电学中的动量和能量问题--二轮专题

电学中的动量和能量问题--二轮专题
电学中的动量和能量问题--二轮专题

第2课时 电学中的动量和能量问题

高考题型1 电场中的动量和能量问题

例1 (2018·湖南省常德市期末检测)如图1所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段BC 粗糙,其余都光滑,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h = m ,整个轨道绝缘,处于方向水平向左、电场强度大小未知的匀强电场中,一个质量m 1= kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2= kg 的小物块Ⅱ碰撞并粘在一起后,在BC 段上做匀速直线运动,到达倾斜段DP 上某位置,物块Ⅰ和Ⅱ与轨道BC 段的动摩擦因数μ=,g =10 m/s 2,sin 37°=,cos 37°=.求:

图1

(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;

(2)物块Ⅰ和Ⅱ第一次经过圆弧段C 点时,物块Ⅰ和Ⅱ对轨道压力的大小. 答案 (1)2 m/s (2)18 N

解析 (1) 物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度大小为E ,物块Ⅰ带电荷量为q ,物块Ⅰ与物块Ⅱ碰撞前速度为v 1,碰撞后共同速度为v 2,则 qE =μ(m 1+m 2)g qEt =m 1v 1 m 1v 1=(m 1+m 2)v 2 联立解得v 2=2 m/s ;

(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ经过C 点时圆弧段轨道对物块支持力的大小为F N 则R (1-cos θ)=h

F N -(m 1+m 2)g =(m 1+m 2)v 22R

解得:F N =18 N ,由牛顿第三定律可得物块Ⅰ和Ⅱ对轨道压力的大小为18 N.

拓展训练1 (多选)(2018·全国卷Ⅲ·21)如图2,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a 、b 所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等.现同时释放a 、b ,它们由静止开始运动.在随后的某时刻t ,a 、b 经过电容器两极板间下半区域的同一水平面.a 、b 间的相互作用和重力可忽略.下列

说法正确的是( )

图2

A .a 的质量比b 的大

B .在t 时刻,a 的动能比b 的大

C .在t 时刻,a 和b 的电势能相等

D .在t 时刻,a 和b 的动量大小相等 答案 BD

解析 经时间t ,a 、b 经过电容器两极板间下半区域的同一水平面,则x a >x b ,根据x =1

2at 2,得a a >a b ,又由a =F

m 知,m a W b ,由动能定理知,a 的动能比b 的动能大,B 项正确;a 、b 处在同一等势面上,根据E p =qφ知,a 、b 的电势能绝对值相等,符号相反,C 项错误;

根据动量定理Ft =p -p 0,则经过时间t ,a 、b 的动量大小相等,D 项正确.

拓展训练2 (2018·福建省宁德市上学期期末)如图3所示,PM 是半径为R 的四分之一光滑绝缘轨道,仅在该轨道内有垂直纸面向外的匀强磁场,磁感应强度大小为B .光滑绝缘轨道MN 水平且足够长,PM 下端与MN 相切于M 点.质量为m 的带正电小球b 静止在水平轨道上,质量为2m 、电荷量为q 的带正电小球a 从P 点由静止释放,在a 球进入水平轨道后,a 、b 两小球间只有静电力作用,且a 、b 两小球始终没有接触.带电小球均可视为点电荷,设小球b 离M 点足够远,重力加速度为g .求:

图3

(1)小球a 刚到达M 点时的速度大小及对轨道的压力大小; (2)a 、b 两小球系统的电势能最大值E p ; (3)a 、b 两小球最终的速度v a 、v b 的大小.

答案 (1)6mg +qB 2gR (2)23mgR (3)132gR 4

32gR

解析 (1)小球a 从P 到M ,洛伦兹力、弹力不做功,只有重力做功 由动能定理有:2mgR =1

2(2m )v M 2

解得:v M =2gR

在M 点,由牛顿第二定律有:F N -2mg -qv M B =2mv M 2

R 解得:F N =6mg +qB 2gR

根据牛顿第三定律得小球对轨道的压力大小为:F N ′=6mg +qB 2gR

(2)两球速度相等时系统电势能最大,以向右为正方向,由动量守恒定律有:2mv M =3mv 共 根据能量守恒定律有:E p =12(2m )v M 2-1

2(3m )v 共2 解得:E p =2

3mgR

(3)由动量守恒定律:2mv M =2mv a +mv b 由能量守恒定律有:12(2m )v M 2=12(2m )v a 2+1

2mv b 2 解得:v a =13v M =132gR ,v b =43v M =4

32gR

高考题型2 磁场中的动量和能量问题

例2 (2018·广西南宁市3月适应测试)如图4所示,光滑绝缘的半圆形圆弧轨道ACD ,固定在竖直面内,轨道处在垂直于轨道平面向里的匀强磁场中,半圆弧的直径AD 水平,因弧的半径为R ,匀强磁场的磁感应强度为B ,在A 端由静止释放一个带正电荷、质量为m 的金属小球甲,结果小球甲连续两次通过轨道最低点C 时,对轨道的压力差为ΔF ,小球运动过程始终不脱离轨道,重力加速度为g .求:

图4

(1)小球甲经过轨道最低点C 时的速度大小; (2)小球甲所带的电荷量;

(3)若在圆弧轨道的最低点C 放一个与小球甲完全相同的不带电的金属小球乙,让小球甲仍由轨道的A 端由静止释放,则甲球与乙球发生弹性碰撞后的一瞬间,乙球对轨道的压力.(不计两球间静电力的作用)

答案 (1)2gR (2)ΔF 2gR 4gRB (3)3mg -ΔF

4,方向竖直向下

解析 (1)由于小球甲在运动过程中,只有重力做功,因此机械能守恒,由A 点运动到C 点,

mgR =1

2mv C 2 解得v C =2gR

(2)小球甲第一次通过C 点时,qv C B +F 1-mg =m v C 2

R 第二次通过C 点时,F 2-qv C B -mg =m v C 2

R 由题意知ΔF =F 2-F 1 解得q =ΔF 2gR

4gRB

(3)因为甲球与乙球在最低点发生的是弹性碰撞,则 mv C =mv 甲+ mv 乙 12mv C 2=12mv 甲2+12mv 乙2 解得v 甲=0,v 乙= v C

设碰撞后的一瞬间,轨道对乙的支持力大小为F 乙,方向竖直向上,则 F 乙+1

2qv 乙B -mg =m v 乙2R 解得F 乙=3mg -ΔF

4

根据牛顿第三定律可知,此时乙球对轨道的压力大小为3mg -ΔF

4,方向竖直向下. 拓展训练3 (2018·北京市大兴区上学期期末)如图5所示,在矩形MNQP 区域中有一垂直纸面向里的匀强磁场.质量和电荷量都相等的带电粒子a 、b 、c 以不同的速率从O 点沿垂直于PQ 的方向射入磁场,图中实线是它们的轨迹.已知O 是PQ 的中点,不计粒子重力.从图示轨迹中可以判断( )

图5

A .a 粒子带负电,b 粒子带正电

B .c 粒子的动量大小大于a 粒子的动量

C .b 粒子运动的时间大于a 粒子运动的时间

D .b 粒子的加速度大于c 粒子的加速度 答案 D

解析 根据左手定则知粒子a 带正电,粒子b 、c 带负电,故A 错误;粒子在磁场中做匀速圆周运动时,由洛伦兹力提供向心力,由牛顿第二定律得:qvB =m v 2

r ,解得:p =mv =qBr ,因c 的轨道半径小于a 的轨道半径,则c 粒子的动量大小小于a 粒子的动量,选项B 错误;粒子在磁场中做圆周运动的周期T =2πm qB 相同,粒子在磁场中的运动时间:t =θ2πT =θm

qB ,由于m 、q 、B 都相同,粒子a 转过的圆心角大于b ,则b 粒子运动的时间小于a 粒子运动的时间,故C 错误;根据qvB =ma ,b 的速度最大,则b 粒子的加速度大于c 粒子的加速度,选项D 正确.

高考题型3 电磁感应中动量和能量问题

例3 如图6所示,NQ 和MP 是两条平行且倾角为θ的光滑金属轨道,在两条轨道下面,在Q 、P 处接着QT 和PS 两条平行光滑的金属轨道,轨道足够长,所有轨道电阻忽略不计.金属棒ab 、cd 放在轨道上,始终与轨道垂直且接触良好.金属棒ab 、cd 的质量均为m ,长度均为L ,且金属棒的长度恰好等于轨道的间距,它们与轨道构成闭合回路,金属棒ab 的电阻为2R ,cd 的电阻为R .磁场方向均垂直于导轨向上(不考虑PQ 交界处的边界效应,可认为磁场在PQ 处立即变为竖直向上),磁感应强度大小为B .若先保持金属棒cd 不动,ab 在沿导轨向下的力F 的作用下,开始以加速度a 沿倾斜轨道向下做匀加速直线运动.经过t 0时间,ab 棒恰好到PQ 位置,此时撤去力F ,同时释放金属棒cd ,重力加速度为g ,求:

图6

(1)ab 棒匀加速运动过程中,外力F 随时间t 变化的函数关系;

(2)两金属棒从撤去F ,直到最后达到稳定后的运动过程中,金属棒cd 产生的热量Q ; (3)两金属棒从撤去F ,直到最后达到稳定后的运动过程中,通过金属棒cd 的电荷量q . 答案 (1)F =B 2L 2at 3R +ma -mg sin θ (t ≤t 0) (2)112ma 2t 02 (3)mat 02BL 解析 (1)棒ab 匀加速运动过程中, F +mg sin θ-B BLv

3R L =ma

得:F =B 2L 2at

3R +ma -mg sin θ (t ≤t 0) (2)撤去力F 时,金属棒ab 的速度v =at 0,

ab 、cd 组成的系统动量守恒,最终稳定时,两棒速度相同,以向右为正方向,由动量守恒定

律得mv =2mv ′ 得v ′=12at 0

则两金属棒产生的热量Q 等于动能的减少量, 则Q 总=12mv 2-12mv ′2-12mv ′2=1

4ma 2t 02

由于金属棒ab 电阻为2R ,金属棒cd 电阻为R ,故其产生的热量之比为2∶1 故金属棒cd 产生的热量Q =13Q 总=1

12ma 2t 02 (3)对金属棒cd 应用动量定理得:BLq =mv ′=1

2mat 0 故q =mat 0

2BL

拓展训练4 (2018·湖北省孝感市重点高中协作体模拟)如图7所示,水平面内固定两对足够长的平行光滑金属导轨,左侧两导轨间的距离为2L ,右侧两导轨间的距离为L ,左、右侧的两导轨间都存在磁感应强度为B 、方向竖直向下的匀强磁场.两均匀的导体棒ab 和cd 分别垂直放在左、右两侧的导轨上,ab 棒的质量为2m 、有效电阻为2r ,而cd 棒的质量为m 、有效电阻为r ,其他部分的电阻不计.原来两棒都处于静止状态,现给棒一大小为I 0、方向平行导轨向右的冲量使ab 棒向右运动,在达到稳定状态时,两棒均未滑出各自的轨道.求:

图7

(1)cd 棒中的最大电流I m ; (2)cd 棒的最大加速度;

(3)两棒达到稳定状态时,各自的速度大小. 答案 (1)BLI 03mr (2)B 2L 2I 03m 2r (3)I 06m I 03m

解析 (1)ab 棒获得一冲量,所以初速度v 0=I 0

2m

分析知开始时回路中的感应电动势最大,最大值为E m =2BLv 0 所以cd 棒中最大感应电流I m =

E m 2r +r

=BLI 0

3mr (2)cd 棒所受的最大安培力F m =BI m L cd 棒的最大加速度a m =F m m =B 2L 2I 0

3m 2r

(3)当两棒中感应电动势大小相等时系统达到稳定状态,有2BLv ab =BLv cd

由ab 棒与cd 棒中感应电流大小总是相等,可知安培力对ab 棒与cd 棒的冲量大小关系为I ab =2I cd

对ab 棒根据动量定理有I 0-I ab =2mv ab 对cd 棒根据动量定理有I cd =mv cd 解得v ab =I 06m ,v cd =I 0

3m .

专题强化练

1.(2018·河北省承德市联校期末)如图1所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的1

5.已知两球始终未接触,则甲、乙两球的质量之比是( )

图1

A .1∶1

B .1∶2

C .1∶3

D .1∶4 答案 D

2.(多选)(2018·山东省临沂市上学期期末)如图2所示,水平面上有相距为L 的两光滑平行金属导轨,导轨上静止放有金属杆a 和b ,两杆均位于匀强磁场的左侧,让杆a 以速度v 向右运动,当杆a 与杆b 发生弹性碰撞后,两杆先后进入右侧的磁场中,当杆a 刚进入磁场时,杆b 的速度刚好为a 的一半.已知杆a 、b 的质量分别为2m 和m ,接入电路的电阻均为R ,其他电阻忽略不计,设导轨足够长,磁场足够大,则( )

图2

A .杆a 与杆b 碰撞后,杆a 的速度为v

3,方向向右 B .杆b 刚进入磁场时,通过b 的电流为2BLv

3R

C .从b 进入磁场至a 刚进入磁场时,该过程产生的焦耳热为7

8mv 2 D .杆a 、b 最终具有相同的速度,大小为2v

3 答案 ABC

3.(2018·安徽省马鞍山市二质监)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L ,导轨上垂直放置两根导体棒a 和b ,俯视图如图3甲所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B 的竖直向上的匀强磁场.导体棒与导轨接触良好且均可沿导轨无摩擦地滑行,开始时,两棒均静止,间距为x 0,现给导体棒a 一向右的初速度v 0,并开始计时,可得到如图乙所示的Δv -t 图象(Δv 表示两棒的相对速度,即Δv =v a -v b )

图3

(1)试证明:在0~t 2时间内,回路产生的焦耳热与磁感应强度B 无关; (2)求t 1时刻,棒b 的加速度大小; (3)求t 2时刻,两棒之间的距离. 答案 见解析

解析 (1)t 2时刻,两棒速度相等,由动量守恒定律得:mv 0=mv +mv 由能量守恒定律得整个过程中产生的焦耳热:Q =12mv 02-1

2(2m )v 2 解得:Q =1

4mv 02

所以在0~t 2时间内,回路产生的焦耳热与磁感应强度B 无关. (2)t 1时刻,Δv =v a -v b =v 0

2 由动量守恒定律:mv 0=mv a +mv b 解得:v a =34v 0时,v b =1

4v 0

回路中的电动势:E =34BLv 0-14BLv 0=1

2BLv 0 此时棒b 所受的安培力:F =BIL =B 2L 2v 0

4R

由牛顿第二定律可得,棒b 的加速度a =F m =B 2L 2v 0

4mR (3)t 2时刻,两棒速度相同,由(1)知:v =v 0

2

0~t 2时间内,对棒b ,由动量定理,有:ΣBiL Δt =mv -0,即:BqL =mv 又:q =I Δt =E

2R Δt =ΔΦΔt 2R Δt =B ΔS 2R =BLx -x 0

2R

解得:x =x 0+mv 0R

B 2L 2.

4.(2018·河南省安阳市第二次模拟)如图4甲所示,一倾角为θ=37°、高为h = m 的绝缘斜面固定在水平面上,一可视为质点的质量为m =1 kg 、带电荷量q =+ C 的物块放在斜面顶端,距斜面底端L = m 处有一竖直放置的绝缘光滑半圆轨道,半径为R = m ,半圆轨道底端有一质量M =1 kg 可视为质点的绝缘小球,半圆轨道底端与斜面底端之间存在如图乙所示的变化电场(水平向右为正方向,图乙中O 点对应坐标原点,虚线与坐标轴围成的图形是椭圆一部分,椭圆面积公式S =πab ,a 、b 分别为半长轴和半短轴).现给物块一沿斜面向下的初速度v 0,物块运动到半圆轨道处与小球发生对心弹性碰撞,不计物块经过斜面底端时的能量损失,已知物块与斜面、水平面间的动摩擦因数均为μ=,重力加速度g =10 m/s 2,sin 37°=,cos 37°=.

图4

(1)若小球不脱离半圆轨道,求物块在斜面顶端释放的初速度v 0的范围;

(2)若小球能通过最高点,并垂直打在斜面上,求小球离开半圆轨道时的速度大小及小球打在斜面上的位置.

答案 (1) 2 m/s

2 m/s 小球恰好垂直打在斜面的底端

解析 (1)当小球运动到半圆轨道与圆心等高处速度为零时,对物块从开始运动到与小球碰撞前,由动能定理有mgh +W 电-μmg ????L +h tan θ=12mv 2-12mv 02 分析题图乙可知W 电=1

4πqE m ×

物块与小球碰撞时,由动量守恒有mv =mv 1+Mv 2,由机械能守恒有12mv 2=12mv 12+1

2Mv 22 当小球能沿半圆轨道返回时,对小球由动能定理有1

2Mv 22=MgR 以上各式联立解得v 0= 6 m/s

物块与小球恰能碰撞时,由动能定理有mgh +W 电-μmg ????L +h tan θ=0-12mv 012,解得v 01= 2 m/s

当小球恰能通过最高点时,由圆周运动知识可得Mg =M v 32

R

小球从最低点运动到最高点的过程,根据动能定理得-2MgR =12Mv 32-1

2Mv 02′2,得v 02′=10 m/s ,物块由斜面顶端释放至碰撞前瞬间,由动能定理有mgh +W 电-μmg (L +h tan θ)=1

2mv 02′2-1

2mv 022,解得v 02=2 3 m/s

综上所述,物块在斜面顶端释放的初速度范围为 2 m/s

2gt 2 又垂直打在斜面上,则x y =2v 4

gt =2tan θ

设打在斜面上位置的高度为h ′,则由几何知识可得x =L +h ′

tan θ,y =2R -h ′ 代入数据联立可得h ′=0,v 4=32

2 m/s ,故小球恰好垂直打在斜面的底端.

5.(2018·陕西省宝鸡市质检二)如图5所示,绝缘水平桌面上方区域存在竖直向上的匀强电场,电场强度E =5 N/C ,过桌左边缘的虚线PQ 上方存在垂直纸面向外的匀强磁场,磁感应强度B =π3 T ,虚线PQ 与水平桌面成45°角,现将一个质量m 1=×10-3 kg 、带正电q =×10-

3 C 的物块A 静置在桌面上,质量m 2=×10-

3 kg 、不带电的绝缘物块B 从与A 相距L = m 处的桌面上以v 0= m/s 的初速度向左运动.物块A 、B 与桌面间的动摩擦因数均为μ=,二者在桌面上发生碰撞(碰撞时间极短,A 、B 间无电荷转移),碰撞后B 反弹速度大小为v B = m/s ,A 向左运动进入磁场,(重力加速度g 取10 m/s 2,结果保留两位有效数字)求:

图5

(1)碰撞后物块A 的速度;

(2)物块A 从进入磁场到再次回到桌面所用时间;

(3)若一段时间后A 、B 在桌面上相遇,求碰撞前A 与桌面左边缘P 的距离. 答案 (1) m/s 方向水平向左 (2) s (3) m

解析 (1)设B 与A 碰撞前瞬间的速度为v ,碰后A 、B 的速度分别为v A 、v B ,对于B 由动能定理可得:

-μm 2gL =12m 2v 2-1

2m 2v 02

A 、

B 碰撞过程中,规定向左为正方向,对于A 、B 组成的系统由动量守恒定律可得:m 2v =m 1v A -m 2v B

联立可得:v A = m/s ,方向水平向左.

(2)对A 受力分析可知qE =m 1g ,故碰撞后A 向左做匀速直线运动进入磁场,并在磁场中做匀速圆周运动,设在磁场中做圆周运动的周期为T ,则:T =2πm 1

qB 由几何知识可得:物块A 在磁场中运动了3

4个圆周,轨迹如图所示.

设A 在磁场中运动的时间为t 1,则:t 1=3

4T

A 运动出磁场后竖直向下匀速运动再次回到桌面位置,设其运动时间为t 2,由题意可得: 在磁场中洛伦兹力提供向心力:qv A

B =m 1v A 2

R R =v A t 2 t =t 1+t 2 联立得:t ≈ s

(3)碰撞后B 反弹,在桌面上做匀减速运动,设其加速度大小为a ,碰撞至停止运动所用时间为t 3,可得: μm 2g =m 2a 0=v B -at 3 解得:t 3= s

显然,碰撞后B 运动时间小于A 运动时间,由此可知A 、B 相遇时,B 已经停止运动.所以A 、B 相遇的位置为B 停止运动的位置,也是A 竖直向下再次回到桌面的位置. B 匀减速的位移:s =1

2v B t 3 则A 距桌边P 的距离:x =R -s 解得x ≈ m

6.(2018·天津卷·12)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装

置.图6甲是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l 的两条平行光滑金属导轨,电阻忽略不计.ab 和cd 是两根与导轨垂直、长度均为l 、电阻均为R 的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l ,列车的总质量为m .列车启动前,ab 、cd 处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向下,如图甲所示.为使列车启动,需在M 、N 间连接电动势为E 的直流电源,电源内阻及导线电阻忽略不计.列车启动后电源自动关闭.

图6

(1)要使列车向右运行,启动时图甲中M 、N 哪个接电源正极,并简要说明理由. (2)求刚接通电源时列车加速度a 的大小.

(3)列车减速时,需在前方设置如图乙所示的一系列磁感应强度为B 的匀强磁场区域,磁场宽度和相邻磁场间距均大于l .若某时刻列车的速度为v 0,此时ab 、cd 均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场 答案 见解析

解析 (1)列车要向右运动,安培力方向应向右.根据左手定则,接通电源后,金属棒中电流方向由a 到b 、由c 到d ,故M 接电源正极.

(2)由题意,启动时ab 、cd 并联,设回路总电阻为R 总,由电阻的串并联知识得 R 总=R 2①

设回路总电流为I ,根据闭合电路欧姆定律有 I =E R 总

② 设两根金属棒所受安培力之和为F ,有 F =IlB ③

根据牛顿第二定律有 F =ma ④

联立①②③④式得 a =2BEl mR ⑤

(3)设列车减速时,cd 进入磁场后经Δt 时间ab 恰好进入磁场,此过程中穿过两金属棒与导轨

所围回路的磁通量的变化为ΔΦ,平均感应电动势为E 1,由法拉第电磁感应定律有 E 1=ΔΦΔt ⑥ 其中 ΔΦ=Bl 2⑦

设回路中平均电流为I ′,由闭合电路欧姆定律有 I ′=E 1

2R ⑧

设cd 受到的平均安培力为F ′,有 F ′=I ′lB ⑨

以向右为正方向,设Δt 时间内cd 受安培力冲量为I 冲,有 I 冲=-F ′Δt ⑩

同理可知,回路出磁场时ab 受安培力冲量仍为上述值,设回路进出一块有界磁场区域安培力冲量为I 0,有 I 0=2I 冲

设列车停下来受到的总冲量为I 总,由动量定理有 I 总=0-mv 0

联立⑥⑦⑧⑨⑩式得 I 总I 0=mv 0R B 2l 3

讨论:若I 总I 0恰为整数,设其为n ,则需设置n 块有界磁场;若I 总I 0不是整数,设I 总

I 0的整数部分为

N ,则需设置N +1块有界磁场.

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

高中物理-电学中的动量和能量问题专题训练与解析

第2课时电学中的动量和能量问题 高考命题点命题轨迹情境图 电场和磁场中的动量 20183卷21 和能量问题 18(3)21题电磁感应中的动量和 能量问题 例1(2019·湖北省4月份调研)如图1,在高度为H的竖直区域内分布着互相垂直的匀强电场和匀强磁场,电场方向水平向左;磁感应强度大小为B,方向垂直纸面向里.在该区域上方的某点A,将质量为m、电荷量为+q的小球,以某一初速度水平抛出,小球恰好在该区域做直线运动.已知重力加速度为g. 图1 (1)求小球平抛的初速度v0的大小; (2)若电场强度大小为E,求A点距该区域上边界的高度h; (3)若电场强度大小为E,令该小球所带电荷量为-q,以相同的初速度将其水平抛出,小球离开该区域时,速度方向竖直向下,求小球穿越该区域的时间.

拓展训练1(2019·云南昭通市上学期期末)真空中存在电场强度为E 1的匀强电场(未知),一质量为m、带正电的油滴,电荷量为q,在该电场中竖直向下做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变,持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点,重力加速度大小为g,求: (1)电场强度E1的大小和方向; (2)油滴运动到B点时的速度大小. 拓展训练2(2019·江西上饶市重点中学六校第一次联考)如图2所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=2 T.小球1带正电,小球2不带电,静止放置于固定的水平悬空支架上.小球1向右以v1=12m/s的水平速度与小球2正碰,碰后两小球粘在一起在竖直平面内做匀速圆周运动,两小球速度水平向左时离碰撞点的距离为2m.碰后两小球的比荷为4C/kg.(取g=10m/s2) 图2 (1)电场强度E的大小是多少? (2)两小球的质量之比m2 m1是多少?

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

弹簧的动量和能量问题

弹簧的动量和能量问题

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种:①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余

各处的摩擦不计,重力加速度为g,求: (1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原 长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g =10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

电学中的动量和能量问题--二轮专题

第2课时 电学中的动量和能量问题 高考题型1 电场中的动量和能量问题 例1 (2018·湖南省常德市期末检测)如图1所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段BC 粗糙,其余都光滑,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h = m ,整个轨道绝缘,处于方向水平向左、电场强度大小未知的匀强电场中,一个质量m 1= kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2= kg 的小物块Ⅱ碰撞并粘在一起后,在BC 段上做匀速直线运动,到达倾斜段DP 上某位置,物块Ⅰ和Ⅱ与轨道BC 段的动摩擦因数μ=,g =10 m/s 2,sin 37°=,cos 37°=.求: 图1 (1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小; (2)物块Ⅰ和Ⅱ第一次经过圆弧段C 点时,物块Ⅰ和Ⅱ对轨道压力的大小. 答案 (1)2 m/s (2)18 N 、 解析 (1) 物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度大小为E ,物块Ⅰ带电荷量为q ,物块Ⅰ与物块Ⅱ碰撞前速度为v 1,碰撞后共同速度为v 2,则 qE =μ(m 1+m 2)g qEt =m 1v 1 m 1v 1=(m 1+m 2)v 2 联立解得v 2=2 m/s ; (2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ经过C 点时圆弧段轨道对物块支持力的大小为F N 则R (1-cos θ)=h F N -(m 1+m 2)g =(m 1+m 2)v 22 R 解得:F N =18 N ,由牛顿第三定律可得物块Ⅰ和Ⅱ对轨道压力的大小为18 N. 拓展训练1 (多选)(2018·全国卷Ⅲ·21)如图2,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a 、b 所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等.现同时释放a 、b ,它们由静止开始运动.在随后的某时刻t ,

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

弹簧问题中的能量与动量

弹簧问题中的能量与动量 教学目的: 1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况; 2.物理答题规范的培养与指导; 3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。 教学重难点: 1.物理情景的分析方法 2.分析过程中突出的物理问题中的“三变” 教学方法: 讲授、讨论、多媒体演示 教学过程: 在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。在力学主干知识的考查中,能量与动量又永远是考查的重中之重。 一.弹簧基础知识 弹簧类弹力: 大小:F=kx (在弹性限度以内); 方向:沿弹簧轴线而指向弹簧的恢复原状的方向 二.弹簧问题中的能量与动量分析 请学生看物理教材(必修加选修)第二册第10页“思 考与讨论”: 在如图1所示的装置中,木块B 与水平桌面间的接触 是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。 若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒机械能是否守恒说明理由。 例1:如图1所示,若木块的质量为M ,子弹的质量为m ,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。求弹簧可能具有的最大弹性势能。 图1

分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。 运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。 对子弹A 和木块B 构成的系统,在子弹A 射入木块B 的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有: 10)(v m M mv += ① 对子弹A 、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有: ()21max 2 1 v m M E P += ② 联立①②两式得:弹簧具有的最大弹性势能为() m M v m E P +=220 2max 小结: 例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速 度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。(2004年广东卷) 分析:此变式的物理情景较复杂,注意分析物理过程,再针对不同的过程选择恰当的规律列式。 过程一:对滑块A ,从P 到与B 碰撞之前做匀减速直线运动,设滑块A 与B 碰撞前瞬间的速度为1v ,由动能定理得 2 02112 121mv mv mgl -= -μ ① 过程二:滑块A 与滑块B 发生碰撞,由于碰撞时间极短,内力远大于外力,A 、B 构成的系统动量守恒,设A 、B 碰撞后的速度为2v ,由动量守恒定律,得 图2

专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练 专题20 动量与能量综合问题 【专题导航】 目录 热点题型一 应用动量能量观点解决“子弹打木块”模型 ..................................................................................... 1 热点题型二 应用动量能量观点解决“弹簧碰撞”模型 ......................................................................................... 4 热点题型三 应用动量能量观点解决“板块”模型 ............................................................................................... 9 热点题型四 应用动量能量观点解决斜劈碰撞现象 ............................................................................................. 13 【题型演练】 (16) 【题型归纳】 热点题型一 应用动量能量观点解决“子弹打木块”模型 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……① 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有d s s =-21 对子弹用动能定理:20212 121mv mv s f -=?- ……① 对木块用动能定理:222 1 Mv s f =? ……① ①相减得:()() 2 22022121v m M Mm v m M mv d f +=+-= ? ……① 对子弹用动量定理:0 -mv mv t f -=? ……① s 2 d s 1 v 0

电学中的动量和能量问题__二轮专题

第2 课时电学中的动量和能量问题 高考题型 1 电场中的动量和能量问题 例1 (2018省市期末检测)如图1所示,轨道ABCDP位于竖直平面,其中圆弧段CD与水平段 AC 及倾斜段 DP 分别相切于 C 点和 D 点,水平段 BC 粗糙,其余都光滑, DP 段与水平面的夹角0= 37° D、C两点的高度差h= 0.1 m,整个轨道绝缘,处于方向水平向左、电场强度大小未知的匀强电场中,一个质量m1= 0.4 kg、带正电、电荷量未知的小物块I在 A点由 静止释放,经过时间t= 1 s,与静止在B点的不带电、质量 m2= 0.6 kg的小物块n碰撞并粘在一起后,在BC段上做匀速直线运动,到达倾斜段DP上某位置,物块I和n与轨道 BC段的动摩擦因数 尸 0.2, g= 10 m/s2, sin 37 = 0.6, cos 37= 0.8.求:

(1)物块i和n在BC段上做匀速直线运动的速度大小; ⑵物块I和n第一次经过圆弧段C点时,物块i和n对轨道压力的大小. 答案 (1)2 m/s (2)18 N 解析(1)物块I和n粘在一起在BC段上做匀速直线运动,设电场强度大小为 E,物块I带 电荷量为q,物块I与物块n碰撞前速度为V1,碰撞后共同速度为 V2,则 qE = p(m1 + m2)g qEt = m1V1 m1V1= (m1+ m2)V2 联立解得V2= 2 m/s; ⑵设圆弧段CD的半径为R,物块I和n经过C点时圆弧段轨道对物块支持力的大小为F N 则 R(1 - cos 0)= h V22 F N- (m1 + m2)g= (m1+ m2) — 解得:F N = 18 N,由牛顿第三定律可得物块I和n对轨道压力的大小为 18 N. 拓展训练1 (多选)(2018全国卷川21)如图2, 一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a、b所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下 极板附近,与极板距离相等.现同时释放a、b,它们由静止开始运动.在随后的某时刻t, a、 b经过电容器两极板间下半区域的同一水平面. a、b间的相互作用和重力可忽略.下列说确 的是( )

电磁学中的动量和能量守恒

电磁学中的动量和能量守恒 1、 如图所示,在光滑的水平面上有一垂直向下的匀强磁场分布在宽为L 的区域内,一边长为a (a <L )的正方形闭合线圈以初速度v 0垂直于磁场边界滑过磁场后速度变为v (v <v 0),那么( ) A .完全进入磁场中时线圈的速度大于 v 0+v 2 B .完全进入磁场中时线圈的速度等于 v 0+v 2 C .完全进入磁场中时线圈的速度小于v 0+v 2 D .上述情况中A 、B 均有可能,而C 是不可能的 2. 如图所示为一个模拟货物传送的装置,A 是一个表面绝缘、质量M = l00kg 、电量q = + 6.0×10-2C 的传送小车,小车置于光滑的水平地面上。在传送途中,有一个水平电场,电场 强度为E = 4.0×l03 V /m ,可以通过开关控制其有无。现将质量,m = 20kg 的货物B 放 置在小车左端,让它们以υ= 2 m /s 的共同速度向右滑行,在货物和小车快到终点时,闭合开关产生一个水平向左的匀强电场,经过一段时间后关闭电场,当货物到达目的地时,小车和货物的速度恰好都为零。已知货物与小车之间的动摩擦因素μ= 0.1。 (1) 试指出关闭电场的瞬间,货物和小车的速度方向。 (2) 为了使货物不滑离小车的另一端,小车至少多长? (货物不带电且体积大小不计,g 取 10m /s 2) 3、如图所示,光滑水平面上放有用绝缘材料制成的“L”型滑板, 其质量为M ,平面部分的上表面光滑且足够长。在距滑板的A 端为l 的B 处放置一个质量为m 、带电量为q 的小物体C (可看成是质点),在水平的匀强电场作用下,由静止开始运动。已知:M = 3m ,电场的场强为E 。假设物体C 在运动中及与滑板A 端相碰时不损失电量。 (1)求物体C 第一次与滑板A 端相碰前瞬间的速度大小。 (2)若物体C 与滑板A 端相碰的时间极短,而且碰后弹回的速度大小是碰前速度大小的51,求滑板被碰后的速度大小。 (3)求小物体C 从开始运动到与滑板A 第二次碰撞这段时间内,电场力对小物体C 做的功。

物理高考总复习动量与能量的综合压轴题(各省市高考题,一模题答案详解)

高考第2轮总复习首选资料 动量的综合运用 1.(20XX 年重庆卷理科综合能力测试试题卷,T25 ,19分) 某兴趣小组用如题25所示的装置进行实验研究。他们在水平桌面上固定一内径为d 的圆柱形玻璃杯,杯口上放置一直径为 2 3 d,质量为m 的匀质薄原板,板上放一质量为2m 的小物体。板中心、物块均在杯的轴线上,物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g ,不考虑板翻转。 (1)对板施加指向圆心的水平外力F ,设物块与板 间最大静摩擦力为max f ,若物块能在板上滑动,求F 应满足的条件。 (2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I , ①I 应满足什么条件才能使物块从板上掉下? ②物块从开始运动到掉下时的位移s 为多少? ③根据s 与I 的关系式说明要使s 更小,冲量应如何改变。 答案: (1)设圆板与物块相对静止时,它们之间的静摩擦力为f ,共同加速度为a 由牛顿运动定律,有 对物块 f =2ma 对圆板 F -f =ma 两物相对静止,有 f ≤f max 得 F≤ 32 f max 相对滑动的条件 m a x 3 2 F f > (2)设冲击刚结束的圆板获得的速度大小为0v ,物块掉下时,圆板和物块速度大小分别为1v 和2v 由动量定理,有0I mv = 由动能定理,有 对圆板2210311 2()422mg s d mv mv μ-+=- 对物块221 2(2)02 mgs m v μ-=- 由动量守恒定律,有 0122mv mv mv =+ 要使物块落下,必须12v v > 由以上各式得

3 2 I > s = 2 12g μ ? ?? ? 分子有理化得 s =2 3 12md g μ?? ? 根据上式结果知:I 越大,s 越小. 2.(20XX 年湛江市一模理综) 如图所示,光滑水平面上有一长板车,车的上表面0A 段是一长为己的水平粗 糙轨道,A 的右侧光滑,水平轨道左侧是一光滑斜面轨道,斜面轨道与水平轨道在O 点平 滑连接。车右端固定一个处于锁定状态的压缩轻弹簧,其弹性势能为Ep ,一质量为m 的小物体(可视为质点)紧靠弹簧,小物体与粗糙水平轨道间的动摩擦因数为μ,整个装置处于静止状态。现将轻弹簧解除锁定,小物体被弹出后滑上水平粗糙轨道。车的质量为 2m ,斜面轨道的长度足够长,忽略小物体运动经过O 点处产生的机械能损失,不计空气阻力。求: (1)解除锁定结束后小物体获得的最大动能; (2)当∥满足什么条件小物体能滑到斜面轨道上,满足此条件时小物体能上升的最 大高度为多少? 解析:(1)设解锁弹开后小物体的最大速度饷大小为v 1,小物体的最大动啦为E k ,此时长板车的速度大小为v 2,研究解锁弹开过程小物体和车组成的系统,根据动量守恒和机械能守恒,有 ①(2分) ②(3分) ③(1分) 联立①②③式解得 ④(2分) (2)小物体相对车静止时,二者有共同的速度设为V 共 ,长板车和小物体组成的系统水平方向动量守恒 ⑤(2分) 所以v 共=0 ⑥(1分) 120mv mv -=221211 .222p E mv mv = +2111 2 k E mv =12 3k p E E =(2)0m m v +=共

弹簧的动量和能量问题#(精选.)

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种: ①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

高中物理专题练习:动量与能量问题综合应用

高中物理专题练习:动量与能量问题综合应用 时间:60分钟满分:100分 一、选择题(本题共6小题,每小题8分,共48分.其中 1~4为单选,5~6为多选) 1.如图所示,在光滑水平面上的两小车中间连接有一根处于压缩状态的轻弹簧,两手分别 按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中错误的是( ) A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手之后动量不守恒 C.先放开左手,后放开右手,总动量向左 D.无论何时放手,在两手放开后、弹簧恢复原长的过程中,系统总动量都保持不变,但系统 的总动量不一定为零 答案 B 解析当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动 量为零,故两手同时放开后系统总动量始终为零,A正确;先放开左手,左边的物体向左运动,再 放开右手后,系统所受合外力为零,故系统在两手都放开后动量守恒,且总动量方向向左,故B 错误,C、D正确. 2.(湖南六校联考)如图所示,质量为m的均匀木块静止在光滑水平面上,木块左右两侧各 有一位拿着完全相同步枪和子弹的射手.首先左侧射手开枪,子弹水平射入木块的最大深度为 d ,然后右侧射手开枪,子弹水平射入木块的最大深度为d2.设子弹均未射穿木块,且两颗子弹1 与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是( ) A.木块静止,d1=d2B.木块向右运动,d1

可得:m 弹v 弹+0-m 弹v 弹=(2m 弹+m )v 共,解得v 共=0.开枪前后系统损失的机械能等于子弹射入木块时克服阻力所做的功,左侧射手开枪后,右侧射手开枪前,把左侧射手开枪打出的子弹和木块看做一个系统,设子弹射入木块时受到的平均阻力大小为f ,则由动量守恒定律有:m 弹v 弹 +0=(m 弹+m )v 共′,则v 共′= m 弹m 弹+m v 弹,左侧射手射出的子弹射入木块中时,该子弹和木块组 成的系统损失的机械能ΔE 1=12m 弹v 2 弹-12(m 弹+m )v 共′2=fd 1,右侧射手开枪打出的子弹射入木 块时,则有-m 弹v 弹+(m 弹+m )v 共′=(2m 弹+m )v 共,系统损失的机械能ΔE 2=12m 弹v 2弹 +1 2 (m 弹+m )v 共′2-0=fd 2,ΔE 1<ΔE 2,故d 1

电磁场的能量密度和能流密度

电磁场的能量密度和能流密度 ●电磁场能量 ●电磁场对电荷系统作功 ●电磁能密度和电磁能流密度的表达式 ●介质的极化能和磁化能 ( 1 ) 电磁场能量 电磁场是一种物质。 电磁场运动与其他物质运动形式之间能够互相转化,它们都具有共同的运动量度??能量。 这里,我们通过电磁场与带电物体相互作用过程中,电磁场能量和带电物体运动的机械能之间的相互转化,导出电磁场能量的表达式。 能量是按照一定的方式分布在电磁场内的,而且随着电磁场的运动,能量将在空间中传播。引进: 电磁能密度(体积电磁能) w,表示电磁场单位体积内的能量; 电磁能流密度矢量S,表示单位时间内流过与能量传输方向(矢量S方向)垂直的单位横截面积的电磁能量( 2 ) 电磁场对电荷系统作功 考虑空间某区域,设其体积为V,表面为A,自由电荷密度为ρe0,电流密度为j0. 以f表示电磁场对电荷

的作用力密度,v 表示电荷的运动速度,则电磁场对电荷系统所作功的功率为 ????) (d V V v f , 体积V 内电磁场能量的增加率为 ????????=)() (d d d d V V V t w V w t , 通过界面A 流入V 内的电磁能为 σ???-) (d A S . 能量守恒定律要求单位时间内通过界面A 流入V 内的能量,等于场对V 内电荷作功的功率以及V 内电磁场能量的增加率之和,即 ??????????+?=?-)()() (d d d A V V V t w V v f A S . (14.64) 利用奥-高斯公式可得,式(14.64)的相应的微分形式是 v f S ?-=??+??t w . (14.65) ( 3 ) 电磁能密度和电磁能流密度的表达式 ① 由洛仑兹力公式可得 0)()(j E v E v B v E v f ?=?=??+=?ρρρ. (14.66) ② 将麦克斯韦方程组中的式

高考物理一轮复习课时跟踪检测(二十一) 动量与能量的综合问题

课时跟踪检测(二十一) 动量与能量的综合问题 [A 级——基础小题练熟练快] 1.(多选)(2020·青岛市模拟)如图,轻质弹簧上端悬挂于天花板,下端系一 圆盘A ,处于静止状态。一圆环B 套在弹簧外,与圆盘A 距离为h ,让环自 由下落撞击圆盘,碰撞时间极短,碰后圆环与圆盘共同向下开始运动,下列 说法正确的是( ) A .整个运动过程中,圆环、圆盘与弹簧组成的系统机械能守恒 B .碰撞后环与盘一起做匀加速直线运动 C .碰撞后环与盘一块运动的过程中,速度最大的位置与h 无关 D .从B 开始下落到运动到最低点过程中,环与盘重力势能的减少量大于弹簧弹性势能的增加量 解析:选CD 圆环与圆板碰撞过程,时间极短,内力远大于外力,系统总动量守恒,由于碰后速度相同,为完全非弹性碰撞,机械能不守恒,故A 错误;碰撞后环与盘一起向下运动过程中,受重力,弹簧弹力,由于弹力增大,整体受到的合力变化,所以加速度变化,故B 错误;碰撞后平衡时,有kx =(m +M )g ,即碰撞后新平衡位置与下落高度h 无关,故C 正确;从B 开始下落到运动到最低点过程中,环与盘发生完全非弹性碰撞,有能量损失,故环与盘重力势能的减少量大于弹簧弹性势能的增加量,故D 正确。 2.(多选)(2019·南昌模拟)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A 以速度v 0向右运动压缩弹簧,测得弹簧的最大压缩量为x 。现让弹簧一端连接另一质量为m 的物体B (如图乙所示),物体A 以2v 0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x ,则( ) A .物体A 的质量为3m B .物体A 的质量为2m C .弹簧压缩量最大时的弹性势能为32 m v 02 D .弹簧压缩量最大时的弹性势能为m v 02 解析:选AC 对题图甲,设物体A 的质量为M ,由机械能守恒定律可得,弹簧压缩x 时弹性势能E p =12 M v 02;对题图乙,物体A 以2v 0的速度向右压缩弹簧,物体A 、B 组成的

2021年高考物理重难点复习:电磁感应中的动量和能量问题

2021年高考物理重难点复习:电磁感应中的动量和能量问题热点题型一电磁感应中的能量问题 1.电磁感应中的能量转化 2.求解焦耳热Q的三种方法 3.求解电磁感应现象中能量问题的一般步骤 (1)在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源. (2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化. (3)根据能量守恒列方程求解. (一)功能关系在电磁感应中的应用 【例1】如图所示,在竖直平面内固定有光滑平行导轨,间距为L,下端接有阻值为R的电阻,空间存在与导轨平面垂直、磁感应强度为B的匀强磁场。质量为m、电阻为r的导体棒ab与上端固定的弹簧相连并垂直导轨放置。初始时,导体棒静止,现给导体棒竖直向下的初速度v0,导体棒开始沿导轨往复运动,运动过程中始终与导轨垂直并保持良好接触。若导体棒电阻r与电阻R的阻值相等,不计导轨电阻,则下列说法中正确的是() A.导体棒往复运动过程中的每个时刻受到的安培力方向总与运动方向相反 B.初始时刻导体棒两端的电压U ab=BLv0

C .若导体棒从开始运动到速度第一次为零时,下降的高度为h ,则通过电阻R 的电量为BLh 2R D .若导体棒从开始运动到速度第一次为零时,下降的高度为h ,此过程导体棒克服弹力做 功为W ,则电阻R 上产生的焦耳热Q =14mv 2+12mgh -W 【答案】 AC 【解析】 导体棒竖直向下运动时,由右手定则判断可知, ab 中产生的感应电流方向从b →a ,由左手定则判断得知ab 棒受到的安培力竖直向上,导体棒竖直向上运动时,由右手定则判 断可知,ab 中产生的感应电流方向从a →b ,由左手定则判断得知ab 棒受到的安培力竖直向 下,所以导体棒往复运动过程中的每个时刻受到的安培力方向总与运动方向相反,A 正确;导体棒开始运动的初始时刻,ab 棒产生的感应电势为E =BLv 0,由于r =R ,a 端电势比b 端高,所以导体棒两端的电压U ab =12E =12BLv 0,B 错误;若导体棒从开始运动到速度第一 次为零时,下降的高度为h ,则通过电阻R 的电量为q =ΔΦR +r =BLh 2R ,C 正确;导体棒从开 始运动到速度第一次为零时,根据能量守恒定律得知电路中产生的焦耳热Q 热=12mv 20+mgh -W ,所以电阻R 上产生的焦耳热Q =12Q 热=14mv 20+12mgh -W 2,D 错误。 【变式1】如图所示,相距为d 的两条水平虚线之间有方向垂直纸面向里的匀强磁场,磁感应强度大小为B ,正方形线圈abec 边长为L (L

高中物理复习能量和动量经典习题例题含问题详解

专题研究二 能量和动量 清大师德教育研究院物理教研中心丽

1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。例如2005年物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。 2.动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。计算题常设置某个瞬时过程,计算该过程物体受到的平均作用力或物体状态的变化。要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。 3.动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。如2004年物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。 4.动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动

量定理及能量转化与守恒的方法解决实际问题。分析解答问题的过程中常需运用归纳、推理的思维方法。如: 2003年全国卷第20题、2004年理综全国卷第25题的柴油机打桩问题、2004年物理卷第18题、2004年物理卷第17题、2005年物理卷第18题、2005年物理卷第18题等。值得注意的是2005年物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。 第5课时 做功、能量和动能定理 [例1](2005·10)如图5-1所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1、W 2,滑 块经B 、C 两点时的动能分别为E KB 、E Kc ,图中AB=BC ,则一定有 ( ) (A)W l >W 2 (B)W 1E KC (D)E KB W 2,所以A 正确。 根据动能定理:K K G F E E W -' =-W 因在两段中拉力做的功W F 与重力做的功W G 的大小关系不能确定,故无法比较E KB 与E Kc 的大小。 点评:解决该题的关键是能正确地理解功的定义,注意从不同的思维角度去分析问题。题中力F 为恒力,学生易从求力的作用点位移角度来比较两过程绳子缩短的长度,进而增加了思维难度,甚至造成错误。 [例2](2004·17)如图5-2所示, 轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从 导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰 精典考题反思 B A 图5-1

相关文档
最新文档