2017-2018学年苏教版选修2-1 第3章空间向量与立体几何 单元测试1
2018届苏教版(理科数学) 立体几何中的向量方法 单元测试

第3讲立体几何中的向量方法(限时:45分钟)【选题明细表】1.(2017·西藏林芝一中三模)如图,在四棱锥P ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:平面PBD⊥平面PAC;(2)若PA=AB,求PC与平面PBD所成角的正弦值.(1)证明:因为四边形ABCD是菱形,所以AC⊥BD.又因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BD⊥平面PAC,因为BD⊂平面PBD,所以平面PBD⊥平面PAC.(2)解:设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=CO=,如图,以O为坐标原点,建立空间直角坐标系O-xyz,则P(,0,2),A(,0,0),B(0,1,0),D(0,-1,0),C(-,0,0),所以=(-,1,-2),=(-,-1,-2),=(-2,0,-2).设平面PDB的法向量为n=(x,y,z),由得解得y=0,令z=,得x=-2,所以n=(-2,0,).设PC与平面PBD所成角为θ,则sin θ=|cos<n,>|===,则PC与平面PBD所成角的正弦值为.2.(2017·成都三诊)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.(1)求BM的长;(2)求二面角A DM B的余弦值的大小.解:(1)设AC∩BD=O,取EF中点N,连接NO,因为四边形ABCD是菱形,所以AC⊥BD,因为四边形BDEF是矩形,所以ON⊥BD,因为平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,ON⊂平面BDEF, 所以ON⊥平面ABCD,以O为原点,以OC,OB,ON为坐标轴建立空间坐标系如图所示:因为底面ABCD是边长为2的菱形,∠BAD=60°,所以OB=OD=1,OA=OC=,因为四边形BDEF是矩形,DE=2,所以A(-,0,0),B(0,1,0),C(,0,0),E(0,-1,2),D(0,-1,0),设|BM|=h,则M(0,1,h),所以=(0,2,h),=(,-1,2),因为DM⊥平面ACE,所以⊥,所以-2+2h=0,解得h=1,所以|BM|=1.(2)=(,-1,0),=(0,2,1),设平面ADM的法向量为m=(x,y,z),则所以令x=得m=(,3,-6),又AC⊥平面BDM,所以n=(1,0,0)是平面BDM的一个法向量,所以cos<m,n>===,所以二面角A-DM-B的余弦值为.3.(2017·黑龙江大庆一中模拟)如图,在直三棱柱ABC A1B1C1,AC⊥BC,AC=BC=BB1,点D是BC的中点.(1)求证:A1C∥平面AB1D;(2)求二面角B1-AD-B的正弦值;(3)判断在线段B1B上是否存在一点M,使得A1M⊥B1D?若存在,求出的值;若不存在,请说明理由.(1)证明:法一取B1C1的中点E,连接A1E,CE.由已知得A1E∥AD,CE∥DB1,所以平面A1CE∥平面ADB1,又A1C⊂平面A1CE,所以AC1∥平面AB1D.法二以C为坐标原点,建立如图所示的坐标系,设AC=BC=BB1=2,则A1(2,0,2),C(0,0,0),D(0,1,0),A(2,0,0),B1(0,2,2),B(0,2,0), 所以=(-2,0,-2),=(-2,1,0),=(-2,2,2),设平面AB1D的法向量为n=(x,y,z),则由可得故可取n=(1,2,-1),因为·n=0,所以A1C∥平面AB1D.(2)解:由(1)知平面AB1D的法向量为n=(1,2,-1),设平面ABD的法向量为m=(0,0,2)所以二面角B1AD B的余弦值为||=||,所以二面角B1AD B的正弦值为.(3)解:设M(0,2,t),则=(-2,2,t-2),=(0,-1,-2),若A1M⊥B1D,则·=0,所以-2-2(t-2)=0,所以t=1,所以=时,A1M⊥B1D.4.(2017·天津卷)如图,在三棱锥P ABC中,PA⊥底面ABC,∠BAC= 90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角C EM N的正弦值;(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.解:如图,以A为原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2), M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,-2).设n=(x,y,z)为平面BDE的法向量,则即不妨设z=1,可得n=(1,0,1).又=(1,2,-1),可得·n=0.因为MN⊄平面BDE,所以MN∥平面BDE.(2)解:易知n1=(1,0,0)为平面CEM的一个法向量.设n2=(x1,y1,z1)为平面EMN的法向量,则因为=(0,-2,-1),=(1,2,-1),所以不妨设y1=1,可得n2=(-4,1,-2).因此有cos<n1,n2>==-,于是sin<n1,n2>=.所以二面角C EM N的正弦值为.(3)解:依题意,设AH=h(0≤h≤4),则H(0,0,h),进而可得=(-1,-2,h),=(-2,2,2).由已知,得|cos<,>|===,整理得10h2-21h+8=0,解得h=或h=.所以线段AH的长为或.。
数学选修2-1苏教版:第3章 空间向量与立体几何 章末检测试卷(三)

章末检测试卷(三)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是________. 答案 5解析 ∵a ·b =-3+2x -5=2, ∴x =5.2.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)答案 -23a +12b +12c解析 如图,连结ON ,由向量的加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .3.设i ,j ,k 为单位正交基底,已知a =3i +2j -k ,b =i -j +2k ,则5a ·3b =________. 答案 -15解析 ∵a =(3,2,-1),b =(1,-1,2),∴5a ·3b =15a ·b =-15.4.设平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),则α,β的位置关系为________.考点 向量法求解平面与平面的位置关系 题点 向量法解决面面平行 答案 平行或重合解析 ∵平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),满足v =-3u ,∴α∥β或重合.5.若空间向量a ,b 满足|a |=|b |=1,且a 与b 的夹角为60°,则a ·a +a ·b =________. 答案 32解析 由空间向量数量积的性质,知a ·a =|a |2=1. 由空间向量数量积的定义,得a ·b =|a ||b |cos 〈a ,b 〉=1×1×cos60°=12,从而a ·a +a ·b =1+12=32.6.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 为________三角形. 答案 直角解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.7.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是________.(填序号)①⎝⎛⎭⎫1,1,12;②(1,2,1);③(1,1,1);④(2,-2,1). 答案 ①解析 由题意知,C (0,0,0),A (1,0,0),B (0,1,0),P (0,0,2),则P A →=(1,0,-2),AB →=(-1,1,0), 设平面P AB 的一个法向量为n =(x ,y,1),则⎩⎪⎨⎪⎧ x -2=0,-x +y =0,解得⎩⎪⎨⎪⎧x =2,y =2,∴n =(2,2,1).又⎝⎛⎭⎫1,1,12=12n ,∴①正确. 8.已知Rt △ABC 中,∠C =90°,∠B =30°,AB =4,D 为AB 的中点,沿中线将△ACD 折起使得AB =13,则二面角A -CD -B 的大小为________. 答案 120°解析 如图,取CD 中点E ,在平面BCD 内过点B 作BF ⊥CD ,交CD 延长线于点F .据题意知AE ⊥CD ,AE =BF =3,EF =2,AB =13. 且〈EA →,FB →〉为二面角的平面角, 由AB →2=(AE →+EF →+FB →)2得13=3+3+4+2×3×cos 〈AE →,FB →〉, ∴cos 〈EA →,FB →〉=-12,又∵〈EA →,FB →〉∈[0°,180°], ∴〈EA →,FB →〉=120°. 即所求的二面角为120°.9.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,若以{AB →,AC →,AD →}为基底,则GE →=________.答案 -112AB →-13AC →+34AD →解析 GE →=AE →-AG →=AD →+DE →-23AM →=AD →+14DB →-13(AB →+AC →)=AD →+14AB →-14AD →-13AB →-13AC →=-112AB →-13AC →+34AD →.10.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AB =8,AD =6,AA ′=8,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.答案 18解析 ∵AC ′—→=AC →+CC ′—→=AB →+AD →+AA ′—→,|AC ′—→|2=(AB →+AD →+AA ′—→)2=|AB →|2+|AD →|2+|AA ′—→|2+2(AB →·AD →+AB →·AA ′—→+AD →·AA ′—→) =82+62+82+2×(24+32+24)=324, ∴|AC ′—→|=324=18.11.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为________.答案105解析 不妨设SA =SB =SC =1,以点S 为坐标原点,SA ,SB ,SC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系S -xyz ,则相关各点坐标为A (1,0,0),B (0,1,0),C (0,0,1),S (0,0,0),M ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫0,0,12. 因为SM →=⎝⎛⎭⎫12,12,0, BN →=⎝⎛⎭⎫0,-1,12, 所以|SM →|=12,|BN →|=54, SM →·BN →=-12,cos 〈SM →,BN →〉=SM →·BN →|SM →| |BN →|=-105,因为异面直线所成的角为锐角或直角, 所以异面直线SM 与BN 所成角的余弦值为105. 12.如图所示,已知二面角αlβ的平面角为θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为________.答案3-2cos θ解析 因为AD →=AB →+BC →+CD →,所以AD →2=AB →2+BC →2+CD →2+2AB →·CD →+2AB →·BC →+2BC →·CD →=1+1+1+2cos(π-θ)=3-2cos θ.所以|AD →|=3-2cos θ, 即AD 的长为3-2cos θ.13.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 答案 ⎝⎛⎭⎫43,43,83解析 设Q (x ,y ,z ),因为Q 在OP →上,故有OQ →∥OP →, 设OQ →=λOP →(λ∈R ),可得x =λ,y =λ,z =2λ, 则Q (λ,λ,2λ),QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),所以QA →·QB →=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23, 故当λ=43时,QA →·QB →取最小值,此时Q ⎝⎛⎭⎫43,43,83. 14.给出下列命题:①若AB →=CD →,则必有A 与C 重合,B 与D 重合,AB 与CD 为同一线段; ②若a ·b <0,则〈a ,b 〉是钝角;③若a 为直线l 的方向向量,则λa (λ∈R )也是l 的方向向量;④非零向量a ,b ,c 满足a 与b ,b 与c ,c 与a 都是共面向量,则a ,b ,c 必共面. 其中不正确的命题为________.(填序号) 答案 ①②③④解析 ①错误,如在正方体ABCD -A 1B 1C 1D 1中,AB →=A 1B 1—→,但线段AB 与A 1B 1不重合;②错误,a ·b <0,即cos 〈a ,b 〉<0⇒π2<〈a ,b 〉≤π,而钝角的取值范围是⎝⎛⎭⎫π2,π;③错误,当λ=0时,λa =0不能作为直线l 的方向向量;④错误,在平行六面体ABCD -A 1B 1C 1D 1中,令AB →=a ,AD →=b ,AA 1—→=c ,则它们两两共面,但显然AB →,AD →,AA 1—→是不共面的. 二、解答题(本大题共6小题,共90分)15.(14分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010,∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0, ∴k =-52或k =2.16.(14分)已知空间内三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 与向量AB →,AC →都垂直,且|a |=3,求向量a 的坐标. 解 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12,又∵∠BAC ∈[0°,180°],∴∠BAC =60°,∴S =|AB →||AC →|sin60°=7 3. (2)设a =(x ,y ,z ),由a ⊥AB →,得-2x -y +3z =0, 由a ⊥AC →,得x -3y +2z =0, 由|a |=3,得x 2+y 2+z 2=3, ∴x =y =z =1或x =y =z =-1. ∴a =(1,1,1)或a =(-1,-1,-1).17.(14分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.(1)化简12AA 1—→+BC →+23AB →,并在图上标出结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的点,且C 1N =14C 1B ,设MN→=αAB →+βAD →+γAA 1—→,试求α,β,γ的值.解 (1)取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连结EF ,则12AA 1—→+BC →+23AB → =EA 1—→+A 1D 1—→+D 1F —→=EF →. (2)MN →=MB →+BN → =12DB →+34BC 1—→ =12(DA →+AB →)+34(BC →+CC 1—→)=12AB →+14AD →+34AA 1—→, 所以α=12,β=14,γ=34.18.(16分)如图所示,已知直三棱柱(侧棱垂直于底面的三棱柱)ABC -A 1B 1C 1中,AC ⊥BC ,D 是AB 的中点,AC =BC =BB 1.(1)求证:BC 1⊥AB 1; (2)求证:BC 1∥平面CA 1D .证明 如图所示,以C 1为坐标原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1—→=(0,-2,-2),AB 1—→=(-2,2,-2), ∴BC 1—→·AB 1—→=0-4+4=0, 即BC 1—→⊥AB 1—→,故BC 1⊥AB 1. (2)取A 1C 的中点E ,连结DE . 由于E (1,0,1),∴ED →=(0,1,1),又BC 1—→=(0,-2,-2), ∴ED →=-12BC 1—→,且ED 与BC 1不共线,∴ED ∥BC 1,又ED ⊂平面CA 1D ,BC 1⊄平面CA 1D , ∴BC 1∥平面CA 1D .19.(16分)如图,已知四棱锥P -ABCD 中,P A ⊥底面ABCD ,且ABCD 为正方形,P A =AB =a ,点M 是PC 的中点.(1)求BP 与DM 所成的角的大小; (2)求二面角M -DA -C 的大小.解 (1)以A 为坐标原点,AB →,AD →,AP →为x 轴,y 轴,z 轴正方向,建立空间直角坐标系. 由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ. ∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角θ=90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0), BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0. 又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22.∴所求的二面角M -DA -C 的大小为45°.20.(16分)如图所示,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,AB =2CD =2BC =2,P 为CE 的中点.(1)求证:AB ⊥DE ;(2)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(3)在△ABE 内是否存在一点Q ,使PQ ⊥平面CDE ?如果存在,求PQ 的长;如果不存在,请说明理由.(1)证明 取AB 的中点O ,连结OD ,OE , 因为△ABE 是正三角形,所以AB ⊥OE .因为四边形ABCD 是直角梯形,DC =12AB ,AB ∥CD ,所以四边形OBCD 是平行四边形, 所以OD ∥BC .又AB ⊥BC ,所以AB ⊥OD ,又OE ∩OD =O ,所以AB ⊥平面ODE , 所以AB ⊥DE .(2)解 因为平面ABCD ⊥平面ABE ,AB ⊥OE ,OE ⊂平面ABE ,平面ABCD ∩平面ABE =AB . 所以OE ⊥平面ABCD , 所以OE ⊥OD .如图所示,以O 为坐标原点,OA ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (1,0,0),B (-1,0,0), D (0,0,1),C (-1,0,1), E (0,3,0),所以AD →=(-1,0,1),DE →=(0,3,-1).最新中小学教案、试题、试卷设平面ADE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·DE →=0,n 1·AD →=0,即⎩⎨⎧3y 1-z 1=0,-x 1+z 1=0, 令z 1=1,则x 1=1,y 1=33, 所以n 1=⎝⎛⎭⎫1,33,1, 同理可求得平面BCE 的一个法向量为 n 2=(-3,1,0),设平面ADE 与平面BCE 所成的锐二面角为θ, 则cos θ=|n 1·n 2||n 1||n 2|=⎪⎪⎪⎪33-373×2=77, 所以平面ADE 与平面BCE 所成的锐二面角的余弦值为77. (3)解 假设存在Q (x 2,y 2,0)满足题意,因为P ⎝⎛⎭⎫-12,32,12,所以PQ →=⎝⎛⎭⎫x 2+12,y 2-32,-12, 又CD →=(1,0,0),DE →=(0,3,-1), 所以⎩⎪⎨⎪⎧PQ →·CD →=0,PQ →·DE →=0,即⎩⎨⎧ x 2+12=0,3⎝⎛⎭⎫y 2-32+12=0, 解得⎩⎨⎧x 2=-12,y 2=33, 易知点Q ⎝⎛⎭⎫-12,33,0在△ABE 内, 所以△ABE 内存在点Q ⎝⎛⎭⎫-12,33,0,使PQ ⊥平面CDE ,此时PQ =33.。
数学精选练习选修2-1苏教版第3章空间向量与立体几何章末检测试卷(三)含答案

章末检测试卷(三)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是________. 答案 5解析 ∵a ·b =-3+2x -5=2, ∴x =5.2.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)答案 -23a +12b +12c解析 如图,连结ON ,由向量的加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .3.设i ,j ,k 为单位正交基底,已知a =3i +2j -k ,b =i -j +2k ,则5a ·3b =________. 答案 -15解析 ∵a =(3,2,-1),b =(1,-1,2),∴5a ·3b =15a ·b =-15.4.设平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),则α,β的位置关系为________.考点 向量法求解平面与平面的位置关系 题点 向量法解决面面平行 答案 平行或重合解析 ∵平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),满足v =-3u ,∴α∥β或重合.5.若空间向量a ,b 满足|a |=|b |=1,且a 与b 的夹角为60°,则a ·a +a ·b =________. 答案 32解析 由空间向量数量积的性质,知a ·a =|a |2=1. 由空间向量数量积的定义,得a ·b =|a ||b |cos 〈a ,b 〉=1×1×cos60°=12,从而a ·a +a ·b =1+12=32.6.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 为________三角形. 答案 直角解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.7.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是________.(填序号)①⎝⎛⎭⎫1,1,12;②(1,2,1);③(1,1,1);④(2,-2,1). 答案 ①解析 由题意知,C (0,0,0),A (1,0,0),B (0,1,0),P (0,0,2),则P A →=(1,0,-2),AB →=(-1,1,0), 设平面P AB 的一个法向量为n =(x ,y,1),则⎩⎪⎨⎪⎧ x -2=0,-x +y =0,解得⎩⎪⎨⎪⎧x =2,y =2,∴n =(2,2,1).又⎝⎛⎭⎫1,1,12=12n ,∴①正确. 8.已知Rt △ABC 中,∠C =90°,∠B =30°,AB =4,D 为AB 的中点,沿中线将△ACD 折起使得AB =13,则二面角A -CD -B 的大小为________. 答案 120°解析 如图,取CD 中点E ,在平面BCD 内过点B 作BF ⊥CD ,交CD 延长线于点F .据题意知AE ⊥CD ,AE =BF =3,EF =2,AB =13. 且〈EA →,FB →〉为二面角的平面角, 由AB →2=(AE →+EF →+FB →)2得13=3+3+4+2×3×cos 〈AE →,FB →〉, ∴cos 〈EA →,FB →〉=-12,又∵〈EA →,FB →〉∈[0°,180°], ∴〈EA →,FB →〉=120°. 即所求的二面角为120°.9.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,若以{AB →,AC →,AD →}为基底,则GE →=________.答案 -112AB →-13AC →+34AD →解析 GE →=AE →-AG →=AD →+DE →-23AM →=AD →+14DB →-13(AB →+AC →)=AD →+14AB →-14AD →-13AB →-13AC →=-112AB →-13AC →+34AD →.10.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AB =8,AD =6,AA ′=8,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.答案 18解析 ∵AC ′—→=AC →+CC ′—→=AB →+AD →+AA ′—→,|AC ′—→|2=(AB →+AD →+AA ′—→)2=|AB →|2+|AD →|2+|AA ′—→|2+2(AB →·AD →+AB →·AA ′—→+AD →·AA ′—→) =82+62+82+2×(24+32+24)=324, ∴|AC ′—→|=324=18.11.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为________.答案105解析 不妨设SA =SB =SC =1,以点S 为坐标原点,SA ,SB ,SC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系S -xyz ,则相关各点坐标为A (1,0,0),B (0,1,0),C (0,0,1),S (0,0,0),M ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫0,0,12. 因为SM →=⎝⎛⎭⎫12,12,0, BN →=⎝⎛⎭⎫0,-1,12, 所以|SM →|=12,|BN →|=54, SM →·BN →=-12,cos 〈SM →,BN →〉=SM →·BN →|SM →| |BN →|=-105,因为异面直线所成的角为锐角或直角, 所以异面直线SM 与BN 所成角的余弦值为105. 12.如图所示,已知二面角αlβ的平面角为θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为________.答案3-2cos θ解析 因为AD →=AB →+BC →+CD →,所以AD →2=AB →2+BC →2+CD →2+2AB →·CD →+2AB →·BC →+2BC →·CD →=1+1+1+2cos(π-θ)=3-2cos θ.所以|AD →|=3-2cos θ, 即AD 的长为3-2cos θ.13.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 答案 ⎝⎛⎭⎫43,43,83解析 设Q (x ,y ,z ),因为Q 在OP →上,故有OQ →∥OP →, 设OQ →=λOP →(λ∈R ),可得x =λ,y =λ,z =2λ, 则Q (λ,λ,2λ),QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),所以QA →·QB →=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23, 故当λ=43时,QA →·QB →取最小值,此时Q ⎝⎛⎭⎫43,43,83. 14.给出下列命题:①若AB →=CD →,则必有A 与C 重合,B 与D 重合,AB 与CD 为同一线段; ②若a ·b <0,则〈a ,b 〉是钝角;③若a 为直线l 的方向向量,则λa (λ∈R )也是l 的方向向量;④非零向量a ,b ,c 满足a 与b ,b 与c ,c 与a 都是共面向量,则a ,b ,c 必共面. 其中不正确的命题为________.(填序号) 答案 ①②③④解析 ①错误,如在正方体ABCD -A 1B 1C 1D 1中,AB →=A 1B 1—→,但线段AB 与A 1B 1不重合;②错误,a ·b <0,即cos 〈a ,b 〉<0⇒π2<〈a ,b 〉≤π,而钝角的取值范围是⎝⎛⎭⎫π2,π;③错误,当λ=0时,λa =0不能作为直线l 的方向向量;④错误,在平行六面体ABCD -A 1B 1C 1D 1中,令AB →=a ,AD →=b ,AA 1—→=c ,则它们两两共面,但显然AB →,AD →,AA 1—→是不共面的. 二、解答题(本大题共6小题,共90分)15.(14分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010,∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0, ∴k =-52或k =2.16.(14分)已知空间内三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 与向量AB →,AC →都垂直,且|a |=3,求向量a 的坐标. 解 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12,又∵∠BAC ∈[0°,180°],∴∠BAC =60°,∴S =|AB →||AC →|sin60°=7 3. (2)设a =(x ,y ,z ),由a ⊥AB →,得-2x -y +3z =0, 由a ⊥AC →,得x -3y +2z =0, 由|a |=3,得x 2+y 2+z 2=3, ∴x =y =z =1或x =y =z =-1. ∴a =(1,1,1)或a =(-1,-1,-1).17.(14分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.(1)化简12AA 1—→+BC →+23AB →,并在图上标出结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的点,且C 1N =14C 1B ,设MN→=αAB →+βAD →+γAA 1—→,试求α,β,γ的值.解 (1)取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连结EF ,则12AA 1—→+BC →+23AB → =EA 1—→+A 1D 1—→+D 1F —→=EF →. (2)MN →=MB →+BN → =12DB →+34BC 1—→ =12(DA →+AB →)+34(BC →+CC 1—→)=12AB →+14AD →+34AA 1—→, 所以α=12,β=14,γ=34.18.(16分)如图所示,已知直三棱柱(侧棱垂直于底面的三棱柱)ABC -A 1B 1C 1中,AC ⊥BC ,D 是AB 的中点,AC =BC =BB 1.(1)求证:BC 1⊥AB 1; (2)求证:BC 1∥平面CA 1D .证明 如图所示,以C 1为坐标原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1—→=(0,-2,-2),AB 1—→=(-2,2,-2), ∴BC 1—→·AB 1—→=0-4+4=0, 即BC 1—→⊥AB 1—→,故BC 1⊥AB 1. (2)取A 1C 的中点E ,连结DE . 由于E (1,0,1),∴ED →=(0,1,1),又BC 1—→=(0,-2,-2), ∴ED →=-12BC 1—→,且ED 与BC 1不共线,∴ED ∥BC 1,又ED ⊂平面CA 1D ,BC 1⊄平面CA 1D , ∴BC 1∥平面CA 1D .19.(16分)如图,已知四棱锥P -ABCD 中,P A ⊥底面ABCD ,且ABCD 为正方形,P A =AB =a ,点M 是PC 的中点.(1)求BP 与DM 所成的角的大小; (2)求二面角M -DA -C 的大小.解 (1)以A 为坐标原点,AB →,AD →,AP →为x 轴,y 轴,z 轴正方向,建立空间直角坐标系. 由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ. ∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角θ=90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0), BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0. 又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22.∴所求的二面角M -DA -C 的大小为45°.20.(16分)如图所示,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,AB =2CD =2BC =2,P 为CE 的中点.(1)求证:AB ⊥DE ;(2)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(3)在△ABE 内是否存在一点Q ,使PQ ⊥平面CDE ?如果存在,求PQ 的长;如果不存在,请说明理由.(1)证明 取AB 的中点O ,连结OD ,OE , 因为△ABE 是正三角形,所以AB ⊥OE .因为四边形ABCD 是直角梯形,DC =12AB ,AB ∥CD ,所以四边形OBCD 是平行四边形, 所以OD ∥BC .又AB ⊥BC ,所以AB ⊥OD ,又OE ∩OD =O ,所以AB ⊥平面ODE , 所以AB ⊥DE .(2)解 因为平面ABCD ⊥平面ABE ,AB ⊥OE ,OE ⊂平面ABE ,平面ABCD ∩平面ABE =AB . 所以OE ⊥平面ABCD , 所以OE ⊥OD .如图所示,以O 为坐标原点,OA ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (1,0,0),B (-1,0,0), D (0,0,1),C (-1,0,1), E (0,3,0),所以AD →=(-1,0,1),DE →=(0,3,-1).高中数学 设平面ADE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·DE →=0,n 1·AD →=0,即⎩⎨⎧3y 1-z 1=0,-x 1+z 1=0, 令z 1=1,则x 1=1,y 1=33, 所以n 1=⎝⎛⎭⎫1,33,1, 同理可求得平面BCE 的一个法向量为 n 2=(-3,1,0),设平面ADE 与平面BCE 所成的锐二面角为θ, 则cos θ=|n 1·n 2||n 1||n 2|=⎪⎪⎪⎪33-373×2=77, 所以平面ADE 与平面BCE 所成的锐二面角的余弦值为77. (3)解 假设存在Q (x 2,y 2,0)满足题意,因为P ⎝⎛⎭⎫-12,32,12,所以PQ →=⎝⎛⎭⎫x 2+12,y 2-32,-12, 又CD →=(1,0,0),DE →=(0,3,-1),所以⎩⎪⎨⎪⎧PQ →·CD →=0,PQ →·DE →=0,即⎩⎨⎧ x 2+12=0,3⎝⎛⎭⎫y 2-32+12=0, 解得⎩⎨⎧x 2=-12,y 2=33, 易知点Q ⎝⎛⎭⎫-12,33,0在△ABE 内, 所以△ABE 内存在点Q ⎝⎛⎭⎫-12,33,0,使PQ ⊥平面CDE ,此时PQ =33.。
数学选修2-1苏教版:第3章 空间向量与立体几何 章末检测试卷(三)

章末检测试卷(三)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是________. 答案 5解析 ∵a ·b =-3+2x -5=2, ∴x =5.2.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)答案 -23a +12b +12c解析 如图,连结ON ,由向量的加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .3.设i ,j ,k 为单位正交基底,已知a =3i +2j -k ,b =i -j +2k ,则5a ·3b =________. 答案 -15解析 ∵a =(3,2,-1),b =(1,-1,2),∴5a ·3b =15a ·b =-15.4.设平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),则α,β的位置关系为________.考点 向量法求解平面与平面的位置关系 题点 向量法解决面面平行 答案 平行或重合解析 ∵平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),满足v =-3u ,∴α∥β或重合.5.若空间向量a ,b 满足|a |=|b |=1,且a 与b 的夹角为60°,则a ·a +a ·b =________. 答案 32解析 由空间向量数量积的性质,知a ·a =|a |2=1. 由空间向量数量积的定义,得a ·b =|a ||b |cos 〈a ,b 〉=1×1×cos60°=12,从而a ·a +a ·b =1+12=32.6.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 为________三角形. 答案 直角解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.7.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是________.(填序号)①⎝⎛⎭⎫1,1,12;②(1,2,1);③(1,1,1);④(2,-2,1). 答案 ①解析 由题意知,C (0,0,0),A (1,0,0),B (0,1,0),P (0,0,2),则P A →=(1,0,-2),AB →=(-1,1,0), 设平面P AB 的一个法向量为n =(x ,y,1),则⎩⎪⎨⎪⎧ x -2=0,-x +y =0,解得⎩⎪⎨⎪⎧x =2,y =2,∴n =(2,2,1).又⎝⎛⎭⎫1,1,12=12n ,∴①正确. 8.已知Rt △ABC 中,∠C =90°,∠B =30°,AB =4,D 为AB 的中点,沿中线将△ACD 折起使得AB =13,则二面角A -CD -B 的大小为________. 答案 120°解析 如图,取CD 中点E ,在平面BCD 内过点B 作BF ⊥CD ,交CD 延长线于点F .据题意知AE ⊥CD ,AE =BF =3,EF =2,AB =13. 且〈EA →,FB →〉为二面角的平面角, 由AB →2=(AE →+EF →+FB →)2得13=3+3+4+2×3×cos 〈AE →,FB →〉, ∴cos 〈EA →,FB →〉=-12,又∵〈EA →,FB →〉∈[0°,180°], ∴〈EA →,FB →〉=120°. 即所求的二面角为120°.9.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,若以{AB →,AC →,AD →}为基底,则GE →=________.答案 -112AB →-13AC →+34AD →解析 GE →=AE →-AG →=AD →+DE →-23AM →=AD →+14DB →-13(AB →+AC →)=AD →+14AB →-14AD →-13AB →-13AC →=-112AB →-13AC →+34AD →.10.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AB =8,AD =6,AA ′=8,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.答案 18解析 ∵AC ′—→=AC →+CC ′—→=AB →+AD →+AA ′—→,|AC ′—→|2=(AB →+AD →+AA ′—→)2=|AB →|2+|AD →|2+|AA ′—→|2+2(AB →·AD →+AB →·AA ′—→+AD →·AA ′—→) =82+62+82+2×(24+32+24)=324, ∴|AC ′—→|=324=18.11.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为________.答案105解析 不妨设SA =SB =SC =1,以点S 为坐标原点,SA ,SB ,SC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系S -xyz ,则相关各点坐标为A (1,0,0),B (0,1,0),C (0,0,1),S (0,0,0),M ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫0,0,12. 因为SM →=⎝⎛⎭⎫12,12,0, BN →=⎝⎛⎭⎫0,-1,12, 所以|SM →|=12,|BN →|=54, SM →·BN →=-12,cos 〈SM →,BN →〉=SM →·BN →|SM →| |BN →|=-105,因为异面直线所成的角为锐角或直角, 所以异面直线SM 与BN 所成角的余弦值为105. 12.如图所示,已知二面角αlβ的平面角为θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为________.答案3-2cos θ解析 因为AD →=AB →+BC →+CD →,所以AD →2=AB →2+BC →2+CD →2+2AB →·CD →+2AB →·BC →+2BC →·CD →=1+1+1+2cos(π-θ)=3-2cos θ.所以|AD →|=3-2cos θ, 即AD 的长为3-2cos θ.13.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 答案 ⎝⎛⎭⎫43,43,83解析 设Q (x ,y ,z ),因为Q 在OP →上,故有OQ →∥OP →, 设OQ →=λOP →(λ∈R ),可得x =λ,y =λ,z =2λ, 则Q (λ,λ,2λ),QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),所以QA →·QB →=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23, 故当λ=43时,QA →·QB →取最小值,此时Q ⎝⎛⎭⎫43,43,83. 14.给出下列命题:①若AB →=CD →,则必有A 与C 重合,B 与D 重合,AB 与CD 为同一线段; ②若a ·b <0,则〈a ,b 〉是钝角;③若a 为直线l 的方向向量,则λa (λ∈R )也是l 的方向向量;④非零向量a ,b ,c 满足a 与b ,b 与c ,c 与a 都是共面向量,则a ,b ,c 必共面. 其中不正确的命题为________.(填序号) 答案 ①②③④解析 ①错误,如在正方体ABCD -A 1B 1C 1D 1中,AB →=A 1B 1—→,但线段AB 与A 1B 1不重合;②错误,a ·b <0,即cos 〈a ,b 〉<0⇒π2<〈a ,b 〉≤π,而钝角的取值范围是⎝⎛⎭⎫π2,π;③错误,当λ=0时,λa =0不能作为直线l 的方向向量;④错误,在平行六面体ABCD -A 1B 1C 1D 1中,令AB →=a ,AD →=b ,AA 1—→=c ,则它们两两共面,但显然AB →,AD →,AA 1—→是不共面的. 二、解答题(本大题共6小题,共90分)15.(14分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010,∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0, ∴k =-52或k =2.16.(14分)已知空间内三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 与向量AB →,AC →都垂直,且|a |=3,求向量a 的坐标. 解 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12,又∵∠BAC ∈[0°,180°],∴∠BAC =60°,∴S =|AB →||AC →|sin60°=7 3. (2)设a =(x ,y ,z ),由a ⊥AB →,得-2x -y +3z =0, 由a ⊥AC →,得x -3y +2z =0, 由|a |=3,得x 2+y 2+z 2=3, ∴x =y =z =1或x =y =z =-1. ∴a =(1,1,1)或a =(-1,-1,-1).17.(14分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.(1)化简12AA 1—→+BC →+23AB →,并在图上标出结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的点,且C 1N =14C 1B ,设MN→=αAB →+βAD →+γAA 1—→,试求α,β,γ的值.解 (1)取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连结EF ,则12AA 1—→+BC →+23AB → =EA 1—→+A 1D 1—→+D 1F —→=EF →. (2)MN →=MB →+BN → =12DB →+34BC 1—→ =12(DA →+AB →)+34(BC →+CC 1—→)=12AB →+14AD →+34AA 1—→, 所以α=12,β=14,γ=34.18.(16分)如图所示,已知直三棱柱(侧棱垂直于底面的三棱柱)ABC -A 1B 1C 1中,AC ⊥BC ,D 是AB 的中点,AC =BC =BB 1.(1)求证:BC 1⊥AB 1; (2)求证:BC 1∥平面CA 1D .证明 如图所示,以C 1为坐标原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1—→=(0,-2,-2),AB 1—→=(-2,2,-2), ∴BC 1—→·AB 1—→=0-4+4=0, 即BC 1—→⊥AB 1—→,故BC 1⊥AB 1. (2)取A 1C 的中点E ,连结DE . 由于E (1,0,1),∴ED →=(0,1,1),又BC 1—→=(0,-2,-2), ∴ED →=-12BC 1—→,且ED 与BC 1不共线,∴ED ∥BC 1,又ED ⊂平面CA 1D ,BC 1⊄平面CA 1D , ∴BC 1∥平面CA 1D .19.(16分)如图,已知四棱锥P -ABCD 中,P A ⊥底面ABCD ,且ABCD 为正方形,P A =AB =a ,点M 是PC 的中点.(1)求BP 与DM 所成的角的大小; (2)求二面角M -DA -C 的大小.解 (1)以A 为坐标原点,AB →,AD →,AP →为x 轴,y 轴,z 轴正方向,建立空间直角坐标系. 由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ. ∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角θ=90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0), BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0. 又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22.∴所求的二面角M -DA -C 的大小为45°.20.(16分)如图所示,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,AB =2CD =2BC =2,P 为CE 的中点.(1)求证:AB ⊥DE ;(2)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(3)在△ABE 内是否存在一点Q ,使PQ ⊥平面CDE ?如果存在,求PQ 的长;如果不存在,请说明理由.(1)证明 取AB 的中点O ,连结OD ,OE , 因为△ABE 是正三角形,所以AB ⊥OE .因为四边形ABCD 是直角梯形,DC =12AB ,AB ∥CD ,所以四边形OBCD 是平行四边形, 所以OD ∥BC .又AB ⊥BC ,所以AB ⊥OD ,又OE ∩OD =O ,所以AB ⊥平面ODE , 所以AB ⊥DE .(2)解 因为平面ABCD ⊥平面ABE ,AB ⊥OE ,OE ⊂平面ABE ,平面ABCD ∩平面ABE =AB . 所以OE ⊥平面ABCD , 所以OE ⊥OD .如图所示,以O 为坐标原点,OA ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (1,0,0),B (-1,0,0), D (0,0,1),C (-1,0,1), E (0,3,0),所以AD →=(-1,0,1),DE →=(0,3,-1).最新中小学教案、试题、试卷设平面ADE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·DE →=0,n 1·AD →=0,即⎩⎨⎧3y 1-z 1=0,-x 1+z 1=0, 令z 1=1,则x 1=1,y 1=33, 所以n 1=⎝⎛⎭⎫1,33,1, 同理可求得平面BCE 的一个法向量为 n 2=(-3,1,0),设平面ADE 与平面BCE 所成的锐二面角为θ, 则cos θ=|n 1·n 2||n 1||n 2|=⎪⎪⎪⎪33-373×2=77, 所以平面ADE 与平面BCE 所成的锐二面角的余弦值为77. (3)解 假设存在Q (x 2,y 2,0)满足题意,因为P ⎝⎛⎭⎫-12,32,12,所以PQ →=⎝⎛⎭⎫x 2+12,y 2-32,-12, 又CD →=(1,0,0),DE →=(0,3,-1), 所以⎩⎪⎨⎪⎧PQ →·CD →=0,PQ →·DE →=0,即⎩⎨⎧ x 2+12=0,3⎝⎛⎭⎫y 2-32+12=0, 解得⎩⎨⎧x 2=-12,y 2=33, 易知点Q ⎝⎛⎭⎫-12,33,0在△ABE 内, 所以△ABE 内存在点Q ⎝⎛⎭⎫-12,33,0,使PQ ⊥平面CDE ,此时PQ =33.。
2017-2018学年高中数学 第三章 空间向量与立体几何章末综合测评 新人教B版选修2-1

(三) 空间向量与立体几何(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( )A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D .()2,-3,-22【解析】 a =(1,-3,2)=-2⎝ ⎛⎭⎪⎫-12,32,-1.【答案】 C2.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32 B .22C. 3D .3 2【解析】 两平面间的距离d =|OA →·n ||n |=22.【答案】 B3.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)【解析】 a =CA →=(-1,0,-2),b =CB →=(-4,9,0), ∴a +b =(-5,9,-2). 【答案】 B4.在平行六面体ABCD A 1B 1C 1D 1中,若AC 1→=aAB →+2bAD →+3cA 1A →,则abc 的值等于( )【导学号:15460084】A.16 B .56 C.76D .-16【解析】 ∵AC 1→=AB →+AD →-A 1A →=aAB →+2bAD →+3cA 1A →, ∴a =1,b =12,c =-13,∴abc =-16.【答案】 D5.在棱长为1的正方体ABCD A 1B 1C 1D 1中,下列结论不正确的是( ) A.AB →=-C 1D 1→B .AB →·BC →=0 C.AA 1→·B 1D 1→=0D .AC 1→·A 1C →=0【解析】 如图,AB →∥C 1D 1→,AB →⊥BC →,AA 1→⊥B 1D 1→,故A ,B ,C 选项均正确.【答案】 D6.已知向量a ,b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c ·a =0,且c ·b =0”是l ⊥α的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若l ⊥α,则l 垂直于α内的所有直线,从而有c ·a =0,c ·b =0.反之,由于a ,b 是否共线没有确定,若共线,则结论不成立;若不共线,则结论成立.【答案】 B7.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【解析】 设BC 的中点为D ,则D (2,1,4), ∴AD →=(-1,-2,2), ∴|AD →|=-2+-2+22=3,即BC 边上的中线长为3.【答案】 B8.若向量a =(x,4,5),b =(1,-2,2),且a 与b 的夹角的余弦值为26,则x =( ) A .3 B .-3 C .-11D .3或-11【解析】 因为a·b =(x,4,5)·(1,-2,2)=x -8+10=x +2,且a 与b 的夹角的余弦值为26,所以26=x +2x 2+42+52×1+4+4,解得x =3或-11(舍去),故选A. 【答案】 A9.如图1,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成的角的正弦值为( )图1A.63 B .255C.155D .105【解析】 以D 点为坐标原点,以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1→=(-2,0,1),AC →=(-2,2,0),且AC →为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=45·8=105.∴sin 〈BC →1,AC →〉=|cos 〈BC →1,AC →〉|=105,∴BC 1与平面BB 1D 1D 所成的角的正弦值为105. 【答案】 D10.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23 B .33 C.23D .13【解析】 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC→|n ||DC →|=23.【答案】 A11.已知正方体ABCD A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n 的值分别为( )A.12,-12 B .-12,-12C .-12,12D .12,12【解析】 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A.【答案】 A12.在矩形ABCD 中,AB =3,AD =4,PA ⊥平面ABCD ,PA =435,那么二面角A BD P的大小为( )A .30°B .45°C .60°D .75°【解析】如图所示,建立空间直角坐标系, 则PB →=⎝ ⎛⎭⎪⎫3,0,-453,BD →=(-3,4,0).设n =(x ,y ,z )为平面PBD 的一个法向量,则⎩⎪⎨⎪⎧n ·PB →=0,n ·BD →=0,得⎩⎪⎨⎪⎧x ,y ,z⎝ ⎛⎭⎪⎫3,0,-453=0,x ,y ,z-3,4,=0.即⎩⎪⎨⎪⎧3x -453z =0,-3x +4y =0.令x =1,则n =⎝ ⎛⎭⎪⎫1,34,543.又n 1=⎝ ⎛⎭⎪⎫0,0,453为平面ABCD 的一个法向量, ∴cos 〈n 1,n 〉=n 1·n |n 1||n |=32,∴所求二面角为30°.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.若a =(2x,1,3),b =(1,-2y,9),且a 与b 为共线向量,则x =________,y =________.【导学号:15460085】【解析】 由题意得2x 1=1-2y =39,∴x =16,y =-32.【答案】 16 -3214.△ABC 的三个顶点坐标分别为A (0,0,2),B ⎝ ⎛⎭⎪⎫-32,12, 2,C (-1,0, 2),则角A 的大小为________.【解析】 AB →=⎝ ⎛⎭⎪⎫-32,12,0,AC →=(-1,0,0),则cos A =AB →·AC →|AB →||AC →|=321×1=32,故角A 的大小为30°.【答案】 30°15.在空间直角坐标系Oxyz 中,已知A (1,-2,3),B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为________.【解析】 设点C 的坐标为(x,0,z ),则AC →=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB →共线,所以x -11=23=z -3-4,解得⎩⎪⎨⎪⎧x =53,z =13,所以点C 的坐标为⎝ ⎛⎭⎪⎫53,0,13.【答案】 ⎝ ⎛⎭⎪⎫53,0,1316.如图2,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A ,B ,C ,D 的距离都等于2.图2给出以下结论:①SA →+SB →+SC →+SD →=0;②SA →+SB →-SC →-SD →=0;③SA →-SB →+SC →-SD →=0;④SA →·SB →=SC →·SD →;⑤SA →·SC →=0,其中正确结论的序号是________.【解析】 容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2×2cos∠ASB ,SC →·SD →=2×2cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确;其余三个都不正确,故正确结论的序号是③④.【答案】 ③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)如图3,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .图3(1)证明:平面PQC ⊥平面DCQ ; (2)证明:PC ∥平面BAQ .【证明】 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0),所以PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC 且DQ ∩DC =D . 故PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)根据题意,DA →=(1,0,0),AB →=(0,0,1),AQ →=(0,1,0),故有DA →·AB →=0,DA →·AQ →=0,所以DA →为平面BAQ 的一个法向量.又因为PC →=(0,-2,1),且DA →·PC →=0,即DA ⊥PC ,且PC ⊄平面BAQ ,故有PC ∥平面BAQ . 18. (本小题满分12分)如图4,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.图4【解】 因为BA 1→=BA →+AA 1→ =BA →+BB 1→,AC →=BC →-BA →, 且BA →·BC →=BB 1→·BA → =BB 1→·BC →=0,所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →) =BA →·BC →-BA →2+BB 1→·BC →-BB 1→·BA → =-1.又|AC →|=2,|BA 1→|=1+2=3, 所以cos 〈BA 1→,AC →〉=BA 1→·AC →|BA 1→||AC →|=-16=-66,则异面直线BA 1与AC 所成角的余弦值为66. 19.(本小题满分12分)如图5,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.图5(1)求证:平面PBC ⊥平面PAC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A 的余弦值. 【解】 (1)证明:由AB 是圆的直径,得AC ⊥BC , 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC . 又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC . 因为BC ⊂平面PBC . 所以平面PBC ⊥平面PAC .(2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3. 又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故CB →=(3,0,0),CP →=(0,1,1). 设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ CB →·n 1=0,CP →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为AP →=(0,0,1),AB →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧AP →·n 2=0,AB →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1, 3,0). 于是cos 〈n 1,n 2〉=322=64. 由图知二面角C PB A 为锐角,故二面角C PB A 的余弦值为64.20. (本小题满分12分)如图6,在四棱锥P ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC =2AB =2AD =4BE ,平面PAB ⊥平面ABCD .图6(1)求证:平面PED ⊥平面PAC ;(2)若直线PE 与平面PAC 所成的角的正弦值为55,求二面角A PC D 的余弦值. 【解】 (1)证明:∵平面PAB ⊥平面ABCD , 平面PAB ∩平面ABCD =AB ,AB ⊥PA , ∴PA ⊥平面ABCD ,又∵AB ⊥AD ,故可建立空间直角坐标系Oxyz 如图所示, 不妨设BC =4,AP =λ(λ>0),则有D (0,2,0),E (2,1,0),C (2,4,0),P (0,0,λ), ∴AC →=(2,4,0),AP →=(0,0,λ),DE →=(2,-1,0), ∴DE →·AC →=4-4+0=0,DE →·AP →=0,∴DE ⊥AC ,DE ⊥AP 且AC ∩AP =A , ∴DE ⊥平面PAC . 又DE ⊂平面PED , ∴平面PED ⊥平面PAC .(2)由(1)知,平面PAC 的一个法向量是DE →=(2,-1,0),PE →=(2,1,-λ), 设直线PE 与平面PAC 所成的角为θ,∴sin θ=|cos 〈PE →,DE →〉|=⎪⎪⎪⎪⎪⎪4-155+λ2=55,解得λ=±2.∵λ>0,∴λ=2,即P (0,0,2),设平面PCD 的一个法向量为n =(x ,y ,z ),DC →=(2,2,0),DP →=(0,-2,2), 由n ⊥DC →,n ⊥DP →,∴⎩⎪⎨⎪⎧2x +2y =0,-2y +2z =0,不妨令x =1,则n =(1,-1,-1).∴cos 〈n ,DE →〉=2+13 5=155,显然二面角A PC D 的平面角是锐角, ∴二面角A PC D 的余弦值为155. 21.(本小题满分12分)如图7,四棱锥P ABCD 的底面ABCD 为一直角梯形,其中BA ⊥AD ,CD ⊥AD ,CD =AD =2AB ,PA ⊥底面ABCD ,E 是PC 的中点.图7(1)求证:BE ∥平面PAD ; (2)若BE ⊥平面PCD ,①求异面直线PD 与BC 所成角的余弦值; ②求二面角E BD C 的余弦值.【解】 设AB =a ,PA =b ,建立如图的空间直角坐标系,则A (0,0,0),B (a,0,0),P (0,0,b ),C (2a,2a,0),D (0,2a,0),E ⎝ ⎛⎭⎪⎫a ,a ,b 2.(1)BE →=⎝⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a,0),AP →=(0,0,b ),所以BE →=12AD →+12AP →,因为BE ⊄平面PAD ,所以BE ∥平面PAD .(2)因为BE ⊥平面PCD ,所以BE ⊥PC ,即BE →·PC →=0,PC →=(2a,2a ,-b ),所以BE →·PC →=2a 2-b 22=0,则b =2a . ①PD →=(0,2a ,-2a ),BC →=(a,2a,0),cos 〈PD →,BC →〉=4a 222a ·5a =105,所以异面直线PD 与BC 所成角的余弦值为105. ②在平面BDE 和平面BDC 中,BE →=(0,a ,a ),BD →=(-a ,2a,0),BC →=(a,2a,0),所以平面BDE 的一个法向量为n 1=(2,1,-1);平面BDC 的一个法向量为n 2=(0,0,1);cos 〈n 1,n 2〉=-16,所以二面角E BD C 的余弦值为66. 22.(本小题满分12分)如图8,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).图8(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【解】 以D 为原点,射线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0).(1)当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2).所以BC 1→=2FP →,可知BC 1∥FP ,而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,得⎩⎪⎨⎪⎧x +y =0,-x +λz =0, 于是可取n =(λ,-λ,1),同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1),若存在λ,使得平面EFPQ 与平面PQMN 所在的二面角为直二面角, 则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22,故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.。
2018-2019数学新学案同步精选练习选修2-1苏教版:第3章 空间向量与立体几何 模块综合

模块综合试卷(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知命题p :∀x ∈R ,x 2-x +>0,则綈p 为________.14答案 ∃x ∈R ,x 2-x +≤014解析 全称命题的否定是存在性命题.2.设p :1<x <2,q :2x >1,则p 是q 成立的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充分不必要解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q ⇏p .3.抛物线y =-x 2的焦点坐标是________.18答案 (0,-2)解析 抛物线方程化为标准方程为x 2=-8y ,∴2p =8,∴=2.p 2∵抛物线开口向下,∴抛物线y =-x 2的焦点坐标为(0,-2).184.已知双曲线的实轴长与虚轴长之和等于其焦距的倍,且一个顶点的坐标为(0,2),则双2曲线的标准方程为________.答案 -=1y 24x 24解析 由题意设双曲线方程为-=1(a >0,b >0),则a =2,2a +2b =2c ,得y 2a 2x 2b 22b =c -2,结合a 2+b 2=c 2,得b =2,故双曲线方程为-=1.2y 24x 245.若a =(1,-1,-1),b =(0,1,1),且(a +λb )⊥b ,则实数λ的值是________.答案 1解析 λb =(0,λ,λ),a +λb =(1,λ-1,λ-1).∵(a +λb )⊥b ,∴(a +λb )·b =0.∴λ-1=0,即λ=1.6.设F 1和F 2为双曲线-=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是等边三角x 2a 2y 2b 2形的三个顶点,则双曲线的离心率为________.答案 2解析 由题意知tan ==,π6c 2b 33所以3c 2=4b 2=4(c 2-a 2),则e ==2.ca 7.给定两个命题p ,q .若綈p 是q 的必要不充分条件,则p 是綈q 的________条件.答案 充分不必要解析 由q ⇒綈p 且綈p ⇏q 可得p ⇒綈q 且綈q ⇏p ,所以p 是綈q 的充分不必要条件.8.若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,则p 的值为________.x 26y 22答案 4解析 根据题意知抛物线的焦点坐标为,椭圆的右焦点为(2,0),即=2,解得p =4.(p 2,0)p29.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于________.答案 4解析 抛物线y 2=2px (p >0)的准线为x =-,因为P (6,y )为抛物线上的点,所以P 到焦p2点F 的距离等于它到准线的距离,所以6+=8,所以p =4,故焦点F 到抛物线准线的距p2离等于4.10.已知a >0且a ≠1,设p :y =a x 是R 上的单调递减函数;q :函数g (x )=lg(2ax 2+2x +1)的值域为R ;如果“p ∧q ”为假命题,“p ∨q ”为真命题,则a 的取值范围是________.答案 (12,1)解析 由题意知,p :0<a <1,q :0<a ≤,当p 真q 假时,得<a <1;当p 假q 真时,1212无解.故a ∈.(12,1)11.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,MF +NF =6,则MN 的中点的横坐标为________.答案 2解析 ∵F 是抛物线y 2=4x 的焦点,∴F (1,0),准线为直线x =-1.设M (x 1,y 1),N (x 2,y 2),∴MF +NF =x 1+1+x 2+1=6,解得x 1+x 2=4.∴线段MN 的中点的横坐标为2.12.设P 为直线y =x 与双曲线-=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂b 3a x 2a 2y 2b 2直于x 轴,则双曲线的离心率e =________.答案 324解析 由PF 1⊥x 轴且P 点在双曲线的左支上,可得P.又因为点P 在直线(-c ,-b 2a )y =x 上,所以-=×(-c ),整理得c =3b ,根据c 2=a 2+b 2得a =2b ,所以双曲b 3a b 2a b 3a 2线的离心率e ===.ca 3b 22b 32413.椭圆+=1的焦点为F 1,F 2,点P 在椭圆上,若PF 1=4,则∠F 1PF 2的大小为x 29y 22________.答案 120°解析 在椭圆+=1中,a 2=9,a =3,b 2=2,x 29y 22又c 2=a 2-b 2=7,所以c =.7因为PF 1=4,且PF 1+PF 2=2a =6,所以PF 2=6-4=2.所以cos ∠F 1PF 2=PF 21+PF 2-F 1F 22PF 1·PF 2==-,42+22-(27)22×4×212因为0°<∠F 1PF 2<180°,所以∠F 1PF 2=120°.14.已知长方体ABCD-A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则直线BD 1与平面BCC 1B 1所成角的正弦值为________.答案 63解析 以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz 如图所示,则A (1,0,0),B (1,2,0),D 1(0,0,1),所以=(-1,-2,1).BD 1→ 因为AB ⊥平面BCC 1B 1,所以=(0,2,0)为平面BCC 1B 1的法向量.AB → 设直线BD 1与平面BCC 1B 1所成的角为θ,则有sin θ=|cos 〈,〉|=AB → BD 1→ |AB → ·BD 1→||AB →| |BD 1→ |==.|(0,2,0)·(-1,-2,1)|2×663二、解答题(本大题共6小题,共90分)15.(14分)已知p :“直线x +y -m =0与圆(x -1)2+y 2=1相交”;q :“mx 2-x +m -4=0有一正根和一负根”.若p ∨q 为真,綈p 为真,求m 的取值范围.解 对p :∵直线与圆相交,∴d =<1,|1-m |2∴-+1<m <+1.22对q :方程mx 2-x +m -4=0有一正根和一负根,∴令f (x )=mx 2-x +m -4,∴Error!或Error!解得0<m <4.∵綈p 为真,∴p 假.又∵p ∨q 为真,∴q 为真.由数轴可得+1≤m <4.2故m 的取值范围是[+1,4).216.(14分)过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为的直线与抛物线相交于A ,B π4两点.(1)用p 表示线段AB 的长;(2)若·=-3,求这个抛物线的方程.OA → OB → 解 (1)抛物线的焦点为F ,过点F 且倾斜角为的直线方程是y =x -.(p 2,0)π4p 2设A (x 1,y 1),B (x 2,y 2),联立Error!得x 2-3px +=0,p 24∴x 1+x 2=3p ,x 1x 2=,∴AB =x 1+x 2+p =4p .p 24(2)由(1)知x 1x 2=,x 1+x 2=3p ,p 24∴y 1y 2==x 1x 2-(x 1+x 2)+=-+=-p 2,(x 1-p 2)(x 2-p 2)p 2p 24p 243p 22p 24∴·=x 1x 2+y 1y 2=-p 2=-=-3,OA → OB → p 243p 24解得p 2=4,∵p >0,∴p =2.∴抛物线的方程为y 2=4x .17.(14分)已知命题p :x 2-8x -20>0,q :x 2-2x +1-m 2>0(m >0),若p 是q 的充分不必要条件,求实数m 的取值范围.解 由x 2-8x -20>0,得x <-2或x >10,即命题p 对应的集合为P ={x |x <-2或x >10},由x 2-2x +1-m 2>0(m >0),得[x -(1-m )][x -(1+m )]>0(m >0),解得x <1-m 或x >1+m (m >0),即命题q 对应的集合为Q ={x |x <1-m 或x >1+m ,m >0},因为p 是q 的充分不必要条件,所以P 是Q 的真子集.故有Error!或Error!解得0<m ≤3.所以实数m 的取值范围是(0,3].18.(16分)如图,平面PAC ⊥平面ABC ,△ABC 是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为PA ,PB ,AC 的中点,AC =16,PA =PC =10.设G 是OC 的中点,证明:FG ∥平面BOE .证明 如图,连结OP ,以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则O (0,0,0),B (8,0,0),P (0,0,6),E (0,-4,3),F (4,0,3),G (0,4,0).因为=(8,0,0),=(0,-4,3),设平面BOE 的法向量为n =(x ,y ,z ),OB → OE → 则Error!解得x =0,4y =3z ,令z =4,则n =(0,3,4),所以平面BOE 的一个法向量为n =(0,3,4).由=(-4,4,-3),得n ·=0,所以⊥n .FG → FG → FG → 又直线FG 不在平面BOE 内,所以FG ∥平面BOE .19.(16分)已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .x 2b 2y 2a 222(1)求椭圆的方程;(2)若直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆x 2+y 2=上,求59m 的值.解 (1)由题意得Error!解得Error!故椭圆的方程为x 2+=1.y 22(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线与椭圆的方程得Error!即3x 2+2mx +m 2-2=0,由Δ=4m 2-12(m 2-2)=-8m 2+24>0,得-<m <.33所以x 0==-,y 0=x 0+m =,x 1+x 22m 32m 3即M ,又因为M 点在圆x 2+y 2=上,(-m 3,2m 3)59所以2+2=,解得m =±1,满足Δ>0,(-m 3)(2m 3)59故m =±1.20.(16分)如图所示,正方形AA 1D 1D 与矩形ABCD 所在平面互相垂直,AB =2AD =2,点E 为AB 的中点.(1)求证:BD 1∥平面A 1DE ;(2)求证:D 1E ⊥A 1D ;(3)在线段AB 上是否存在点M ,使二面角D 1-MC -D 的大小为?若存在,求出AM 的长;π6若不存在,请说明理由.(1)证明 由题意可得D 1D ⊥平面ABCD ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1),B (1,2,0),E (1,1,0).=(1,0,1),=(1,1,0),设平面A 1DE 的一个法向量为n 1=(x 1,y 1,z 1),DA 1→ DE → 则Error!得Error!取x 1=1,则n 1=(1,-1,-1)是平面A 1DE 的一个法向量,又=(-1,-2,1),且BD 1—→ ·n 1=(-1,-2,1)·(1,-1,-1)=0,故⊥n 1,又BD 1不在平面A 1DE 内,故BD 1—→ BD 1—→ BD 1∥平面A 1DE .(2)证明 由题意得=(1,1,-1),=(1,0,1),D 1E —→ DA 1—→ ·=(1,1,-1)·(1,0,1)=0,D 1E —→ DA 1—→⊥,故D 1E ⊥A 1D .D 1E —→ DA 1—→ (3)解 设M (1,y 0,0)(0≤y 0≤2),因为=(-1,2-y 0,0),=(0,2,-1),MC → D 1C —→ 设平面D 1MC 的一个法向量为v 1=(x ,y ,z ),则Error!得Error!取y =1,则v 1=(2-y 0,1,2)是平面D 1MC 的一个法向量,而平面MCD 的一个法向量为v 2=(0,0,1),要使二面角D 1MCD 的大小为,π6则cos =|cos 〈v 1,v 2〉|=π6|v 1·v 2||v 1||v 2|==,2(2-y 0)2+12+2232解得y 0=2-(0≤y 0≤2).33所以当AM =2-时,二面角D 1MCD 的大小为.33π6。
2016-2017学年高中数学 第3章 空间向量与立体几何单元检测(A)苏教版选修1-2
第3章 单元检测(A 卷)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知向量a =(2,-1,3),b =(-4,2,x ),使a ⊥b 成立的x 与使a ∥b 成立的x 分别为________.2.设a =(x,4,3),b =(3,2,z ),且a∥b ,则xz 的值为________.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______.4.若向量(1,0,z )与向量(2,1,2)的夹角的余弦值为25,则z =________.5.已知a 、b 、c 是不共面的三个向量,则下列选项中能构成空间一个基底的一组向量是________.(填序号) ①2a ,a -b ,a +2b ; ②2b ,b -a ,b +2a ; ③a,2b ,b -c ; ④c ,a +c ,a -c .6.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.7.设直线a ,b 的方向向量是e 1,e 2,平面α的法向量是n ,则下列命题中错误的是________.(写出所有错误命题的序号) ①⎭⎪⎬⎪⎫e 1∥e 2e 1∥n ⇒b ∥α; ②⎭⎪⎬⎪⎫e 1∥n e 2∥n ⇒a ∥b ;③⎭⎪⎬⎪⎫e 1∥n b ⊄αe 1⊥e 2⇒b ∥α; ④⎭⎪⎬⎪⎫e 1∥e 2e 1∥n ⇒b⊥α.8.如图所示,已知正四面体ABCD 中,AE =14AB ,CF =14CD ,则直线DE 和BF 所成角的余弦值为________.9.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为________.10.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则α与β的关系为________.11.在三棱柱ABC —A 1B 1C 1中,底面是棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是________. 12.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是________.13.已知力F1=(1,2,3),F2=(-2,3,-1),F3=(3,-4,5),若F1,F2,F3共同作用于同一物体上,使物体从M1(0,-2,1)移到M2(3,1,2),则合力作的功为________.14.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则x=______,y=______.二、解答题(本大题共6小题,共90分)15.(14分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=2,点E是棱PB的中点.证明:AE⊥平面PBC.16.(14分)在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,若F是AE的中点.求证:DF∥平面ABC.17.(14分)如图,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA与BC所成角的余弦值.18.(16分)如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP与CC′所成角的大小;(2)求DP与平面AA′D′D所成角的大小.19.(16分)在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB =BC=a,AD=2a,且PA⊥底面ABCD,PD与底面所成的角为30°.(1)若AE⊥PD,垂足为E,求证:BE⊥PD;(2)求异面直线AE与CD所成角的余弦值.20.(16分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=2,CE =EF=1.(1)求证:CF⊥平面BDE;(2)求二面角A -BE -D 的大小.第3章 空间向量与立体几何(A)1.103,-6 解析 若a ⊥b ,则-8-2+3x =0,x =103;若a∥b ,则2∶(-4)=(-1)∶2=3∶x ,x =-6. 2.9解析 ∵a =(x,4,3),b =(3,2,z ),且a∥b , ∴存在实数λ使得a =λb ,∴⎩⎪⎨⎪⎧x =3λ,4=2λ,3=z λ,解得⎩⎪⎨⎪⎧x =6,z =32.∴xz =9.3.-9解析 ∵l ⊥α,∴u ⊥v ,∴(1,-3,z )·(3,-2,1)=0,即3+6+z =0,∴z =-9.4.2或12解析 由题知,0,z ,1,1+z 2·3=2+2z 1+z 2·3=25, 即2z 2-5z +2=0,得z =2或12.5.③解析 ∵a ,b 不共线,由共线向量定理知由a ,b 表示出的向量与a ,b 共面,即①、②中的向量因共面不能构成空间一个基底,同理④中的三向量也不能构成空间一个基底. 6.16解析 PA →=(-1,-3,2),PB →=(6,-1,4).根据共面向量定理,设PC →=xPA →+yPB →(x 、y ∈R ),则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y,2x +4y ), ∴⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,解得x =-7,y =4,a =16.7.① 8.413解析 因四面体ABCD 是正四面体,顶点A 在底面BCD 内的射影为△BCD 的垂心,所以有BC ⊥DA ,AB ⊥CD .设正四面体的棱长为4,则BF →·DE →=(BC →+CF →)·(DA →+AE →)=0+BC →·AE →+CF →·DA →+0=4×1×cos 120°+1×4×cos 120°=-4,BF =DE =42+12-2×4×1×cos 60°=13,所以异面直线DE 与BF 的夹角θ的余弦值为:cos θ=|BF →·DE →||BF →||DE →|=413.9.60°解析 由条件,知CA →·AB →=0,AB →·BD →=0,CD →=CA →+AB →+BD →. ∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos〈CA →,BD →〉=(217)2,∴cos 〈CA →,BD →〉=-12,即〈CA →,BD →〉=120°,所以二面角的大小为60°.10.α∥β解析 ∵v =-3u ,∴v ∥u .故α∥β.11.64解析如图所示,建立坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1, 平面AA 1C 1C 的一个法向量是 n =(1,0,0),所以cos 〈n ,AD →〉=322=64,即sin α=64. 12.60° 解析 ∵cos θ=a·b |a|·|b |=12,∴θ=60°.13.16解析 合力F =F 1+F 2+F 3=(2,1,7),F 对物体作的功即为W =F ·M 1M 2→=(2,1,7)·(3,3,1)=2×3+1×3+7×1=16. 14.16 -32解析 ∵a∥b ,∴2x 1=1-2y =39,∴x =16,y =-32.15.证明 如图所示,以A 为坐标原点,射线AB 、AD 、AP 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系A —xyz .设D (0,a,0),则B (2,0,0),C (2,a,0),P (0,0,2),E (22,0,22).于是AE →=(22,0,22),BC →=(0,a,0),PC →=(2,a ,-2),则AE →·BC →=0,AE →·PC →=0.所以AE →⊥BC →,AE →⊥PC →, 即AE ⊥BC ,AE ⊥PC . 又因为BC ∩PC =C , 所以AE ⊥平面PBC .16.证明 如图所示,以点B 为原点,BA 、BC 、BE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2). 由中点坐标公式知F (1,0,1). ∴DF →=(1,-2,0),BE →=(0,0,2). ∵BE ⊥平面ABC , ∴BE →是平面ABC 的一个法向量. ∵DF →·BE →=(1,-2,0)·(0,0,2)=0, ∴DF →⊥BE →.又∵DFD 平面ABC ,∴DF ∥平面ABC .17.解 因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB → =|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉 =8×4×cos 135°-8×6×cos 120° =-162+24.所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.18.解 如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D —xyz . (1)DA →=(1,0,0),CC ′→=(0,0,1).连结BD ,B ′D ′.在平面BB ′D ′D 中, 延长DP 交B ′D ′于H . 设DH →=(m ,m,1) (m >0),由已知〈DH →,DA →〉=60°, 由DA →·DH → =|DA →||DH →|cos 〈DH →,DA →〉,可得2m =2m 2+1.解得m =22,所以DH →=⎝ ⎛⎭⎪⎫22,22,1.因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,所以〈DH →,CC ′→〉=45°,即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0).因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D 所成的角为30°. 19.(1)证明 以A 为坐标原点,建立如图所示空间直角坐标系A —xyz ,由题意知A (0,0,0),B (a,0,0),C (a ,a,0),D (0,2a,0). ∵PD 在底面的射影是DA ,且PD 与底面所成的角为30°,∴∠PDA =30°,∴P ⎝⎛⎭⎪⎫0,0,233a ,∵AE ⊥PD ,∴|AE →|=12|AD →|=a ,E ⎝ ⎛⎭⎪⎫0,12a ,32a , ∴BE →=⎝ ⎛⎭⎪⎫-a ,12a ,32a ,PD →=⎝⎛⎭⎪⎫0,2a ,-233a , ∴BE →·PD →=0·(-a )+a 2·2a +3a 2·⎝⎛⎭⎪⎫-23a =0, ∴BE →⊥PD →,即BE ⊥PD .(2)解 由(1)知AE →=⎝ ⎛⎭⎪⎫0,a 2,3a 2, CD →=(-a ,a,0),∴AE →·CD →=a 22,又|AE →|=a ,|CD →|=2a , ∴cos 〈AE →,CD →〉=AE →·CD →|AE →||CD →|=24, ∴异面直线AE 与CD 所成角的余弦值为24. 20.(1)证明 因为正方形ABCD 和四边形ACEF 所在的平面互相垂直,且CE ⊥AC ,所以CE ⊥平面ABCD .如图,以C 为原点,建立空间直角坐标系C -xyz .则C (0,0,0),A (2,2,0),B (0,2,0),D (2,0,0),E (0,0,1),F (22,22,1). 所以CF →=(22,22,1),BE →=(0,-2,1),DE →=(-2,0,1). 所以CF →·BE →=0-1+1=0,CF →·DE →=-1+0+1=0.所以CF →⊥BE →,CF →⊥DE →,即CF ⊥BE ,CF ⊥DE .又BE ∩DE =E ,所以CF ⊥平面BDE .(2)解 由(2)知,CF →=(22,22,1)是平面BDE 的一个法向量. 设平面ABE 的法向量n =(x ,y ,z ),则n ·BA →=0,n ·BE →=0, 即⎩⎨⎧ x ,y ,z 2,0,=0,x ,y ,z ,-2,=0.所以x =0,且z =2y .令y =1,则z =2,所以n =(0,1,2).从而cos 〈n ,CF →〉=n ·CF →|n ||CF →|=32. 因为二面角A -BE -D 为锐角,所以二面角A -BE -D 的大小为π6.。
空间向量与立体几何--学习.探究.诊断(选修2-1)
第三章 空间向量与立体几何 测试十一 空间向量及其运算AⅠ 学习目标1.会进行空间向量的加法、减法、数乘运算.2.会利用空间向量基本定理处理向量共线,共面问题以及向量的分解. 3.会进行空间向量数量积的运算,并会求简单的向量夹角.Ⅱ 基础性训练一、选择题1.在长方体ABCD -A 1B 1C 1D 1中,1DD BC BA ++=( )(A)11B D (B)B D 1 (C)1DB(D)1BD2.平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 和BD 的交点,若c b a ===1,,AA AD AB ,则下列式子中与M B 1相等的是( )(A)c b a ++-2121 (B)c b a -+2121 (C)c b a -+-2121(D)c b a +--21213.在平行六面体ABCD -A 1B 1C 1D 1中,向量BD AD AB 、、11是( ) (A)有相同起点的向量 (B)等长的向量 (C)共面向量(D)不共面向量4.已知空间的基底{i ,j ,k },向量a =i +2j +3k ,b =-2i +j +k ,c =-i +m j -n k ,若向量c 与向量a ,b 共面,则实数m +n =( ) (A)1(B)-1(C)7(D)-75.在长方体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,则1AC BD ⋅ ( ) (A)1 (B)0(C)3(D)-3二、填空题6.在长方体ABCD -A 1B 1C 1D 1中,化简=-+1AA AD AB ______.7.已知向量i ,j ,k 不共面,且向量a =m i +5j -k ,b =3i +j +r k ,若a ∥b ,则实数m =______,r =______.8.平行六面体ABCD -A 1B 1C 1D 1中,所有的棱长均为2,且2-=⋅CC AB ,则AB <,1CC >=_______;异面直线AB 与CC 1所成的角的大小为______.9.已知i ,j ,k 是两两垂直的单位向量,且a =2i -j +k ,b =i +j -3k ,则a ·b =______. 10.平行六面体ABCD -A 1B 1C 1D 1中,所有棱长均为1,且∠A 1AB =∠A 1AD =60°,AB ⊥AD ,则AC 1的长度为______.三、解答题11.如图,平行六面体ABCD -A 1B 1C 1D 1中,c b a ===1,,AA AD AB ,E 为A 1D 1中点,用基底{a ,b ,c }表示下列向量(1)AF BE DB ,,1;(2)在图中画出CD DB DD ++1化简后的向量.12.已知向量a =2i +j +3k ,b =-i -j +2k ,c =5i +3j +4k ,求证向量a ,b ,c 共面.13.正方体ABCD -A 1B 1C 1D 1中,棱长为1,E 为CC 1中点,(1)求BC AB ⋅1;(2)求><⋅BE AB BE AB ,cos ,11.Ⅲ 拓展性训练14.如图,点A 是△BCD 所在平面外一点,G 是△BCD 的重心,求证:)(31AD AC AB AG ++=. (注:重心是三角形三条中线的交点,且CG ∶GE =2∶1)第三章 空间向量与立体几何测试十一 空间向量及其运算A1.D2.C c b a c c -+-=-+-=+-=+=2121)(212111B B .3.C ∵D B 111111,∴==-共面. 4.B c =a +b =-i +3j +4k =-i +m j -n k ,m =3,n =-4,m +n =-1.5.C 12211)()()(AA AB AD AB AD AA AD AB AB AD AC BD ⋅⋅⋅-+-=++-=30||||22=+-=.6.C A AA AC AA AD AB 111=-=-+. 7.15=m ,51-=r . 8.120°;60°. 9.-2.10.212)(||;5++=112122222AA AB AA AD AD AB AA AD AB ⋅⋅⋅+++++==1+1+1+0+2cos60°+2cos60°=5.11.(1)c b a c a c b a ++-=++-=++=+-=2121;11111B A A DB ; c b a c a 2121)(21111++=-++=++=+=BB B BB .(2)1111111)(DA A D DD CB DD DB CD DD CD DB DD =+=+=++=++. 12.解:设c =m a +n b ,则5i +3j +4k =m (2i +j +3k )+n (-i -j +2k ) =(2m -n )i +(m -n )j +(3m +2n )k ,⎪⎩⎪⎨⎧=+=-=-423352n m n m n m ,解得⎩⎨⎧-==12n m ,所以c =2a -b ,所以向量a ,b ,c 共面. 13.)()(1111CC BB BC +⋅+=⋅1100011111=+++=⋅+⋅+⋅+⋅CC BB BC BB CC AB BC AB )()(11CE BC BB AB BE AB +⋅+=⋅ ⋅=⋅+⋅+⋅=112121000=+++=. 1010||||,cos ,25||,2||1111=>=<==BE AB BE AB BE AB . 14.证明∵+=)(31)(31)](21[3232AD CA AB CA CD CB CD CB CE CG +++=+=+==∴)(31)2(31++=+++=.测试十二 空间向量及其运算BⅠ 学习目标1.会进行向量直角坐标的加减,数乘,数量积的运算. 2.掌握用直角坐标表示向量垂直,平行的条件.3.会利用向量的直角坐标表示计算向量的长度和两个向量的夹角.Ⅱ 基础性训练一、选择题1.a =(2,-3,1),b =(2,0,3),c =(0,0,2),则a +6b -8c =( ) (A)(14,-3,3)(B)(14,-3,35) (C)(14,-3,-12)(D)(-14,3,-3)2.下列各组向量中不平行的是( ) (A)a =(1,2,-2),b =(-2,-4,4) (B)c =(1,0,0),d =(-3,0,0) (C)e =(2,3,0),f =(0,0,0)(D)g =(-2,3,5),h =(16,24,40)3.已知向量a =(2,-1,3),b =(-4,2,x ),若a ⊥b ,则x =( ) (A)2(B)-2(C)310(D)310-4.与向量(-1,-2,2)共线的单位向量是( )(A))32,32,31(-和)32,32,31(-- (B))32,32,31(- (C))32,32,31(和)32,32,31(---(D))32,32,31(--5.若向量a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角余弦为98,则λ等于( )(A)2 (B)-2 (C)-2或552 (D)2或552-二、填空题6.已知点A (3,2,1),向量=(2,-1,5),则点B 的坐标为______,||=______. 7.已知3(2,-3,1)-3x =(-1,2,3),则向量x =______. 8.若向量a =(2,1,-2),b =(6,-3,2),则cos<a ,b>=______.9.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 值是______. 10.若空间三点A (1,5,-2),B (2,4,1),C (p ,3,q +2)共线,则p =______,q =______. 三、解答题11.已知向量a =(1,-1,2),b =(-2,1,-1),c =(2,-2,1),求(1)(a +c )·a ; (2)|a -2b +c |; (3)cos 〈a +b ,c 〉.12.已知向量a =(2,-1,0),b =(1,2,-1),(1)求满足m ⊥a 且m ⊥b 的所有向量m . (2)若302||=m ,求向量m .13.已知向量a =(-2,1,-2),b =(1,2,-1),c =(x ,5,2),若c 与向量a ,b 共面,求实数x 的值.14.直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点。
选修2-1章末综合测评3 空间向量与立体几何【含答案】
章末综合测评(三) 空间向量与立体几何(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( ) A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D.()2,-3,-22C [a =(1,-3,2)=-2⎝ ⎛⎭⎪⎫-12,32,-1.]2.在正方体ABCD -A 1B 1C 1D 1中,A 1E →=14A 1C 1→,AE →=xAA 1→+y (AB →+AD →),则( )A .x =1,y =12 B .x =1,y =13 C .x =12,y =1D .x =1,y =14D [AE →=AA 1→+A 1E →=AA 1→+14A 1C 1→ =AA 1→+14AC →=AA 1→+14(AB →+AD →), ∴x =1,y =14.应选A.]3.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2) B [a =CA →=(-1,0,-2),b =CB →=(-4,9,0), ∴a +b =(-5,9,-2).]4.已知点A (1,2,1),B (-1,3,4),D (1,1,1),若AP →=2PB →,则|PD →|的值是( )A.13 B.23 C.773D.63C [设P (x ,y ,z ),则AP →=(x -1,y -2,z -1), PB →=(-1-x ,3-y ,4-z ), 由AP →=2PB →知x =-13,y =83,z =3, 即P ⎝ ⎛⎭⎪⎫-13,83,3.由两点间距离公式可得|PD →|=773.]5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,下列结论不正确的是( ) A.AB →=-C 1D 1→ B.AB →·BC →=0 C.AA 1→·B 1D 1→=0D.AC 1→·A 1C →=0D [如图,AB →∥C 1D 1→,AB →⊥BC →,AA 1→⊥B 1D 1→,故A ,B ,C 选项均正确.]6.设ABCD 的对角线AC 和BD 交于E ,P 为空间任意一点,如图所示,若P A →+PB →+PC →+PD →=xPE →,则x =( )A .2B .3C .4D .5C [∵E 为AC ,BD 的中点, ∴由中点公式得PE →=12(P A →+PC →), PE →=12(PB →+PD →).∴P A →+PB →+PC →+PD →=4PE →.从而x =4.]7.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.647D.657D [∵a ,b ,c 三向量共面,则存在不全为零的实数x ,y ,使c =x a +y b , 即(7,5,λ)=x (2,-1,3)+y (-1,4,-2) =(2x -y ,-x +4y ,3x -2y ), 所以⎩⎨⎧2x -y =7,-x +4y =5,3x -2y =λ.解得⎩⎪⎨⎪⎧x =337,y =177.∴λ=3x -2y =657.]8.若向量a =(x ,4,5),b =(1,-2,2),且a 与b 的夹角的余弦值为26,则x =( )A .3B .-3C .-11D .3或-11A [因为a·b =(x ,4,5)·(1,-2,2)=x -8+10=x +2,且a 与b 的夹角的余弦值为26,所以26=x +2x 2+42+52×1+4+4,解得x =3或-11(舍去),故选A.]9.若直线l 的方向向量为(2,1,m ),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,且l ⊥α,则m =( )A .2B .3C .4D .5 C [∵l ⊥α,∴直线l 的方向向量平行于平面α的法向量. ∴21=112=m 2.∴m =4.]10.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成角为( )A .30°B .45°C .60°D .90° C [建立如图所示的空间直角坐标系,设AB =1, 则A (0,0,0),B (1,0,0),A 1(0,0,1),C 1(0,1,1), ∴BA 1→=(-1,0,1),AC 1→=(0,1,1),∴cos 〈BA 1→,AC 1→〉=BA 1→·AC 1→|BA 1→||AC 1→|=12×2=12.∴〈BA 1→,AC 1→〉=60°,即异面直线BA 1与AC 1所成角为60°.]11.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.13A [以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎨⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.]12.在矩形ABCD 中,AB =3,AD =4,P A ⊥平面ABCD ,P A =435,那么二面角A -BD -P 的大小为( )A .30°B .45°C .60°D .75° A [如图所示,建立空间直角坐标系, 则PB →=⎝ ⎛⎭⎪⎫3,0,-453,BD →=(-3,4,0).设n =(x ,y ,z )为平面PBD 的一个法向量,则 ⎩⎨⎧n ·PB →=0,n ·BD →=0,得⎩⎪⎨⎪⎧(x ,y ,z )·⎝ ⎛⎭⎪⎫3,0,-453=0,(x ,y ,z )·(-3,4,0)=0. 即⎩⎪⎨⎪⎧3x -453z =0,-3x +4y =0.令x =1,则n =⎝ ⎛⎭⎪⎫1,34,543.又n 1=⎝ ⎛⎭⎪⎫0,0,453为平面ABCD 的一个法向量,∴cos 〈n 1,n 〉=n 1·n |n 1||n |=32,∴所求二面角为30°.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知正方体ABCD -A ′B ′C ′D ′,则下列三个式子中: ①AB →-CB →=AC →; ②AA ′→=CC ′→;③AB →+BB ′→+BC →+C ′C →=AC ′→. 其中正确的有________.①② [①AB →-CB →=AB →+BC →=AC →,正确;②显然正确;③AB →+BB ′→+BC →+C ′C →=(AB →+BC →)+(BB ′→+C ′C →)=AC →+0≠AC ′→,错误.]14.若向量m =(-1,2,0),n =(3,0,-2)都与一个二面角的棱垂直,则m ,n 分别与两个半平面平行,则该二面角的余弦值为________.-36565或36565 [∵cos 〈m ,n 〉=m ·n |m |·|n | =-1×3+2×0+0×(-2)5×13=-36565.∴二面角的余弦值为-36565或36565.]15.如图正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是平面A 1B 1C 1D 1的中心,则BO 与平面ABC 1D 1所成角的正弦值为________.36 [建立坐标系如图,则B (1,1,0),O ⎝ ⎛⎭⎪⎫12,12,1,DA 1→=(1,0,1)是平面ABC 1D 1的一个法向量.又OB →=⎝ ⎛⎭⎪⎫12,12,-1,∴BO 与平面ABC 1D 1所成角的正弦值为|cos 〈OB →,DA 1→〉| =|OB →·DA 1→||OB →|·|DA 1→|=1262×2=36.] 16.设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD1B=λ,当∠APC 为钝角时,λ的取值范围是________.⎝ ⎛⎭⎪⎫13,1 [建立如图所示的空间直角坐标系D -xyz ,则A (1,0,0),C (0,1,0),B (1,1,0),D 1(0,0,1),设P (x ,y ,z ),则D 1P →=(x ,y ,z -1),D 1B →=(1,1,-1),由D 1P →=λD 1B →, 得(x ,y ,z -1)=λ(1,1,-1), ∴⎩⎨⎧x =y =λ,z -1=-λ,即P (λ,λ,1-λ), ∴P A →=(1-λ,-λ,λ-1),PC →=(-λ,1-λ,λ-1), 由P A →·PC →<0得-2λ(1-λ)+(λ-1)2<0,解得13<λ<1. 由题意知P A →与PC →所成的角不可能为π,故13<λ<1.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图,一块矿石晶体的形状为四棱柱ABCD -A 1B 1C 1D 1,底面ABCD 是正方形,CC 1=3,CD =2,且∠C 1CB =∠C 1CD =60°.(1)设CD →=a ,CB →=b ,CC 1→=c ,试用a ,b ,c 表示A 1C →; (2)已知O 为四棱柱ABCD -A 1B 1C 1D 1的中心,求CO 的长. [解] (1)由CD →=a ,CB →=b ,CC 1→=c ,得CA 1→=a +b +c , 所以A 1C →=-a -b -c .(2)O 为四棱柱ABCD -A 1B 1C 1D 1的中心,即O 为线段A 1C 的中点. 由已知条件得|a |=|b |=2,|c |=3,a ·b =0,〈a ,c 〉=60°,〈b ,c 〉=60°. 由(1)得CA 1→=a +b +c ,则|CA 1→|2=CA 1→2=(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =22+22+32+0+2×2×3×cos 60°+2×2×3×cos 60°=29.所以A 1C 的长为29,所以CO 的长为292.18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)证明:PC ∥平面BAQ .[证明] 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0),所以PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC 且DQ ∩DC =D . 故PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)根据题意,DA →=(1,0,0),AB →=(0,0,1),AQ →=(0,1,0),故有DA →·AB →=0,DA →·AQ →=0,所以DA →为平面BAQ 的一个法向量.又因为PC →=(0,-2,1),且DA →·PC →=0,即DA ⊥PC ,且PC 平面BAQ ,故有PC ∥平面BAQ .19.(本小题满分12分)如图所示,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求DP 与CC ′所成角的大小. (2)求DP 与平面AA ′D ′D 所成角的大小.[解] (1)如图所示,以D 为原点,DA ,DC ,DD ′分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,设DA =1.则DA →=(1,0,0),CC ′→=(0,0,1). 连接BD ,B ′D ′.在平面BB ′D ′D 中,延长DP 交B ′D ′于H .设DH →=(m ,m ,1)(m >0), 由已知〈DH →,DA →〉=60°,由DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉,可得2m =2m 2+1.解得m =22, 所以DH →=⎝ ⎛⎭⎪⎫22,22,1.因为cos 〈DH →,CC ′→〉=22×0+22×0+1×12×1=22,所以〈DH →,CC ′→〉=45°,即DP 与CC ′所成的角为45°. (2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0), 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D所成的角为30°.20.(本小题满分12分)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面PBC ⊥平面P AC ;(2)若AB =2,AC =1,P A =1,求二面角C -PB -A 的余弦值. [解] (1)证明:由AB 是圆的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC ,所以BC ⊥平面P AC . 因为BC ⊂平面PBC . 所以平面PBC ⊥平面P AC .(2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3.又因为P A =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故CB →=(3,0,0),CP →=(0,1,1).设平面BCP 的法向量为n 1=(x 1,y 1,z 1),则⎩⎨⎧CB →·n 1=0,CP →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1).因为AP →=(0,0,1),AB →=(3,-1,0),设平面ABP 的法向量为n 2=(x 2,y 2,z 2),则⎩⎨⎧AP →·n 2=0,AB →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0, 不妨令x 2=1,则n 2=(1 3,0).于是cos 〈n 1,n 2〉=322=64. 由图知二面角C -PB -A 为锐角,故二面角C -PB -A 的余弦值为64.21.(本小题满分12分)如图,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.[解]以D 为原点,射线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0).(1)证明:当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2).所以BC 1→=2FP →,可知BC 1∥FP ,而FP ⊂平面EFPQ ,且BC 1平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),由⎩⎨⎧FE →·n =0,FP →·n =0,得⎩⎨⎧x +y =0,-x +λz =0, 于是可取n =(λ,-λ,1),同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1),若存在λ,使得平面EFPQ 与平面PQMN 所在的二面角为直二面角, 则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22,故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.22.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1BC 1B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值. [解] (1)因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题意知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为坐标原点,建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).所以A 1B →=(0,3,-4),A 1C 1→=(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎨⎧3y -4z =0,4x =0. 令z =3,则x =0,y =4,所以平面A 1BC 1的一个法向量为n =(0,4,3). 同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈n ,m 〉=n ·m |n ||m |=1625.由题意知二面角A 1BC 1B 1为锐角,所以二面角A 1BC 1B 1的余弦值为1625.(3)证明:假设D (x 1,y 1,z 1)是线段BC 1上一点,且BD →=λBC 1→(λ∈[0,1]),所以(x 1,y 1-3,z 1)=λ(4,-3,4). 解得x 1=4λ,y 1=3-3λ,z 1=4λ,所以AD →=(4λ,3-3λ,4λ).由AD →·A 1B →=0,得9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B . 此时BD BC 1=λ=925.。
高中数学 第3章 空间向量与立体几何 3.1.1 空间向量及其线性运算 3.1.2 共面向量定理学业
【课堂新坐标】2016-2017学年高中数学 第3章 空间向量与立体几何 3.1.1 空间向量及其线性运算 3.1.2 共面向量定理学业分层测评 苏教版选修2-1(建议用时:45分钟)学业达标]一、填空题1.下列命题中,假命题是________(填序号). ①若AB →与CD →共线,则A ,B ,C ,D 不一定在同一直线上; ②只有零向量的模等于0; ③共线的单位向量都相等.【解析】 ①②正确.共线的单位向量方向不一定相同,③错误. 【答案】 ③2.下列结论中,正确的是________(填序号). ①若a ,b ,c 共面,则存在实数x ,y ,使a =x b +y c ; ②若a ,b ,c 不共面,则不存在实数x ,y ,使a =x b +y c ; ③若a ,b ,c 共面,b ,c 不共线,则存在实数x ,y ,使a =x b +y c .【解析】 要注意共面向量定理给出的是一个充要条件.所以第②个命题正确.但定理的应用又有一个前提;b ,c 是不共线向量,否则即使三个向量a ,b ,c 共面,也不一定具有线性关系,故①不正确,③正确.【答案】 ②③3.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由向量OP →=15OA →+23OB →+λOC →确定的点P 与A ,B ,C 共面,那么λ=________.【解析】 ∵P 与A ,B ,C 共面,∴AP →=αAB →+βAC →,∴AP →=α(OB →-OA →)+β(OC →-OA →),即OP →=OA →+αOB →-αOA →+βOC →-βOA →=(1-α-β)OA →+αOB →+βOC →,∴1-α-β+α+β=1.因此15+23+λ=1,解得λ=215.【答案】2154.如图317,已知空间四边形ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF →=________(用向量a ,b ,c 表示).图317【解析】 设G 为BC 的中点,连结EG ,FG ,则EF →=EG →+GF →=12AB →+12CD →=12(a -2c )+12(5a +6b -8c ) =3a +3b -5c . 【答案】 3a +3b -5c5.如图318,平行六面体ABCD A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1,若EF →=xAB →+yAD →+zAA 1→,则x +y +z =________.图318【解析】 EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=AD →-AB →+13AA 1→,∴x=-1,y =1,z =13,∴x +y +z =13.【答案】 136.如图319,在三棱锥A BCD 中,若△BCD 是正三角形,E 为其重心,则AB →+12BC →-32DE →-AD →化简的结果为________. 【导学号:09390071】图319【解析】 ∵E 为△BCD 的重心, ∴DE =23DF ,DF →=32DE →.∴AB →+12BC →-32DE →-AD →=AB →+BF →-AD →-32DE →=AF →-AD →-32DE →=DF →-32DE →=0.【答案】 07.i ,j ,k 是三个不共面的向量,AB →=i -2j +2k ,BC →=2i +j -3k ,CD →=λi +3j -5k ,且A ,B ,C ,D 四点共面,则λ的值为________.【解析】 若A ,B ,C ,D 四点共面,则向量AB →,BC →,CD →共面,故存在不全为零的实数a ,b ,c ,使得aAB →+bBC →+cCD →=0,即a (i -2j +2k )+b (2i +j -3k )+c (λi +3j -5k )=0, ∴(a +2b +λc )i +(-2a +b +3c )j +(2a -3b -5c )k =0. ∵i ,j ,k 不共面,∴⎩⎪⎨⎪⎧a +2b +λc =0,-2a +b +3c =0,2a -3b -5c =0,∴⎩⎪⎨⎪⎧a =c ,b =-c ,λ=1.【答案】 1 8.有四个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题是________(填序号).【解析】 由共面向量定理知,①正确;若p 与a ,b 共面,当a 与b 共线且p 与a 和b 不共线时,就不存在实数组(x ,y )使p =x a +y b 成立,故②错误;同理③正确,④错误.【答案】 ①③二、解答题9.如图3110所示,ABCD A 1B 1C 1D 1中,ABCD 是平行四边形.若AE →=12EC →,A 1F →=2FD →,若AB →=b ,AD →=c ,AA 1→=a ,试用a ,b ,c 表示EF →.图3110【解】 如图,连结AF ,则EF →=EA →+AF →.由已知ABCD 是平行四边形, 故AC →=AB →+AD →=b +c ,A 1D →=A 1A →+AD →=-a +c .由已知,A 1F →=2FD →,∴AF →=AD →+DF →=AD →-FD →=AD →-13A 1D →=c -13(c -a )=13(a +2c ),又EA →=-13AC →=-13(b +c ),∴EF →=EA →+AF →=-13(b +c )+13(a +2c )=13(a -b +c ).10.如图3111所示,已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边BC ,CD 上的点,且CF →=23CB →,CG →=23CD →.求证:四边形EFGH 是梯形.图3111【证明】 ∵E ,H 分别是AB ,AD 的中点, ∴AE →=12AB →,AH →=12AD →,则EH →=AH →-AE → =12AD →-12AB →=12BD → =12(CD →-CB →)=12⎝ ⎛⎭⎪⎫32CG →-32CF →=34(CG →-CF →)=34FG →, ∴EH →∥FG →且|EH →|=34|FG →|≠|FG →|.又F 不在直线EH 上, ∴四边形EFGH 是梯形.能力提升]1.平面α内有点A ,B ,C ,D ,E ,其中无三点共线,O 为空间一点,满足OA →=12OB →+xOC→+yOD →,OB →=2xOC →+13OD →+yOE →,则x +3y =________.【解析】 由点A ,B ,C ,D 共面得x +y =12,又由点B ,C ,D ,E 共面得2x +y =23,联立方程组解得x =16,y =13,所以x +3y =76.【答案】 762.已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ=________. 【解析】 如图,取AB 的中点D , OG →=OC →+CG →=OC →+23CD →=OC →+23·12(CA →+CB →)=OC →+13(OA →-OC →)+(OB →-OC →)]=13OA →+13OB →+13OC →. ∴OA →+OB →+OC →=3OG →. 【答案】 33.(2016·贵港高二检测)在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z使得p =x a +y b +z c .其中正确命题的个数是______.【解析】 a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确.综上可知,四个命题中正确的个数为0.【答案】 04.如图3112,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB .图3112【证明】 因为H 为BC 的中点,所以FH →=12(FB →+FC →)=12(FE →+EB →+FE →+ED →+DC →)=12(2FE→+EB →+ED →+DC →).因为EF ∥AB ,CD ∥AB ,且AB =2EF ,所以2FE →+DC →=0,所以FH →=12(EB →+ED →)=12EB →+12ED →.因为EB →与ED →不共线,由共面向量定理知,FH →,EB →,ED →共面. 因为FH ⊄平面EDB , 所以FH ∥平面EDB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章测评 一、选择题 1.若a、b、c为任意向量,m∈R,下列等式不一定成立的是( ) A.(a+b)+c=a+(b+c) B.(a+b)·c=a·c+b·c C.m(a+b)=ma+mb D.(a·b)·c=a·(b·c) 思路解析:本题考查了向量的运算法则、运算律.A表示的是向量加法,符合结合律,B表示数量积形式下的分配律,C表示数乘向量,均正确,而D中(a·b)·c表示与c共线的向量,a·(b·c)表示与a共线的向量,故不正确. 答案:D
2.已知ABCD是四面体,O为△BCD内一点,则AO=31(AB+AC+AD)是O为△BCD的重心的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 思路解析:本题考查了向量的运算、充要条件的判断等基础知识. 答案:C
3.若向量a=(1,λ,2),b=(2,-1,2),a、b夹角的余弦值为98,则λ等于( )
A.2 B.-2 C.-2或552 D.2或552 思路解析:本题考查了向量夹角公式.cos〈a,b〉=||||baba,∴9835422, 解之,得λ=-2或552. 答案:C 4.在以下命题中: ①|a|-|b|=|a+b|是a、b共线的充要条件; ②若a∥b,则存在唯一的实数λ,使a=λb;
③对空间任意一点O和不共线的三点A、B、C,若OP=2OA-2OB-OC,则P、A、B、C四点共面; ④若{a,b,c}为空间一个基底,则{a+b,b+c,c+a}构成空间另一个基底; ⑤|(a·b)c|=|a||b||c|. 其中不正确的个数为( ) A.2 B.3 C.4 D.5 思路解析:①不正确,应为充分不必要条件;②不正确,b应为非零向量;③不正确,右边系数和为1时,才可得四点共面;⑤不正确,|(a·b)c|=|a||b||c|cos〈a,b〉. 答案:C 5.设a=(x,4,3),b=(3,2,z),且a∥b,则xz等于( )
A.-4 B.9 C.-9 D.964
思路解析:本题考查了空间向量共线的充要条件.a∥bzx3243∴x=6,z=23 ∴xz=9. 答案:B 6.在棱长为1的正方体ABCD—A1B1C1D1中,M、N分别为A1B1和BB1的中点,那么直线AM与CN所成的角为( )
A.arccos23 B.arccos1010 C.arccos53 D.arccos52 思路解析:本题考查了异面直线所成角的求法,可以构建空间直角坐标系求解.如图,建立空间直角坐标系,则A(1,0,0),M(1,21,1),C(0,1,0),N(1,1,21).
∴AM=(0,21,1),CN=(1,0,21). ∴AM·CN=21,|AM|=25=|CN|.
∴cos〈AM,CN〉=52252521. 答案:D 7.如图,四面体P—ABC中,PC⊥面ABC,AB=BC=CA=PC,那么二面角BAPC的余弦值为( )
A.22 B.33 C.77 D.75 思路解析:求二面角的大小,可以用传统方法,也可用向量法.作BD⊥AP于D,作CE⊥AP于E,设AB=1,则易得CE=22,EP=22,PA=PB=2,AB=1, 可以求得BD=414,ED=42. ∵BC=BD+DE+EC, ∴BC2=BD2+DE2+EC2+2BD·DE+2DE·EC+2EC·BD. ∴EC·BD=41.
∴cos〈BD,EC〉=77. 答案:C 8.已知四边形ABCD是边长为4的正方形,E、F分别是边AB、AD的中点,GC垂直于正方形ABCD所在平面α,且GC=2,则点B到平面EFG的距离为( )
A.3 B.5 C.1111 D.11112 思路解析:如图,建立空间直角坐标系,则B(0,4,0),E(2,4,0),F(4,2,0),G(0,0,2),
GE=(2,4,-2),GF=(4,2,-2),
设n=(x,y,z)是平面EFG的一个法向量,则,0224,0242zyxGFnzyxGEn 令x=1,则y=1,z=3, ∴n=(1,1,3).而EB=(-2,0,0), ∴d=11112||||nEBn. 答案:D 9.空间四点A、B、C、D每两点的连线长都等于a,动点P在线段AB上,动点Q在线段CD上,则点P与Q的最小距离为( )
A.2a B.a22 C.a23 D.a26 思路解析:求PQ的最小值,需先将PQ表示出来,再用代数方法确定最值.
AB、AC、AD两两夹角均为60°,
设PA=-λAB,DQ=uDC, 则PQ=PA+AD+DQ=-λAB+AD+u(AC-AD)=-λAB+(1-u)AD+uAC. ∴|PQ|2=λ2AB2+(1-u)2AD2+u2AC2+2λ(u-1)AB·AD+2(1-u)uAD·AC-2λuAB·AC=λ2a2+
a2-2ua2+u2a2+u2a2+λua2-λa2+ua2-u2a2-λua2=a2(λ2+u2-u-λ+1)
=a2[(λ-21)2+(u-21)2+21]≥22a.
∴|PQ|≥a22. 答案:B 10.在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别为A1B和AC上的
点,A1M=AN=a32,则MN与平面BB1C1C的位置关系是( ) A.相交 B.平行 C.垂直 D.不能确定 思路解析:用向量法判断.
∵A1M=AN=a32, ∴A1M=31AB,AN=31AC. ∴MN=ANAAMA11 =ACAABA313111=-3111BA-31AA1+AA1+3111BA+31AD =32AA1+31AD=32BB1+3111CB. ∴MN、BB1、11CB共面. ∵MN平面BB1C1C, ∴MN∥平面BB1C1C. 答案:B 二、填空题 11.与A(-1,2,3),B(0,0,5)两点距离相等的点满足的条件为______________.
思路解析:利用空间距离公式解题,设符合条件的点P的坐标为(x,y,z),则|PA|=|PB|. ∴(x+1)2+(y-2)2+(z-3)2=x2+y2+(z-5)2, 化简得2x-4y+4z-11=0. 答案:2x-4y+4z-11=0
12.A1、A2、A3是空间不共线的三点,则133221AAAAAA=___________________.类比上述性质得到一般性结论为___________________. 思路解析:充分利用向量加法的三角形法则解决问
题.3131133221AAAAAAAAAA=0,可以推广为n个首尾顺次相连的有向线段对应的向量相加,只需连续运用三角形法则来解题. 答案:0 113221AAAAAAAAnnn
=0
13.已知平行六面体ABCD—A1B1C1D1中,ABCD是边长为a的正方形,AA1=b,∠A1AB= ∠A1AD=120°,则A1C的长为_______________.
思路解析:利用向量加法的三角形法则和平行四边形法则,将CA1用11BA、11DA、AA1来
表示,然后用求向量的模的方法,求长度|CA1|. CA1=AA1+11BA+11DA, ∴|CA1|2=(AA1+11BA+11DA)2 =AA12+11BA2+11DA2+2AA1·11BA+2AA1·11DA+211BA·11DA =b2+a2+a2+ab+ab=2a2+2ab+b2. 答案:2222baba
14.设点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),若OA与BC的夹角为θ,则cosθ=____________. 思路解析:本题主要考查向量夹角公式.OA=(1,-2,3),BC=(2,0,-6), ∴cosθ=353546232163022122222.
答案:35354 三、解答题 15.已知向量a,b,c满足a+b+c=0,|a|=3,|b|=2,|c|=4,求a·b+b·c+c·a. 思路解析:利用向量运算律和数量积公式解题. 解:∵a+b+c=0, ∴(a+b+c)2=0. ∴a2+b2+c2+2(a·b+b·c+c·a)=0.
∴a·b+b·c+c·a=21(32+22+42)=229. 16.如图,在长方体ABCD-A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点,且B1M=2,点N在线段A1D上,A1D⊥AN.
(1)求cos〈AMDA,1〉; (2)求直线AD与平面ANM所成角的大小. 思路解析:本题主要考查向量夹角公式和直线与平面所成的角问题.由于在长方体中解决问题,故可以通过构建空间直角坐标系的方法求解. 解:(1)如图,建立空间直角坐标系,则A(0,0,0),M(5,2,4),A1(0,0,4),D(0,8,0), ∴AM=(5,2,4),DA1=(0,8,-4). ∴AM·DA1=0+16-16=0. ∴cos〈DA1,AM〉=0. (2)∵AM·DA1=0,∴AM⊥DA1. 又AN⊥A1D, ∴A1D⊥平面AMN.
∴DA1=(0,8,-4)是平面ANM的法向量.
又AD=(0,8,0), |DA1|=54,|AD|=8,DA1·AD=64,
∴cos〈DA1,AD〉=55285464.
∴AD与平面ANM所成的角为2-arccos552. 17.如图所示,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角; (2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出|AF|;若不存在,说明理由. 思路解析:求异面直线所成的角为常规问题,比较简单.第(2)问为探索性问题,通常有两种方法:(1)猜出结论(点F的位置).然后证明;(2)利用计算的方法直接求出该点位置.方法(1)偶然性较强,因为必须“猜中”点的位置,否则将无法进行下去,方法(2)比较稳妥. 解:如图,建立空间直角坐标系.