数学常见几何辅助线 ppt课件
数学—初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
中考数学10大类辅助线

中考数学10大类辅助线
中考数学中,常见的辅助线有以下10大类:
1.垂直辅助线:通过一个点和另一直线的垂直线,常用于求两条
直线的垂直关系、求直角三角形等问题。
2.平行辅助线:通过一点和一条直线,与已知的另一直线平行,
常用于求两条直线的平行关系、求平行四边形等问题。
3.中垂线:将一个线段的中点与另一点相连的线段,用于求线段
的中点、判断三角形的等腰性质等问题。
4.角平分线:将一个角分成两个相等的角的线段,通常用于求角
的平分线、求角的刻度等问题。
5.对称辅助线:通过一个点,找到与已知点关于某一直线对称的点,用于求对称点的位置、对称图形等问题。
6.高线:将一个顶点到对立边的垂线段,常用于求三角形的高度、找到垂心等问题。
7.过定点画圆:通过一个已知点和一个已知的半径,画出以该点为圆心的圆,常用于求圆的位置关系、圆与线的交点等问题。
8.过三点画圆:通过给定的三个点,画出以这三点为圆上三个点的圆,用于求圆与三角形的关系等问题。
9.共轭辅助线:通过两个点,在给定条件下找到与已知直线共轭的直线,常用于求一对共轭角、共轭点等问题。
10.谁是谁的辅助线:在解题过程中,发现和已知量之间存在特定的几何关系时,可以将某个量作为另一个量的辅助线,通过推导或等式的变形求解。
以上是中考数学中常用的10大类辅助线。
通过合理地运用这些辅助线,可以帮助我们更好地解决各种几何问题,提高解题的效率和准确性。
初中数学必须掌握的几何辅助线技巧!

初中数学必须掌握的几何辅助线技巧!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,可能就是解题绕弯又出错!如何快速、添加利于解题的辅助线?诀窍都在下面了!图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。
例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。
二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。
(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。
因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。
因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。
例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。
例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。
初中数学辅助线口诀及图解

初中数学辅助线口诀及图解初中数学辅助线口诀及图解 1作辅助线的方法和技巧题中有角平分线,可向两边作垂线。
垂直平分线,可以把线连接到两端。
三角形中两中点,连结则成中位线。
三角形中有中线,延长中线同样长。
成比例,正相似,常为平行线。
如果所有的线都在圆的外面,则通过切割圆心来连接这些线。
如果两圆内外切,经过切点作切线。
两个圆相交于两点,这两点一般作为它们的公共弦。
它是直径,在一个半圆里,我想把线连接成直角。
作等角,添个圆,证明题目少困难。
辅助线是虚线。
小心不要更改图纸。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
需要将线段对折一半,延伸和缩短都可以测试。
三角形的两个中点相连形成中线。
三角形有一条中线,中线延伸。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
移动平行对角线组成三角形是很常见的。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径和弦长计算,弦中心到中间站的距离。
圆上若有一切线,切点圆心半径连。
勾股定理是计算切线长度最方便的方法。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆形,要连接成直角的弦。
圆弧的中点与圆心相连,竖径定理要记完整。
圆周角边两条弦,直径和弦端点连。
切角、切边、切弦、找同弧、同对角线等。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交的圆,别忘了把它做成普通串。
内外相切的两个圆,通过切点公切线。
如果添加了连接线,切点必须在连接线上。
在等角图上加一个圆很难证明问题。
辅助线,是虚线,画图注意勿改变。
如果图形是分散的,对称旋转进行实验。
画画是必不可少的,平时也要熟练。
解题还要多心眼,经常总结方法显。
不要盲目加线。
方法要灵活多变。
分析综合方法选,困难再多也会减。
初中几何辅助线大全(潜心整理)

初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二、垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三、边边若相等,旋转做实验。
Sw.初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
初中数学各种常见几何图形的添辅助线的方法

初中数学各种常见几何图形的添辅助线的方法J添加中线,在等腰三角形中,一般添加一种就可以得出很多,添加中线,可得角平分等,这是最常用的,可以根据公式,选择添加的,但添加之后要知道可得出什么结论,一般证全等,就要找出全等三角形,根据这个来找全等的条件,这样比较好做,遇上难题,我们可拆出简单图形,来找以前做过的基本图形,可先不想添加辅助线的方法,找出基本图形是很好的方法,根据需要来添加辅助线,不要盲目添加,否则越想越难,有角平分一定想垂直,在等腰中,要想三线合一J人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅰ.连结
目的:构造全等三角形或等腰三角形 适用情况:图中已经存在两个点—X和Y 语言描述:连结XY 注意点:双添---在图形上添虚线
在证明过程中描述添法
Ⅰ.连结
典例1:如图,AB=AD,BC=DC,求证:∠B=∠D.
B
A
C
D
1.连结AC
构造全等三角形
2.连结BD 构造两个等腰三角形
半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 要想作个外接圆,各边作出中垂线。 还要作个内切圆,内角平分线梦园。 如果遇到相交圆,不要忘作公共弦。 若是添上连心线,切点肯定在上面。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。
OB=5cm,求OD的长.
连结BD
AC
构造全等三角形
O
D
B
Ⅱ.角平分线上点向两边作垂线段
目的:构造直角三角形,得到距离相等 适用情况:图中已经存在一个点X和一条线MN 语言描述:过点X作XY⊥MN 注意点:双添---在图形上添虚线
在证明过程中描述添法
Ⅱ.角平分线上点向两边作垂线段
典例1:如图,△ABC中, ∠C =90o,BC=10,BD=6, AD平分∠BAC,求点D到AB的距离.
数学常见几何辅助线作法
初中数学常见几何辅助线作法歌诀
人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 角平分线平行线,等腰三角形来添。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线加一倍。 梯形里面作高线,平移一腰试试看。 等积式子比例换,寻找相似很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,弦高公式是关键。
• 常常连结两条弦没有公共点 的另一端点。
• 作用:利用圆周角的性质, 可得到直径。
已知:如图,点D的坐标为(0,6),过原点O,D点的 圆交x轴的正半轴于A点.圆周角∠OCA=30°,求A点 的坐标.
• 4.遇到弦时
• 常常连结圆心和弦的两个端 点,构成等腰三角形,还可 连结圆周上一点和弦的两个 端点。作用:①可得等腰三 角形; ②据圆周角的性质可 得相等的圆周角。
Ⅳ.中线延长一倍
目的:构造直角三角形,得到斜边相等 适用情况:图中已经存在一条线段MN和垂直平 分线上一个点X 语言描述:连结XM和XN 注意点:双添---在图形上添虚线 在证明过程中描述添法
Ⅳ.中线延长一倍
1.AD是△ABC的中线求 , 证 A: D 1(AB AC ) 2
延长AD到点E,使DE=AE,
Ⅱ.角平分线上点向两边作垂线段
典例3:如图,梯形中, ∠A= ∠D =90o, B A
BE、CE均是角平分线,
求证:BC=AB+CD.
F
过点E作EF⊥BC
E
构造了:
全等的直角三角形且距离相等 C
D
思考: 你从本题中还能得到哪些结论?
Ⅱ.角平分线上点向两边作垂线段
典例4:如图,OC 平分∠AOB, ∠DOE +∠DPE =180o,
A
连结CE.
C B
D
E
Ⅱ.角平分线上点向两边作垂线段
2.如图,梯形中, ∠A= ∠D =90o, BE、CE均是角平分线,
求证:BC=AB+CD.
延长BE和CD交于点F
构造了:
全等的直角三角形
C
思考: 你从本Leabharlann 中还能得到哪些结论?BA
E
DF
• 1.遇到弦时(解决有关弦的问题时)
• 常常添加弦心距,或者作垂直于弦的 半径(或直径)或再连结过弦的端点 的半径。
• 作用:①利用垂径定理;
• ②利用圆心角及其所对的弧、弦 和弦心距之间的关系;
• ③利用弦的一半、弦心距和半径组 成直角三角形,根据勾股定理求有关 量。
1.如图,⊙O的直径AB和弦CD相交于点E,且 AE=1cm,EB=5cm,∠DEB=60°,求CD的长。
CA E O
A
C
M
N
DB
O
D
B
2.已知⊙O中,M、N分别是不平行的两条弦AB和CD的中 点,且AB = CD, 求证:∠AMN=∠CNM
A
E
过点D作DE⊥AB
B
构造了: 全等的直角三角形且距离相等
C D
Ⅱ.角平分线上点向两边作垂线段
典例2:如图,△ABC中, ∠C =90o,AC=BC, AD平分∠BAC,求证:AB=AC+DC.
A
过点D作DE⊥AB
构造了:
E
全等的直角三角形且距离相等
B
C
D
思考:
若AB=15cm,则△BED的周长是多少?
6.已知:如图3,AB是⊙O的直径,CD是⊙O的弦,AB, CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及 ∠AOC的度数.
7.已知:如图,半圆O的直径AB=12cm,点C,D是这 个半圆的三等分点.求∠CAD的度数及弦AC,AD和围 成的图形(图中阴影部分)的面积S. 8.已知:如图,△ABC内接于⊙O,AM平分∠BAC交 ⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.
• 2.遇到有直径时
常常添加(画)直径所对的圆周 角。
作用:利用圆周角的性质得到直 角或直角三角形。
3.如图,在⊙O中,AB是直径,C15,则 BAD =
A D
C
O
B
4.如图,AB是⊙O的直径,弦CD平分∠ACB,若 BD=10cm,则AB=______,∠BCD=______.
• 3.遇到90度的圆周角时
Ⅰ.连结
典例2:如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD,
求证:点M是CD的中点.
连结AC、AD
A
构造全等三角形
B
E
C MD
Ⅰ.连结
典例3:如图,AB=AC,BD=CD, M、N分别是BD、CD
的中点,求证:∠AMB= ∠ANC
连结AD
A
构造全等三角形
B
C
M
N
D
Ⅰ.连结
典例4:如图,AB与CD交于O, 且AB=CD,AD=BC,
求证: PD=PE.
A
过点P作PF⊥OA,PG ⊥OB
F
构造了:
D
全等的直角三角形且距离相等
O
思考: 你从本题中还能得到哪些结论?
C P
G EB
Ⅲ.垂直平分线上点向两端连线段
目的:构造直角三角形,得到斜边相等 适用情况:图中已经存在一条线段MN和垂直平 分线上一个点X 语言描述:连结XM和XN 注意点:双添---在图形上添虚线 在证明过程中描述添法