’t sit by the side of a fire, and can’t keep yourselves2 .Long, long ago people 3 how to start fires. They probably started fires from lightning(闪电). But they had to 4 the lightning fire burning, for there was 5 to start it 6 .Later people learned how to start fires. They 7 out hitting two pieces of stone(石头)together could make a spark(火光).The spark could set 8 on fire(set…on fire 使……燃烧). They could start this kind of fire again if it went out(熄火).Then people also learned to make a fire by rubbing(摩擦)two sticks together. They made a hole(洞)on a large stick and put the 9 stick into the hole. And then they turned the stick again and again. 10 a few minutes they started a fire.About two hundred years 11 , people began to 12 matches(火柴). One early match looked 13 the match we use today. The match gave people a 14 way to start fires. Today people are 15 finding new ways to start fires. One of the new ways to start a fire is to use an electric fire starter(电子打火器). Now you can 16 matches and electric fire starter at 17 . Of course an electric fire starter is more expensive than 18 , 19 it is useful.After people learned to make fires, their lives became 20 .() 1. A. can cook B. can eat C. can’t cook D. can’t eat() 2. A. quiet B. full C. hot D. warm() 3. A. have known B. knew C. haven’t known D. didn’t know() 4. A. ask B. keep C. let D. make() 5. A. no way B. no idea C. a way D. an idea() 6. A. only B. again C. more D. either()7. A. took B. found C. looked D. heard()8. A. dry paper B. wet leaves C. wet paper D. dry leaves()9. A. larger B. large C. smaller D. smallest()10. A. After B. Before C. When D. For()11. A. before B. ago C. later D. after()12. A. invented B. do C. make D. used()13. A. up B. different C. the same D. like()14. A. quick and easy B. slow and difficultC. new and interestingD. important and clever()15. A. always B. already C. even D. still()16. A. sell B. buy C. see D. find()17. A. home B. factories C. shops D. towns()18. A. a match B. a box of matchC. a box of matchesD. a box matches()19. A. so B. andC. butD. because()20. A. harder and harder B. easier and easierC. longer and longerD. happier and happier三,阅读理解(57分)(A )Letter ADear Roes,I like your programmes very much. I’m now writing to ask you something about American social customs(社交习惯). My American friend want me to join them in their dinner party. I am very happy and have decided to go, but I’m a little worried about it, too. The social customs in my country are very different from here, so I’m afraid of making mistakes.Should I bring a present, such as sweet or flowers? Should I arrive on time or a little late? At the dinner table, how can I know which fork(叉子)or knife to use? How can I let the family know thatI’m thankful for their kindness?Wang LinLetter BDear Wang Lin,It’s a good idea to bring a small present when you go to a dinner party. Flowers are always nice, or you may bring a bottle of wine(葡萄酒)if you know that your friends drink it.You should arrive on time or five to ten minutes late. Don’t get there early. If you’re going to be more than fifteen minutes late, you should call and tell them.Try to be free at the dinner table. If you don’t know about choosing the right fork or knife, just watch the other people, and follow them. If you still have no idea of what to do. ask the person next to you.If you like the food, say so. Of course, you’ll thank them for the meal and for their kindness. It’s also a good idea to send a thank-you card the day after.() 1. Wang Lin wants to .A. make friends with RoseB. know some social customs for a dinner partyC. make her friends happyD. give her friends a surprise() 2. Rose is possibly .A. a good housewifeB. a TV hostess(主持人)C. a member of the dinner partyD. a friend of Wang Lin’s() 3. If you’re asked to a dinner party but not sure about what to bring as a present. It’s good to bring .A. some fruitsB. a bottle wineC. some flowersD. a knife and fork() 4. Which of the following is NOT proper(适当的)for joining in a dinner party?A. Get there 15 minutes earlierB. Make yourself at homeC. Follow others to use forks and knivesD. Thank your friends for the meal() 5. From the letters we’re learned that it’s very to know something about American social customs.A. difficultB. friendlyC. enjoyableD. helpful( B )In elementary school(小学), Guadalupe Quintanilla was often referred to(认为)as a “slow learner” by her teachers. But she really wasn’t slow at all. She just didn’t understand the language used in the classroom. Her problem was that she didn’t speak English. So she left school after the fourth grade.When Guadalupe grew up, married(结婚), and had children of her own, she knew that her children were clever. But some of their teachers didn’t think so. The children were having trouble in school because they didn’t speak English. Mrs Quintanilla was angry. She didn’t want people tothink that her children were slow learners. So she decided to learn English herself as a way of helping them. She practised English. She looked up words in the dictionary. She asked the school headmaster to let her sit in on classes. It wasn’t easy, but she passed all her exams. She said that many of the other students helped her.Mrs Quintanilla has helped her children with their lessons. Her two sons have won success (成功). One is a teacher, and the other is a doctor. Her youngest child, a daughter, is studying in a university(大学).()1. Guadalupe was called as low learner .A. to make her study harderB. because she wasn’t cleverC. because she stayed at homeD. because she didn’t speak English()2. According to(根据)the story, children who don’t speak English .A. may have more trouble in schoolB. have trouble playing footballC. often write a diaryD. grow up to be teachers()3. Which happened first?A. Guadalupe passed all her exams.B. Guadalupe left school after the fourth grade.C. Guadalupe had three children.D. Her two sons won success.()4. The story is mainly(主要的)about .A. learning to sing and danceB. the problem of slow learningC. going to a universityD. Mrs Quintanilla’s successA. at seven in the morningB. at seven in he eveningC. at ten in the morningD. at ten at night2. The cruise will take__________.A. 30 minutesB. 3 minutesC. 3 hoursD. 3 o’clock3. Mr. King will see______ during the cruise.A. treesB. buildingsC. bridgesD. fantastic city lights4. People can buy tickets________.A. on the ferryB. at Kowloon Public PierC. at Star Ferry PierD. at 123 Canton Road5. Helen wants to have dinner on the ferry with her son, 14 and her daughter, 10, they shouldpay______.A. HK $ 810B. HK$204C. HK$324D. HK$510( D )When you are reading something in English, you may often meet with a new word. What’s the best way to know it?You may look it up in the English-Chinese dictionary. It will tell you a lot about the word: the pronunciation, the Chinese meaning and how to use the word. But how can you know where the word is thousands of English words? How to find it in the dictionary both quickly and correctly? First, all the English words are arranged(安排) in the letter order. In the dictionary you can first see the words beginning with letter A, then B, C, D…. That means, if there are two words “desert”and “pull”, “desert” will be certainly before “pull”. Then if there are two words both beginning with the same letter, you may look at the second letter. Then the third, the fourth… For example, “pardon” is before “plough”, “judge” before “just”, etc.Do you understand how to look up in the dictionary?The dictionary will be your good friend. I hope you’ll use it as often as possible in your English study.1. This passage is about______.A. new words in writingB. different dictionariesC. the best way of readingD. using an English-Chinese dictionary2. In the dictionary you may not find_______.A. how to pronounce the wordB. the spelling of the wordC. who used the word firstD. how to use the word3. In an English-Chinese dictionary, the last word______.A. begins with ZB. begins with AC. is a short oneD. is not often used4. Which group of words is in the right order in an English-Chinese dictionary?A. perhaps, produce, plentyB. straight, subject, surpriseC. century, center, businessD. foreign, entrance, headache5. In the passage the writer tries to tell us that_______.A. we have to use a dictionary when we read something in EnglishB. an English-Chinese dictionary can tell us everything about a wordC. an English-Chinese dictionary can help us a lot in our English studyD. all English-Chinese dictionary are the same四,作文(33分)。

江苏扬州中学2023届高一数学第一学期期末统考模拟试题含解析


②若 PA=PB=PC,则点 O 是△ABC 的外心;
③若∠PAB=∠PAC,∠PBA=∠PBC,则点 O 是△ABC 的内心;
④过点 P 分别做边 AB,BC,AC 的垂线,垂足分别为 E,F,G,若 PE=PF=PG,则点 O 是△ABC 的重心
以上推断正确的个数是( )
A.1
B.2
C.3
D.4
故选:B. 9、D
【解析】
由三视图可知该几何体为有一条侧棱与底面垂直的三棱锥.其体积为
V 1 1 1 2 2 2
ቤተ መጻሕፍቲ ባይዱ32
3
故选 D
10、B
【解析】要使函数 f (x) 在 (, ) 上为减函数,则要求①当 x 1, f (x) (3a 1)x 4a 在区间 (,1) 为减函数,
②当 x 1时, f (x) loga x 在区间[1,)为减函数,③当 x 1 时, (3a 1) 1 4a loga 1 ,综上①②③解不等式
的 对于④,过点 P 分别做边 AB,BC,AC 的垂线,垂足分别为 E,F,G,
若 PE=PF=PG,则 OE=OF=OG,点 O 是△ABC 的内心,④错误 综上,正确的命题个数是 3 故选 C 【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题 3、C 【解析】根据已知条件逐个分析判断
对于 D,因为 A {0,1, 2,3, 4}, B x 0 x 5 ,所以 A B 1, 2,3, 4 ,所以 D 错误,
故选:C A B 1, 2,3, 4
4、C 【解析】根据已知定义,将问题转化为方程
有解,然后逐项进行求解并判断即可.
【详解】根据定义可知:若 有不动点,则
A.令
,所以

山东潍坊一中2023-2024学年高一上学期期末模拟物理试题及答案

山东省潍坊市潍坊一中高一物理期末模拟试题一、单选题1.三个质点A、B、C的运动轨迹如图所示,同时从N点出发,同时到达M点,下列说法中正确的是()A.三个质点任意时刻的速度方向都相同B.三个质点从N点出发到M的任意时刻速度大小都相同C.三个质点从N点到M点的平均速度大小和方向均相同D.三个质点从N点到M点的平均速率相同2.关于力下面的说法错误的是()A.重力的方向不一定指向地心 B.按力的性质可分为重力、弹力、摩擦力C.弹力的方向与施力物体弹性形变方向相反D.轻绳、轻杆上产生的弹力的方向总是在绳、杆的直线上3.用国际单位制验证下列表达式,可能正确的是()4.利用图像法研究物理量之间的关系是常用的一种数学物理方法。

如图所示为物体做直线运动时各物理量之间的关系图像(x、v、a、t分别表示物体的位移、速度、加速度和时间),则下列说法中正确的是()D .丁图中a t −图可求出物体在前2s 内的速度变化量大小为6m/s5.如图所示,光滑圆环竖直固定,A 为最高点,橡皮条上端固定在A 点,下端连接一套在圆环上的轻质小环,小环位于B 点,AB 与竖直方向的夹角为30°。

用光滑轻钩将橡皮条中点缓慢拉至圆上C 点时,钩的拉力大小为F ,方向垂直AB 。

为保持小环静止于B 点,需给小环施加一最小作6.如图甲所示,物块的质量m =1kg ,初速度v 0=10m/s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图像如图乙所示,g =10m/s 2。

下列选项中正确的是 A .恒力F 大小为10NB .在t =1s 时刻,恒力F 反向C .物块与水平面的动摩擦因数为0.5D .0-5m 内物块做加速度减小的减速运动7.如图所示,竖直墙壁与光滑水平地面交于B 点,质量为1m 的光滑半圆柱体紧靠竖直墙壁置于水平地面上,O 为半圆柱体截面所在圆的圆心,质量为2m 且可视为质点的均质小球用长度等于A 、B 两点间距离的细线悬挂于竖直墙壁上的A 点,小球静置于半圆柱体上。

2023-2024学年安徽省滁州市高一上册期末数学质量检测模拟试题合集2套(含答案)

2023-2024学年安徽省滁州市高一上册期末数学质量检测模拟试题一、单选题1.已知全集{}0,1,2,3,4,5U =,集合{}{}3,,3,4A xx x U B =∈=∣,则()U B A ⋃=ð()A .{}0,1,2,3,4B .{}1,2,3,4C .{}0,1,2,3D .{}0,1,2,3,4,5【答案】A【分析】由集合的交并补运算即可求解.【详解】{}0,1,2U A = ð,(){}0,1,2,3,4U A B ∴⋃=ð.故选:A .2.“2,3k k πθπ=+∈Z ”是“sin 2θ=的()A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【答案】B【分析】由sin 2θ=等价于2,3k k πθπ=+∈Z ,或22,3k k πθπ=+∈Z ,再根据充分、必要条件的概念,即可得到结果.【详解】因为sin 2θ=,所以2,3k k πθπ=+∈Z ,或22,3k k πθπ=+∈Z ,所以“2,3k k πθπ=+∈Z ”是“sin 2θ=”的充分而不必要条件.故选:B.3.已知正实数,a b 满足22a b +=,则12a b+的最小值为()A .92B .9C .D 【答案】A【分析】根据22a b +=,将式子化为()11222a b a b ⎛⎫++ ⎪⎝⎭,进而化简,然后结合基本不等式求得答案.【详解】因为,0,22a b a b >+=,所以()12112122192552222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当22b a a b =,即23a b ==时取等号,所以12a b +的最小值为92.故选:A.4.已知函数()f x 是定义域为R 的奇函数,且()()4f x f x =-,当20x -≤<时,()1f x x=,则167(2f 等于()A .-2B .2C .27D .-27【答案】B【分析】根据奇函数性质和()()4f x f x =-条件,求得函数的周期为8,再化简167()2f 即可.【详解】函数()f x 是定义域为R 的奇函数,则有:()()f x f x =--又()()4f x f x =-,则()()4f x f x -=+则有:()()4f x f x =-+可得:()()48f x f x +=-+故()()8f x f x =+,即()f x 的周期为8则有:()()()()1677()80 3.54 3.50.50.5222f f f f f f ⎛⎫=+==-==--= ⎪⎝⎭故选:B5.函数()11,0,20xx f x x ⎧⎛⎫-≤⎪ ⎪=⎝⎭⎨⎪>⎩的图象大致为()A.B.C .D .【答案】B【分析】根据指数函数和幂函数的图象性质即可判断.【详解】根据指数函数和幂函数的图象性质可得B 选项符合.故选:B.6.某工厂产生的废气经过过滤后排放,若过滤过程中剩余的废气污染物数量P (单位:mg L 与时间t (单位:h )之间的关系为0.080e tP P -=,其中0P 为过滤未开始时废气的污染物数量,则污染物减少75%大约需要的时间为()(参考值ln 20.69≈)A .20h B .17hC .14hD .22h【答案】B【分析】认真审题,求得所需时间的代数式是本题关键所在.【详解】由染物数量减少75%,可得0.08001e4tP P -=即0.081e4t-=,则10.08ln4t -=即225125ln ln 225ln 2250.6917.25242t -=-=-=≈⨯=故选:B7.函数()33f x x =+-的奇偶性是A .奇函数B .偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数【答案】A【分析】先求定义域,再化简,最后根据奇偶性定义判断.【详解】因为2330{100110x x x x +-≠∴-≤<<≤-≥或,因此()f x =,而()()f x f x -==-,所以函数()f x 是奇函数,选A.【点睛】本题考查函数奇偶性,考查基本分析判断能力.8.设θcos2θ=-,则2θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】B【分析】求出2θ的终边所在的象限,由已知可得cos02θ≤,即可得出结论.【详解】因为()180360270360Z k k k θ+⋅<<+⋅∈,所以,()90180135180Z 2k k k θ+⋅<<+⋅∈,若k 为奇数,可设()21Z k n n =+∈,则()270360315360Z 2n n k θ+⋅<<+⋅∈,此时2θ为第四象限角;若k 为偶数,可设()2Z k n n =∈,则()90360135360Z 2n n k θ+⋅<<+⋅∈,此时2θ为第二象限角.cos2θ=-,则cos02θ≤,故2θ为第二象限角.故选:B.二、多选题9.设函数()2,y x ax b a b R =++∈,若关于x 的不等式206x ax b x ≤++≤-+的解集为{23xx ≤≤∣或}6x =,则()A .9a =-B .9a =C .18b =-D .18b =【答案】AD【分析】根据不等式的解集可知2,3是对应方程的根,即可求出,a b .【详解】因为6x =满足20660a b ≤++≤,所以3660a b ++=,可得636b a =--,所以20x ax b ++≥可化为26360x ax a +--≥,即()()660x x a -++≥,所以方程20x ax b ++=的两根分别为6,6a --,26x ax b x ++≤-+可化为()()21670x a x a ++-+≤,即()()670x x a -++≤,所以方程26x ax b x ++=-+的两根分别为6,7a --,因为76a a --<--,且不等式206x ax b x ≤++≤-+的解集为{23xx ≤≤∣或}6x =,所以63a --=且72a --=,解得9a =-,则18b =,故选:AD10.已知函数f (x )对,x y R ∀∈都有()()()()++-=f x y f x y f x f y ,且()00f ≠.则下列结论正确的是()A .f (x )为偶函数B .若()0f e =,则()20f e =C .()()222f x f x =-D .若()10f =,则()()4f x f x +=【答案】ACD【分析】根据条件,利用赋值法逐一判断即可.【详解】因为函数f (x )对,x y R ∀∈都有()()()()++-=f x y f x y f x f y ,且()00f ≠.所以令0x y ==可得()()()2000f f f +=,所以()02f =令0x =可得()()()(0)()2f y f y f f y f y +-==,所以()()f y f y =-,所以()f x 为偶函数,故A 正确;令x y e ==可得(2)(0)()()f e f f e f e +=,所以(2)2f e =-,故B 错误;令y x =可得()()222f x f x =-,故C 正确;若()10f =,则(1)(1)()(1)0f x f x f x f ++-==,所以(1)(1)f x f x +=--所以()()()42f x f x f x +=-+=,故D 正确;故选:ACD11.已知)(f x 是定义在R 上的偶函数,且在)(,0∞-上单调递增,则下列结论正确的是()A .)(f x 在)(0,∞+上单调递减B .)(f x 最多有两个零点C .)()(0.52log 3log 5f f >D .若实数a 满足)((2af f >,则12a <【答案】ACD【分析】A.由偶函数在对称区间上的单调性判断;B.举例判断;C.由偶函数得到)()(0.52log 3log 3f f =,再利用单调性判断;D.由偶函数得到(f f=,再利用单调性求解判断;【详解】因为)(f x 是定义在R 上的偶函数,且在)(,0∞-上单调递增,所以)(f x 在)(0,∞+上单调递减,故A 正确;如)(2f x x x =-,令)(20f x x x =-=,得0x =或1x =或=1x -,函数有三个零点,故B 错误;)()(0.52log 3log 3f f =,因为22log 3log 5<,所以)()(22log 3log 5f f >,故C 正确;若实数a 满足)((2af f >,即)(2a f f>,则1222a<=,解得12a <,故D 正确;故选:ACD12.对于函数()sin f x x x =+,给出下列选项其中正确的是()A .()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称B .()f x 的最小正周期为πC .()f x 在区间5ππ,66⎛⎫- ⎪⎝⎭上单调递增D .π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x 的值域为[1,2]【答案】CD【分析】由辅助角公式化简()f x ,利用正弦函数的对称中心可判断A ;由正弦函数的周期公式可判断B ;利用正弦函数的单调性可判断C ;利用正弦函数的性质可判断D ,进而可得正确选项.【详解】()πsin cos 2sin 3f x x x x ⎛⎫==+ ⎪⎝⎭,对于A :令()πππZ 63k k +=∈,可得1Z 2k =∉,故选项A 不正确;对于B :()f x 的最小正周期为2π=2π1,故选项B 不正确;对于C :若5ππ66x -<<,则πππ232x -<+<,所以()f x 在区间5ππ,66⎛⎫- ⎪⎝⎭上单调递增,故选项C 正确;对于D :当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ5π336x ≤+≤,所以1πsin 123x ⎛⎫≤+≤ ⎪⎝⎭,所以π0,2x ⎡⎤∈⎢⎣⎦时,()f x 的值域为[1,2],故选项D 正确;故选:CD.三、填空题13.已知命题:“∃32x -≤≤,320a x +-=”为真命题,则实数a 的取值范围为___________.【答案】503a a ⎧⎫≤≤⎨⎬⎩⎭【分析】求出23x -≤-≤,进而得出2323a -≤-≤,再由不等式性质得出实数a 的取值范围.【详解】解由320a x +-=,得32a x -=-,∵32x -≤≤,∴23x -≤-≤,∴2323a -≤-≤,即503a ≤≤,故实数a 的取值范围是503a a ⎧⎫≤≤⎨⎬⎩⎭.故答案为:503a a ⎧⎫≤≤⎨⎬⎩⎭14.函数22()4f x x =-的定义域为___________.【答案】[)(1,22),⋃+∞【分析】根据被开方数不小于零,分母不为零列式计算即可.【详解】由已知得21040x x -≥⎧⎨-≠⎩,解得1x ≥且2x ≠故函数定义域为[)(1,22),⋃+∞.故答案为:[)(1,22),⋃+∞.15.若函数()sin 2cos(2)f x x x ϕ=+-关于4x π=对称,则常数ϕ的最大负值为________.【答案】2π-【分析】根据函数的对称性,利用(0)()2f f π=,建立方程进行求解即可.【详解】若()f x 关于4x π=对称,则(0)()2f f π=,即sin 0cos sin cos()ϕππϕ+=+-,即cos cos ϕϕ=-,则cos 0ϕ=,则2k πϕπ=+,Z k ∈,当1k =-时,2πϕ=-,故答案为:2π-16.若()21log 21x f x x ⎛⎫=+ ⎪-⎝⎭,则12201920202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭___________.【答案】1010【分析】根据题意,求出(1)f x -的解析式,分析可得()(1)1f x f x +-=,据此计算可得答案.【详解】根据题意,函数()21log 21x f x x ⎛⎫=+ ⎪-⎝⎭,则()221111log log 221x x f x x x -⎛⎫⎛⎫-=+=- ⎪ ⎪-⎝⎭⎝⎭,则有()(1)1f x f x +-=;故122020120202201910101011(()()()()()(()()1010202120212021202120212021202120212021f f f f f f f f f ++⋯⋯+=++++⋯⋯++=;故答案为:1010.四、解答题17.已知集合{|}2A x a x a =≤≤+,集合{|1B x x =<-或5}x >,全集U =R .(1)若=1a ,求()U A B ⋃ð;(2)若A ⫋B ,求实数a 的取值范围.【答案】(1)()(),13,-∞⋃+∞(2)()(),35,-∞-⋃+∞【分析】(1)由题知{}13|A x x =≤≤,再根据集合运算求解即可;(2)根据题意得21a +<-或5a >,再解不等式即可得答案.【详解】(1)解:当=1a 时,{}13|A x x =≤≤所以()(),13,U A =-∞⋃+∞ð,又{|1B x x =<-或5}x >,所以()()(),13,U A B ⋃=-∞⋃+∞ð.(2)解:因为{|}2A x a x a =≤≤+,{|1B x x =<-或5}x >,A ⫋B ,所以21a +<-或5a >,解得3a <-或5a >,所以实数a 的取值范围是()(),35,-∞-⋃+∞.18.已知tan 2θ=-,且,2πθπ⎛⎫∈ ⎪⎝⎭.(Ⅰ)求sin θ,cos θ的值;(Ⅱ)求()()2sin sin 2cos 2cos 2ππθθππθθ⎛⎫-+- ⎪⎝⎭⎛⎫-++ ⎪⎝⎭的值.【答案】(Ⅰ)cos θ=,sin θ=(Ⅱ)-1.【分析】(Ⅰ)由同角三角函数的平方关系和商数关系求得21cos 5θ=.再根据角的范围可求得答案;(Ⅱ)根据同角三角函数的商数关系化为关于正切的关系式,代入可得答案.【详解】(Ⅰ)由tan 2θ=-,得sin 2cos θθ=-.∵22sin cos 1θθ+=,∴21cos 5θ=.∵,2πθπ⎛⎫∈ ⎪⎝⎭,∴sin 0θ>,cos 0θ<.∴cos θ=,sin θ=(Ⅱ)原式2sin cos 2tan 1cos sin 1tan θθθθθθ++==--∵tan 2θ=-,∴原式41112-+==-+.19.已知二次函数()2f x x bx c =++,且()()31f f -=,()00=f .(1)求函数()f x 的解析式;(2)若函数()()()422g x f x a x =-++,[]1,2x ∈,求函数()g x 的最小值.【答案】(1)2()2f x x x =+;(2)2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩.【分析】(1)由给定条件列式求出b ,c 即可得解;(2)求出二次函数()g x ,再分类讨论求出()g x 在[]1,2上的最小值即可.【详解】(1)由(3)(1),(0)0f f f -==,则(0)0f c ==,又931b b -=+,解得2b =,∴函数()f x 的解析式为2()2f x x x =+.(2)由(1)知,2()2(1)2g x x a x =-++,其对称轴1x a =+,而[]1,2x ∈,当11a +≤,即0a ≤时,()g x 在[]1,2上单调递增,min ()(1)12g x g a ==-,当12a +≥,即1a ≥时,()g x 在[]1,2上单调递减,min ()(2)24g x g a ==-,当01a <<时,2min ()(1)21g x g a a a =+=--+,∴2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩.20.已知幂函数()21()2m f x m m x +=-为偶函数,()()(0,)k g x f x x k x=+≠∈R .(1)求()y f x =的解析式;(2)判断函数()y g x =的奇偶性,并说明理由;(3)若函数()y g x =在[1,)+∞上是严格增函数,求k 的取值范围.【答案】(1)2()f x x =;(2)当0k =时,()g x 为偶函数,当0k ≠时,()g x 为非奇非偶函数;(3)2k ≤.【分析】(1)由条件可得221m m -=,解出m 的值,然后验证即可;(2)2()kg x x x=+,分0k =、0k ≠两种情况讨论即可;(3)当121x x >≥时,()()12g x g x >,然后化简可得()1212k x x x x <+,然后可得答案.【详解】(1)因为()21()2m f x m m x +=-为偶函数,所以221m m -=解得1m =或12m =-当1m =时,2()f x x =为偶函数,满足题意当12m =-时,12()f x x =是非奇非偶函数,不满足题意所以2()f x x =(2)因为2()k g x x x=+,所以2()k g x x x -=-所以当0k =时,()()g x g x =-,()g x 为偶函数,当0k ≠时,()()(),()g x g x g x g x ≠-≠--,()g x 为非奇非偶函数,(3)因为函数()y g x =在[1,)+∞上是严格增函数,所以当121x x >≥时,()()12g x g x >,即221212k k x x x x +>+所以221221k kx x x x ->-,()()()12121212k x x x x x x x x -+->因为120x x ->,所以1212kx x x x +>,所以()1212k x x x x <+因为121x x >≥,所以()12122x x x x +>,所以2k ≤21.已知函数()()sin 0,0,,22f x A x A x R ππωϕωϕ⎛⎫=+>>-<<∈ ⎪⎝⎭的部分图象如下图所示.(1)求函数()y f x =的解析式,并求函数()f x 单调递增区间;(2)将()y f x =图象上所有点纵坐标不变,横坐标变为原来的()0t t >倍,得到()y g x =的图象.若4π为函数()y g x =的一个零点,求t 的最大值.【答案】(1)()2sin()6f x x π=+,2(2,2)33k k ππππ-+(k ∈Z )(2)310【分析】(1)由图象先确定A 的值,再确定周期,进而求得ω的值,利用特殊点坐标代入解析式中,求得ϕ,可得解析式,最后求得单调区间;(2)根据函数图象变换的规律先求得()y g x =的表达式,再利用4π为函数()y g x =的一个零点得到3122t k =-,进而求得结果.【详解】(1)由图象知,2A =.又54632T πππ=-=,0ω>,22T ππω==,1ω∴=,()2sin()f x x ϕ∴=+,将点(,2)3π代入()2sin()f x x ϕ=+,22sin()3πϕ∴=+,2()32k k Z ππϕπ∴+=+∈,2()6k k Z πϕπ∴=+∈,又22ππϕ-<< ,6πϕ=,则()2sin(6f x x π=+.…由22()262k x k k Z πππππ-<+<+∈得222()33k x k k Z ππππ-<<+∈,所以函数()2sin()6f x x π=+的单调递增区间为2(2,2)33k k ππππ-+(k ∈Z ).(2)()2sin()6f x x π=+,1()2sin()6g x x t π∴=+,又4π为函数()y g x =的一个零点,()04g π∴=,1()2sin()0446g t πππ∴=⨯+=,146k t πππ∴⨯+=,3,122t k Z k =∈-,故k =1时,t 取最大值310.22.已知函数2()sin 2sin 22cos 66f x x x x ππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的单调减区间;(2)求证:()f x 的图象关于直线6x π=对称.【答案】(1)2,63k k ππππ⎡⎤++⎢⎥⎣⎦,Zk ∈(2)证明见解析【分析】(1)利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后利用两角和与差得正弦函数公式化为一个角的正弦函数,根据正弦函数的单调减区间为[22k ππ+,32]2k ππ+,Z k ∈,求出x 的范围即可;(2)要证()f x 的图象关于直线6x π=对称,即证()3f x f x π⎛⎫-= ⎪⎝⎭.【详解】(1)2()sin 2sin 22cos 2cos 2166f x x x x x x ππ⎛⎫⎛⎫=++-+=++ ⎪ ⎪⎝⎭⎝⎭2sin 216x π⎛⎫=++ ⎪⎝⎭,由3222262k x k πππππ+++,Z k ∈得:263k x k ππππ++,Z k ∈,()f x ∴的单调减区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)证明:∵()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,∴52sin 212sin 213366f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-++=-+ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,()2sin 212sin 2166x x f x πππ⎛⎫⎛⎫=--+=++= ⎪ ⎪⎝⎭⎝⎭,∴()3f x f x π⎛⎫-= ⎪⎝⎭,∴()f x 的图象关于直线6x π=对称.2023-2024学年安徽省滁州市高一上册期末数学质量检测模拟试题一、单选题1.定义集合运算:{}*,,A B z z xy x A B y A B ==∈⋂∈⋃∣.若集合{}{}1,2,3,0,1,2A B ==,则()*A B A =ð()A .{}0B .{}0,4C .{}0,6D .{}0,4,6【答案】D【分析】先由题意求出,A B A B 和*A B ,然后再求()*A B A ð【详解】因为{}{}1,2,3,0,1,2A B ==,所以{}{}1,2,0,1,2,3A B A B == ,所以当,x A B y A B ∈⋂∈⋃时,0,1,2,3,4,6z =,所以{}*0,1,2,3,4,6A B =,所以()*A B A =ð{}0,4,6,故选:D 2.“06x π<<”是“1sin 2x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】A【分析】根据充分必要条件的定义判断.【详解】06x π<<时,1sin 2x <成立,是充分的,但0x =时,1sin 02x =<,不满足6x π<<,必要性不满足,因此是充分不必要条件.故选:A .3.命题“2R,11x x ∀∈+≥”的否定为()A .2R,11x x ∃∈+≤B .2R,11x x ∀∈+≤C .2R,11x x ∃∈+<D .2R,11x x ∀∈+<【答案】C【分析】根据全称命题的否定是存在量词命题即可求解.【详解】由于全称命题的否定是存在量词命题,所以命题“2R,11x x ∀∈+≥”的否定为“2R,11x x ∃∈+<”.故选:C.4.若1x ≥,则54x x+的最小值为()A B .C .94D .5【答案】A【分析】根据基本不等式即可直接求出54x x+的最小值.【详解】因为1x ≥,所以54x x +≥当且仅当54x x =,即2x =时等号成立.所以54x x +故选:A.5.已知函数()f x 是定义在R 上的奇函数,且满足(2)()f x f x +=-,则(2022)f =()A .2022-B .0C .1D .2022【答案】B【分析】求出函数的周期,利用周期和(0)0f =可得答案.【详解】因为(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,所以()f x 的周期为4,函数()f x 是定义在R 上的奇函数,所以(0)0f =,所以(2)(0)0f f =-=,(2022)(50542)(2)0f f f =⨯+==.故选:B.6.函数22||()1=+x f x x 的图象大致为()A .B .C .D .【答案】A【分析】分析函数()f x 的奇偶性及又0x >时函数值的正负即可判断.【详解】解:因为()f x 定义域为R ,且()222||2||()()11x x f x f x x x --===+-+,所以()f x 为偶函数,其图象关于y 轴对称,故排除选项B 、D ;又0x >时,()0f x >,排除选项C ,故选项A 正确.故选:A.7.给出幂函数:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )f (x )=1x.其中满足条件1212()()22x x f x f x f ++⎛⎫>⎪⎝⎭(x 1>x 2>0)的函数的个数是()A .1个B .2个C .3个D .4个【答案】A【分析】条件1212()()22x xf x f x f ++⎛⎫>⎪⎝⎭(x 1>x 2>0)表明函数应是上凸函数,结合幂函数的图象可作答.【详解】①函数f (x )=x 的图象是一条直线,故当x 1>x 2>0时,12()2x xf +=12()()2f x f x +;②函数f (x )=x 2的图象是凹形曲线,故当x 1>x 2>0时,1212()()()22x x f x f x f ++<;③在第一象限,函数f (x )=x 3的图象是凹形曲线,故当x 1>x 2>0时,1212()()(22x x f x f x f ++<;④函数f (x )x 1>x 2>0时,1212()()()22x x f x f x f ++>;⑤在第一象限,函数f (x )=1x的图象是一条凹形曲线,故当x 1>x 2>0时,1212()()(22x x f x f x f ++<.故仅有函数f (x )x 1>x 2>0时,1212()()(22x x f x f x f ++>,故选:A.8.已知函数()()()2101102x x x f x x ⎧-≥⎪=⎨⎛⎫-+<⎪ ⎪⎝⎭⎩,若[]2,2x t t ∀∈-+都有()()220f x f t x +-≥成立,则实数t 的取值范围是()A .1t ≥或2t ≤-B .1t ≥C .2t ≥或1t ≤-D .2t ≥【答案】D【分析】根据函数的解析式可得()f x 单调性和奇偶性,再利用性质可得答案.【详解】当0x >时,则0x -<,()()11212-⎛⎫-=-+=-+=- ⎪⎝⎭xx f x f x ,当0x <时,则0x ->,()()12112-⎛⎫-=-=-=- ⎪⎝⎭xxf x f x ,()00210=-=f ,所以()f x 为奇函数,因为0x >时()21xf x =-为增函数,又()f x 为奇函数,()f x 为x R ∈上单调递增函数,()f x的图象如下,由()()220f x f t x +-≥得()()()2222≥--=-+f x f t x f t x ,所以22≥-+x t x ,即2≤x t 在[]2,2x t t ∀∈-+都成立,即2222⎧+≤⎨-<+⎩t t t t ,解得2t ≥.故选:D.二、多选题9.已知函数()3f x x =-,下述正确的是()A .若()21f x ->,则1x <B .若()()2g x f x ax bx =++为奇函数,则0a =C .函数()()31g x f x x =+-在区间()1,2-内至少有两个不同的零点D .函数()()23g x f x x =+图象的一个对称中心为()1,0【答案】ABC【分析】由()32(2)1f x x -=-->,可得到A 正确;由()g x 为奇函数,列出方程,求得0a =,可得出B 正确;由()()()()110,120g g g g -<<,可判定C 正确;由()()02g g ≠-,可判定D 错误.【详解】由题意,函数()3f x x =-,对于A 中,由()32(2)1f x x -=-->,即3(2)1x -<-,可得21x -<-,解得1x <,所以A 正确;对于B 中,由()32g x x ax bx =-++,若()g x 为奇函数,又由()32g x x ax bx -=+-,则3232()x ax bx x ax bx +-=--++,即3232x ax bx x ax bx +-=--,所以0a =,所以B 正确;对于C 中,由()()33131g x f x x x x =+-=-+-,可得()()()13,12,23g g g -=-==-,即()()()()110,120g g g g -<<,所以函数()()31g x f x x =+-在区间()1,2-内至少有两个不同的零点,所以C 正确;对于D 中,由函数()()23233g x f x x x x =+-=+,可得()00g =,()24g =,所以()()02g g ≠-,所以()1,0不是函数()()23g x f x x =+的对称中心,所以D 错误.故选:ABC.10.已知定义在R 上的函数()f x 满足()(4)f x f x =--,且(1)(1)f x f x +=-,则()A .()f x 为奇函数B .()f x 的图象关于2x =对称C .(2)f x +为偶函数D .()f x 是周期为4的函数【答案】AD【分析】对于A :利用()0,0为()f x 的对称中心,利用奇函数的定义判断出()f x 为奇函数;对于B :判断出()f x 的图象不关于2x =对称;对于C :利用奇函数的定义判断出(2)f x +为奇函数,即可判断;对于D :利用周期函数的定义即可判断出()f x 是周期为4的函数.【详解】因为(1)(1)f x f x +=-,所以()f x 关于x =1对称.因为()(4)f x f x =--,所以(2)(2)f x f x +=--,所以()f x 关于()2,0对称.对于A :由点(2,0)关于x =1的对称点为()0,0,()2,0为()f x 的对称中心,且()f x 关于x =1对称,所以()0,0为()f x 的对称中心,即()()f x f x -=-,所以()f x 为奇函数.故A 正确;对于B :因为()(4)f x f x =--,所以(2)(2)f x f x +=--,所以()f x 的图象不关于2x =对称.故B 错误;对于C :因为()(4)f x f x =--,令x +2代换x ,得到(2)(2)f x f x +=--①.对于(1)(1)f x f x +=-,令x +1代换x ,得到(2)()f x f x +=-②.由①②得:()(2)f x f x -=--,令-x 代换x ,得到()(2)f x f x =-+,与②结合得:(2)()()f x f x f x +=-=-,所以(2)f x +为奇函数.故C 错误;对于D :对于(1)(1)f x f x +=-,令x -1代换x ,得到()(2)f x f x =-,又因为()(4)f x f x =--,所以(2)(4)f x f x -=--,令2-x 代换x ,得到()(2)f x f x =-+,令x -2代换x ,得到(2)()f x f x -=-,所以(2)(2)f x f x -=+,令x +2代换x ,得到()(4)f x f x =+,即()f x 是周期为4的函数.故D 正确.故选:AD11.已知0απ<<,且sin cos m αα+=,则下列说法正确的是()A .当0m =时,34απ=B .当01m <<时,(,)2παπ∈C .当1m =时,33sin cos 1αα+=D .当56πα=时,0m <【答案】ABCD【分析】根据三角函数的基本关系式,结合选项,逐项判定,即可求解.【详解】A 中,当0m =时,可得sin cos 0αα+=,即tan 1α=-,所以34απ=,所以A 正确;B 中,当01m <<时,由22(sin cos )12sin cos m αααα+=+=,可得sin cos 0αα<,因为0απ<<,可得sin 0α>,所以cos 0α<,所以(,)2παπ∈,所以B 正确;C 中,当1m =时,可得2(sin cos )12sin cos 1αααα+=+=,可得sin cos 0αα=,因为0απ<<,可得sin 0α>,所以sin 1,cos 0αα==,可得33sin cos 1αα+=,所以C 正确;D 中,当56πα=,可得551sin cos 06622ππ+=-,即0m <,所以D 正确.故选:ABCD.12.已知函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭,则4f x π⎛⎫+ ⎪⎝⎭()A .是奇函数B .是偶函数C .关于点(),0π成中心对称D .关于点3,02π⎛⎫⎪⎝⎭成中心对称【答案】BD【分析】化简函数4f x π⎛⎫+ ⎪⎝⎭的解析式,利用余弦函数的奇偶性与对称性可得结果.【详解】因为sin sin cos 4442f x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故函数4f x π⎛⎫+ ⎪⎝⎭为偶函数,因为函数4f x π⎛⎫+ ⎪⎝⎭的对称中心坐标为(),0Z 2k k ππ⎛⎫+∈ ⎪⎝⎭,所以,函数4f x π⎛⎫+ ⎝⎭的图象关于点3,02π⎛⎫⎪⎝⎭成中心对称.故选:BD.三、填空题13.若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________.【答案】{}23x x <<【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可.【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,故6a =,则不等式303x a x -<-即3603x x -<-等价于3(2)(3)0x x --<,不等式3(2)(3)0x x --<的解集为{}23x x <<,则不等式303x ax -<-的解集为{}23x x <<,故答案为:{}23x x <<.14.若偶函数()f x 对任意x ∈R 都有()()13f x f x +=-,且当[]3,2x ∈--时,()4f x x =,则()113.5f =______.【答案】110##0.1【分析】由()()13f x f x +=-得函数周期为6,结合周期性和奇偶性计算可得答案.【详解】因为()()13f x f x +=-,所以()()()163f x f x f x +=-=+,所以()f x 周期为6,且为偶函数,当[]3,2x ∈--时,()4f x x =,()()()()113.5186 5.5 5.50.5=⨯+==-f f f f ,()()10.530.5f f -+=--,所以()()10.5 2.5f f -=-,根据函数为偶函数()()2.5 2.510f f =-=-,所以()()110.5 2.510f f -=-=,即()1113.510=f .故答案为:110.15.已知函数2()log f x x =,()2g x x a =+,若存在121,[2]2x x ∈,使得12()()f x g x =,则a 的取值范围是__________.【答案】50a -≤≤【分析】把“存在121,[,2]2x x ∈,使得12()()f x g x =”转化成函数2()log f x x =与函数()2g x x a =+的值域有交集,是本题入手的关键所在.【详解】函数2()log f x x =在1[,2]2上单调递增,值域为[1,1]-函数()2g x x a =+在1[,2]2上单调递增,值域为[1,4]a a ++由存在121,[,2]2x x ∈,使得12()()f x g x =,可知两个函数的值域有交集,即[1,4]a a ++⋂[1,1]-≠∅,则有114a a +≤-≤+或114a a +≤≤+即52a -≤≤-或30a -≤≤,解之得50a -≤≤故答案为:50a -≤≤16.已知函数()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭,将函数图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移π4个单位,得到函数的解析式______.【答案】π2sin 23y x ⎛⎫=- ⎪⎝⎭【分析】根据三角函数图象的变换可得答案.【详解】将函数图象上各点的横坐标缩短到原来的12倍,得π2sin 26y x ⎛⎫=+ ⎪⎝⎭,再将得到的图象向右平移π4个单位得π=2sin 22sin 2463y x x ππ⎡⎤⎛⎫⎛⎫-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为:π2sin 23y x ⎛⎫=- ⎪⎝⎭四、解答题17.设m 为实数,,U R =集合{}|24A x x =-≤≤,{}|2B x m x m =≤≤+.(1)若3m =,求A B ⋃,()U A B ⋂ð;(2)若A B ⋂=∅,求实数m 的取值范围.【答案】(1){}25A B x x ⋃=-≤≤,{()3U A B x x ⋂=<ð或}4x >(2){4m m <-或}4m >【分析】(1)利用并集及交集和补集运算法则进行计算;(2)根据交集结果比较端点值的大小求解实数m 的取值范围.【详解】(1)当3m =时,{}|35B x x =≤≤,又{}|24A x x =-≤≤所以{}25A B x x ⋃=-≤≤,{}34A B x x ⋂=≤≤所以{()3U A B x x ⋂=<ð或}4x >.(2)由2m m <+,则B ≠∅,由A B ⋂=∅,则4m >或22m +<-即4m >或4m <-当A B ⋂=∅时,实数m 的取值范围是{4m m <-或}4m >.18.设二次函数()f x 满足:①当x R ∈时,总有(1)(1)f x f x -+=--;②函数()f x 的图象与x 轴的两个交点为A ,B ,且||4AB =;③3(0)4f =-.(1)求()f x 的解析式;(2)若存在t R ∈,只要[1,](1)x m m ∈>,就有()1f x t x +≤-成立,求满足条件的实数m 的最大值.【答案】(1)2113()424f x x x =+-(2)最大值为9【分析】(1)根据函数()f x 的图象关于直线=1x -对称,且方程()0f x =的两根为3-和1,可设设()(3)(1)f x a x x =+-,由3(0)4f =-可得解;(2)取1x =和x m =,可得9m ≤,从而可得解.【详解】(1)(1)由题意知,函数()f x 的图象关于直线=1x -对称,且方程()0f x =的两根为3-和1,设()(3)(1)f x a x x =+-,又3(0)4f =-,则3(0)34f a =-=-,解得14a =.故2113()424f x x x =+-.(2)(2)只要[1,](1)x m m ∈>,就有()1f x t x +≤-,即222(1)(1)0x t x t +-++≤,取21,40,40x t t t =+≤-≤≤;取2,[(1)]4x m m t t =+-≤-,即11t m t --≤≤-+由40t -≤≤得04,11429t t ≤-≤-+≤++=,故4t =-时,9m ≤;当9m =时,存在4t =-,只要[1,9]x ∈,就有1(4)(1)(1)(9)04f x x x x ---=--≤成立,满足题意.故满足条件的实数m 的最大值为9.19.我们知道,函数()y f x =的图象关于坐标原点成中心对称的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(,)P a b 成中心对称的充要条件是函数()y f x a b =+-为奇函数.(1)依据推广结论,求函数32()3f x x x =-图象的对称中心;(2)请利用函数32()3f x x x =-的对称性求(2019)(2017)(2015)(3)(1)(1)(3)(5)(2017)(2019)(2021)f f f f f f f f f f f -+-+-+⋅⋅⋅-+-++++⋅⋅⋅++的值;(3)类比上述推广结论,写出“函数()y f x =的图象关于x 轴成轴对称的充要条件是函数()y f x =为偶函数”的一个推广结论.(不需要证明)【答案】(1)(1,2)-(2)4042-(3)答案见解析【分析】(1)设对称中心为(,)P a b ,令()()g x f x a b =+-,根据()g x 为奇函数建立关系即可求出;(2)根据(1)中结论可得(2019)(2021)(2017)(2019)(1)(3)4f f f f f f -+=-+==-+=- 即可求出;(3)根据函数对称性质推论即可.【详解】(1)设32()3f x x x =-的对称中心为(,)P a b ,设()32()()3()g b x =+-=+-+-,则()g x 为奇函数,由题可知()()g x f x a b -=-+-,且()()g x g x -=-,所以()()f x a b b f x a -+-=-+,即()()2f x a f x a b -+++=,则3232()3()()3()2x a x a x a x a b ⎡⎤⎡⎤-+--+++-+=⎣⎦⎣⎦,整理得232(66)2620a x a a b -+--=,所以326602620a a a b -=⎧⎨--=⎩,解得12a b =⎧⎨=-⎩,所以函数32()3f x x x =-的对称中心为(1,2)-;(2)由(1)知函数32()3f x x x =-的对称中心为(1,2)-,所以(1)(1)4f x f x -+++=-,则(2019)(2021)(2017)(2019)(1)(3)4f f f f f f -+=-+==-+=- ,且(1)2f =-,则(2019)(2017)(2015)(3)(1)(1)(3)(5)(2017)(2019)(2021)f f f f f f f f f f f -+-+-+⋅⋅⋅-+-++++⋅⋅⋅++4101024042=-⨯-=-;(3)推论:函数()y f x =的图象关于x a =成轴对称的充要条件是函数()y f x a =+为偶函数或函数()y f x =的图象关于x a =成轴对称的充要条件是满足()()f x a f a x +=-.20.已知ln 1()()x f x e ax =-+是偶函数,()x x e g x e b -=+是奇函数.(1)求a ,b 的值;(2)判断()g x 的单调性;(不需要证明)(3)若不等式()()()g f x g m x >-在[)1,∞+上恒成立,求实数m 的取值范围.【答案】(1)12a =,1b =-(2)()g x 单调递增(3)()1ln 12e ⎪-+⎛⎫ ⎝∞+⎭,【分析】(1)根据函数奇偶性的性质即可求a ,b 的值;(2)根据指数函数的单调性即可判断()g x 的单调性;(3)根据函数的单调性将不等式()()()g f x g m x >-在[)1,∞+上恒成立,进行转化,即可求实数m 的取值范围.【详解】(1)解:因为()()ln 1x f x e ax =+-是偶函数,所以()()f x f x -=,即()()0f x f x --=,则()()ln 1ln 10x x e ax e ax -++-++=,即()()ln 12ln 10x x e x ax e +-+-+=,所以()210a x -=,即210a -=,解得12a =.若()x x e g x e b -=+是奇函数,又()x x e g x e b -=+定义域为(),-∞+∞,则()00g =,即10b +=,解得1b =-;(2)解:因为1b =-,所以()x x g x e e -=-,因为函数x y e =单调递增,函数x y e -=单调递减,所以()g x 单调递增;(3)解:由(2)知()g x 单调递增;则不等式()()()g f x g m x >-在[)1,∞+上恒成立,等价为()f x m x >-在[)1,∞+上恒成立,即()1ln 12x e x m x +->-在[)1,∞+上恒成立,则()1ln 12x m e x <++,设()()1ln 12x m x e x =++,则()m x 在[)1,∞+上单调递增,∴()()()11ln 12m x m e ≥=++,则()1ln 12m e <++,所以实数m 的取值范围是()1ln 12e ⎪-+⎛⎫ ⎝∞+⎭,.21.已知()sin(),0,,22f x A x A ππωϕωϕ⎛⎫⎛⎫=+>∈- ⎪ ⎪⎝⎭⎝⎭,其图像相邻两条对称轴的距离为2π,且(0)1f =,6f A π⎛⎫= ⎪⎝⎭.(1)求()f x ;(2)求函数()f x 图像在区间13,412ππ⎛⎫ ⎪⎝⎭上的单调递增区间.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)213,312ππ⎛⎫ ⎪⎝⎭.【分析】(1)根据对称轴间的距离求出周期,得到ω;再根据6f A π⎛⎫= ⎪⎝⎭,求出ϕ;最后由(0)1f =,求出A ,即可得到()f x 的解析式;(2)根据13,412x ππ⎛⎫∈ ⎪⎝⎭,求出26x π+的取值范围,确定单调递增区间,再反求x 的取值范围即可.【详解】解:(1)由题知22T π=,即2T ππω==,故2ω=.又2sin 66f A A ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,则sin 13πϕ⎛⎫+= ⎪⎝⎭,又,22ππϕ⎛⎫∈- ⎪⎝⎭,故6πϕ=,又(0)sin 16f A π==,则2A =,故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)13,412x ππ⎛⎫∈ ⎪⎝⎭,则272633x πππ⎛⎫+∈ ⎪⎝⎭,当372,623x πππ⎛⎫+∈ ⎪⎝⎭,即213,312x ππ⎛⎫∈ ⎪⎝⎭,函数()f x 单调递增,故函数()f x 在区间13,412ππ⎛⎫ ⎪⎝⎭上的单调递增区间为213,312ππ⎛⎫ ⎪⎝⎭.22.若函数()cos()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的一个零点和与之相邻的对称轴之间的距离为4π,且当23x π=时,()f x 取得最小值.(1)求()f x 的解析式及其单调递减区间;(2)若5,46x ππ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.【答案】(1)()cos 23f x x π⎛⎫=- ⎪⎝⎭;2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;(2)2⎡-⎢⎣⎦.【解析】(1)由题设条件,求得()f x 的周期πT =,得到2ω=,再由2π3x =时,()f x 取得最小值,求得π3ϕ=-,即可得到函数的解析式;(2)因为π5π,46x ⎡⎤∈⎢⎣⎦,可得ππ4π2633x ≤-≤,结合三角函数的性质,即可求解.【详解】解:()1由题意,函数()f x 的一个零点和与之相邻的对称轴之间的距离为4π,可得()f x 的周期T π=,即2ππω=,解得2ω=,又因为当23x π=时,()f x 取得最小值,所以24()cos()133f ππϕ=+=-,所以42()3k k Z πϕππ+=+∈,解得2()3k k Z πϕπ=-∈,因为2πϕ<,所以3πϕ=-,所以()cos(2)3f x x π=-.令2(2,2),3x k k k Z ππππ-∈+∈,得2(,),63x k k k Z ππππ∈++∈,故()f x 的单调递减区间为2(,),63ππππ++∈k k k Z ;()2因为5,46x ππ⎡⎤∈⎢⎥⎣⎦,可得42633x πππ≤-≤,所以当23x ππ-=时,()f x 取得最小值1-,当236x ππ-=时,()f x 取得最大值2,所以函数()f x 的值域是12⎡-⎢⎣⎦,.【点睛】关键点睛:本题主要考查了三角函数的图象与性质的综合应用,解答本题的关键是熟记三角函数的图象与性质,2(2,2),3x k k k Z ππππ-∈+∈得出单调区间,由42633x πππ≤-≤,结合三角函数图象性质求最值,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高一英语听力模拟试题 4 第一节 听下面5段对话。每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。每段对话仅读一遍。 1. Why is the play delayed? A. The main actor hasn’t come. B. The electricity has failed. C. The director is stuck in a traffic jam. 2. What is the woman trying to find? A. The campus. B. The church. C. The garden. 3. What is the woman doing now? A. Leaving for a holiday. B. Taking a vacation. C. Eating out. 4. Where are the speakers? A. At a hotel. B. At an airport. C. At a hospital. 5. What are the speakers talking about? A. A movie. B. A novel. C. A TV play.

第二节 听下面5段对话或独白。每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。每段对话或独白读两遍。 听第6段材料,回答第6、7题。 6. Where does the conversation probably take place? A. At Jack’s home. B. At the man’s home. C. At the woman’s home. 7. Why will the woman have only a little cake? A. She is full. B. She dislikes the cake. C. She is trying to lose weight. 听第7段材料,回答第8、9题。 8. What does the man suggest doing to spend the weekend? A. Having a barbeque. B. Having a picnic. C. Having a walk. 9. What is the woman in charge of? A. Buying food. B. Buying drinks. C. Inviting some friends. 听第8段材料,回答第10至12题。 10. What do we know about the woman’s job? A. It is a full-time job. B. It is a part-time job. 2

C. It is just to make phone calls. 11. What does the woman think of her job? A. It is uninteresting. B. The boss is very strict. C. It is a good chance to learn something. 12. Why does the woman feel stressed sometimes? A. She has a lot of work to do every day. B. She meets a lot of different people every day. C. She feels it hard to balance study and work at the same time. 听第9段材料,回答第13至16题。 13. What is wrong with the man’s son? A. He has broken his leg. B. He has broken his head. C. He has broken his arm. 14. What is the man’s son doing now? A. Having a rest. B. Taking an X-ray. C. Seeing a doctor. 15. How did the man’s son go to work when the accident happened? A. By car. B. By motorbike. C. By bike. 16. When did the accident happen? A. About one hour ago. B. About two hours ago. C. About three hours ago. 听第10段材料,回答第17至20题。 17. What was the speaker doing when the theft happened? A. Sleeping. B. Cooking meals. C. Listening to music. 18. What did the speaker notice first in the kitchen when she went downstairs? A. The door was opened. B. The light was turned on. C. The thief was running out. 19. Where was the speaker’s video recorder? A. On the kitchen table. B. On the kitchen chair. C. On the kitchen floor. 20. What did the speaker worry about besides her video recorder? A. Her money. B. Her keys. C. Her food.

高一英语听力模拟试题 4 (Text 1) W: The play should have begun ten minutes ago. What’s holding things up? M: The leading man is caught in a traffic jam. (Text 2) W: The church is on this side of the campus, isn’t it? M: I believe you’re right. It’s next to a garden. 3

(Text 3) M: Hi, I thought you were on holiday in Asia! I didn’t expect to see you here in the restaurant. W: We never got there! Our travel agent cancelled our arrangements because the whole region is flooded. (Text 4) M: Excuse me, where should I check in for British Airways to London? I can’t find the right check-in counter. W: You should go to Counter 26 on the left-hand side, sir. It’s just next to Thai Air. You’d better hurry, though. There’s a long queue. (Text 5) W: Did you enjoy the film? M: Sure. Daniel Radcliffe’s acting as Harry Potter was terrific. W: Yes. But I prefer Rupert Grint’s performance as Ron Weasley. M: So it was a wonderful movie. (Text 6) M: Come on, Lisa! Help yourself to some food. W: I’ve eaten ice cream. You’ve been too busy to notice. And the salad is so delicious. M: It’s nice of you to say so. Jack helps me a lot. And have some more cake, please. I bought it from a new bakery at the north gate of our university. W: Oh, well, I’m supposed to be dieting, you know. But perhaps I will have just a bit more of the cake. It’s so light and not too sweet. (Text 7) W: I’m fed up with repetitive weekends: going out for dinner, watching movies or surfing the Net. Have you got any new ideas? M: Let me think for a moment. Oh, I got it. An outing and a barbeque. W: That’s a good idea. But where? M: I’ve heard there is a barbeque site at the Botanic Garden. W: Really? I expect there are only plants there. Shall we bring the equipment with us? M: Not necessary. But we should get more friends. You’re in charge. W: OK. What else should we take? Is it expensive? M: No, it’s quite cheap. I will buy some bread and beer at the supermarket. W: Well. We can bring a guitar. We will have a terrific time! (Text 8) M: Hi, Fiona! I heard that you got a job in the Good-luck Company. Is that so? W: Yes, Mike. It is a part-time job, just answering the phone and greeting visitors. M: Is it interesting? W: Yeah, actually it is a good learning experience for me. M: So what have you learned? W: My communication skills have improved. You know, I meet a lot of different people every day. M: Do you like the boss here? W: Well, my boss is really nice and open-minded. My other colleagues are very friendly. M: Good for you! W: Yeah, but sometimes I feel stressed. You know, it is hard to balance study and work at the same time.

相关文档
最新文档