橡胶机械文档
橡胶加工原理和工艺

PPT文档演模板
橡胶加工原理和工艺
•五. 填充剂
• 填充剂按用途可分为两大类;即补强填充剂和惰性填充剂。 • 补强填充剂简称补强剂,是能够提高硫化橡胶的强力,撕裂强 度,定伸强度,耐磨性等物理机械性能的配合剂。最常用的补强剂 是炭黑,其次是白炭黑、碳酸镁、活性碳酸钙,活性陶土、古马隆 树脂、松香树脂、苯乙烯树脂、酚醛树脂、木质素等。 • 惰性填充剂又称增容剂,是对橡胶补强效果不大,仅仅是为了 增加胶料的容积以节约生脱从而降低成本或改善工艺性能(特别是压 出、压延性能)的配合剂。增容剂只好是比重小的、这时重量经而体 积大,虽常用的增容剂有硫酸钙,滑石粉、云母粉等。 • 下面着重讨论炭黑的补强机理及影响补强效果的因素。
• 防老剂一般可分为两类,即物理防老剂和化学防老剂。物理防老剂
主要有石蜡、微晶蜡等物质。由于在常温下此种物质在橡胶中的溶解度
较少,因而逐渐迁移到橡胶制品表面,形成一层薄膜,起隔离臭氧、氧
•气与橡胶的接触作用,用量一斑为1—3份。
• 化学防老剂主要有酚类和胺类。酚类一股无污染,但防老性能较差,
主要用于浅色和透明制品,而胺类一般部有污染做主要用于黑色和
PPT文档演模板
橡胶加工原理和工艺
•配方种类有三类,即基础配方、性能配方和生产配方。 • 基础配方是专供研究或鉴定新胶种,新配合剂用的,其配合组分 的比例一般采用传统的使用量,以便对比,并要求尽可能简单。通 用的基础配方其组分和用量如下;
PPT文档演模板
橡胶加工原理和工艺
•配方设计的原则:
•在配方设计之前,首先必须了解制品的使用条件,并考虑制品的质 量,使用寿命及物理机械性能。 •第二 必须了解对使用的生胶和配合剂的性质以及各种配合利的相互 间的关系,尤其是使用新型原材料时,对其质量,等级情况要有分折 和实验的结果。 •第三 原材料的使用必须立足于国内,因地制宜。 •最后, 在制定配方时,还必须考虑到设备的特点和制造工艺上 •的方便,尽量降低成本,降低原材料消耗。
TES-64345橡胶软管

Document No.TES-64345Revision ---Date Specification of RUBBERHOSE HAITECDocument Secret Rank:■Extremely Secret□Secret□OrdinaryDocument Secret Rank:■Extremely Secret□Secret□OrdinaryDOCU DOCUSpecification of RUBBER HOSE TES-64345TITLE NOby Rev.No Description DateRevrelease--- InitialDocument Secret Rank:■Extremely Secret□Secret□OrdinaryContents1. Scope (4)2. Test Items (4)3. General Conditions for Testing (4)4. Hose Dimension Measurement (5)5. Hose Performance Tests (5)6. Physical Test on Rubber Layer (19)7. Physical Test on Hose Rubber materials (22)8. Miscellaneous (23)Document Secret Rank:■Extremely Secret□Secret□Ordinary1. ScopeThis specification prescribes the testing methods of rubber hose for application in motor vehicles.2. Test ItemsTest items prescribing in this specification shall be as follows.(1) Measurement of hose dimensions(2) Test for hose performance(3) Physical tests on Rubber layer(4) Physical tests on hose rubber materials3. General Conditions for Testing3.1 Standard Conditions for TestingThe ambience condition in a laboratory shall, as a rule be 23±2℃ and 50±5% R.H., however, if such condition can not be maintained, the temperature and humidityprevailing during a test shall be recorded.3.2 Standard Conditions for SampleThe sample shall, as a rule, be that which has elapse not less than 24 hours after vulcanization and should be kept in a room maintained under standard conditions for not less than 1 hour before test.3.3 Definition of Sample3.3.1 Sample for Hose Performance TestsA sample of this type shall be used in a test in a form of hose itself or in a formwhere an original form is retained.3.3.2 Sample for Physical Tests on Rubber LayerSample shall be extracted from a hose and used in a test after it is processed bysuch action as cutting, grinding, etc.3.3.3 Sample for Physical Tests on Rubber materialsA sample shall be extracted from a sheet or a molding product of same materials ofa hose and by same vulcanizing condition if an extraction from a hose is notavailable.3.4 Rounding off of Results of TestsResults of each test shall be rounded off according to JIS Z8401 and shall be denoted in accordance with Table 1 in JIS K6301.Document Secret Rank:■Extremely Secret□Secret□Ordinary4. Hose Dimension MeasurementA measurement shall be done by the method in 5 of JASO M 319. A method applied for the measurement of hose inside diameter shall be recorded in a report.5. Hose Performance Tests5.1 Pressure Withstanding TestA test shall be done by the method in 6.1 of JASO M319.A speed of pressurization applied in Hydraulic pressure test, bursting test and airpressure test shall be 172 ±67MPa/min for a hose of applicable pressure in excess of 980 kPa and 1470±490 kPa/min for a hose of up to 980kPa. The pressure shall be retained for 5 minutes in both cases. A pressure reduction speed in a vacuum test shall be 1.33~7.98kPa/min, and the clamp to be used in an air pressure test shall be those practically used in a vehicle.5.2 Low Temperature TestA test shall be done by any one of the following 3 methods and such method shall benoted with the result in a report.(1) Method ABy method A in 2.2, (1) of JASO M 319. A temperature shall be maintainedgenerally within a tolerance of ±2℃and a sample shall be bent within 4 seconds after it is exposed to specified ambience for 5 hours.(2) Method BA sample shall be placed in straight condition in constant low temperature tank atspecified temperature and allowed to stand for specified time. Within 4 secondsafter that, while the sample is still kept in the chamber, it shall be bent back by180° in a manner as shown in Fig. 1 and examined for crack and other abnormalities.Fig. 1(3) Method CBy method B in 2.2, (2) of JASO M 319. A vise and other implements used in a test shall also be employed in the same ambient condition as a sample. Thetemperature tolerance and exposure time given in (1) method a above shall be applicable.Document Secret Rank:■Extremely Secret□Secret□Ordinary5.3 Ozone Resistance TestBy either method A in 6.3, (1) of JASO M 319 or method B in (2), however, method B in 6.3, (2) of JASO M 319 shall be omitted and method C in (3) shall be namedmethod B.5.4 Adhesion TestAdhesion test shall be done by any one of the following 4 methods and such method shall be noted with the result in a report. Method D shall be applied only to a rubber, which will not have a reinforcement layer.(1) Method ABy method A in 6.4.2, (1) of JASO M 319.(2) Method BBy method B in 6.4.2, (1) of JASO M 319.(3) Method CA 100mm long piece shall be extracted from a hose and applied with slits in 4places on the surface in a manner as shown in Fig. 2-1. The outer layer shall betorn apart from the reinforcement layer for about 20mm from one end. The tearing shall be continued with a speed at 50.0±2.5mm/min by keeping the angle to the hose axis at 90°to measure a tearing strength.Fig. 2-1 Fig. 2-2(4) Method DBy method C in 6.4.2, (1) of JASO M 319.5.5 Heat Aging TestA heat-aging test shall be performed by any of the following 4 methods and suchmethod shall be noted with the result in a report. The temperature tolerance shall be ±1℃up to 120℃ and ±2℃in excessive of 120℃.(1) Method ADocument Secret Rank:■Extremely Secret□Secret□OrdinaryA sample, which is kept in a straight from, shall be aged under and for specifiedtemperature and time as given in 6, heat aging test, of JIS K 6301. It shall be left ina room temperature for 3 hours and, then, bent around a cylinder of a specifieddiameter by 180°and checked for crack and other faulty conditions.(2) Method BBy method B in 7.2, (1) of JASO M 319.(3) Method CStraight hose, by the method corresponding to that in 6 (Air Heating Aging Test) of JIS K 6301, shall be aged at specified temperature for specified time. After standing at room temperature for at least 3 hours, the hose shall rapidly bentapproximately 180°as shown in Fig. 1 of 5.2, (2) and examined for presence of cracks developing and other defects.(4) Method DBy method A in 6.7.2, (1) of JASO M 319. An impact test shall be performed byusing an impact tester as shown in Fig. 3. While a hose is supported in a straight form, a weight shall be dropped on it and the hose shall be checked for crack oninner and outer hose surfaces and other faulty condition.Fig. 35.6 Tensile TestBy the method in 6.6 of JASO M319, provided that, a hose joined by a clip or clamp shall be excluded.5.7 Salt Spray TestBy the method in 6.9 of JASO M319.Document Secret Rank:■Extremely Secret□Secret□Ordinary5.8 Durability Test(1) Rotating Fatigue TestBy the method in 6.10, (3) of JASO M 319. A pressure drop after a specifiedduration of time shall be measured. A pressure circuit shall generally be equipped with an equipment, which will stop the rotation when a pressure in the circuit drops below a set pressure. Pressure, temperature and revolution speed during a testshall be recorded continuously.(2) Repeated Pressure TestBy the method in 6.10.2, (1) of JASO M 319. One end shall be held firmly andanother end shall be kept free.(3) Repeated Pressure and Vibration TestBy the method in 6.10.2, (2) of JASO M 319.(4) Vibration Fatigue TestA sample installed in a similar condition as on a vehicle shall be held firmly of oneend and vibration applied to another and with specified amplitude and frequencyfor a specified amplitude and frequency for a specified time. The sample shall be checked for crack and other faulty conditions.5.9 Expansion TestBy the method in 6.11 of JASO M 319.5.10 Gauge Insertion TestBy the method in 6.12 of JASO M 319.5.11 Water Absorption TestAn outer layer of a hose shall be peeled off by a specified length in a manner that the reinforcement layer will be exposed. Due care shall be paid in peeling in order that the reinforcement threads would not be damaged. The sample shall be immersed into water under a room temperature for a specified time and an evaluation shall be done generally within 10 minutes after it is taken out of water.5.12 Standing TestApproximately 100mm long sample shall be extracted from a straight section of a hose, both ends plugged by aluminum caps and placed in a wide opening jartogether with a piece of painted plate in a manner as shown in Fig. 4. It shall beretained under a specified temperature for 24 hours by the method in 6, heat aging test, of JIS K 6301 and, then, checked for the discolor of paint.Document Secret Rank:■Extremely Secret□Secret□OrdinaryFig. 45.13 Solvent Sealed Aging TestA solvent shall be filled in a sample by the method in 6.8 of JASO M 319 andpressure resistance and tensile tests in 5.1 and 5.6 of the said standard shall beperformed immediately after that.5.14 Crack Growth Test by SolventApproximately 100mm long sample shall be extracted from a hose and a penetrated slit with a length of 2.03 +0.05 0 shall be applied in the center in a way as shown in Fig, 5. After it is stretched by 100% of the length, it shall be immersed into a specified fluid at a specified temperature and a time elapse before it ruptures shall bemeasured.Fig. 55.15 Refrigerant Gas Permeation TestBy the method in 7.13 of JASO M 321 “Hose for Automotive Air Conditioning Unit.”R12 or R134a refrigeration gas shall be used.Document Secret Rank:■Extremely Secret□Secret□Ordinary5.16 Extract TestA specified fluid shall be filled in a sample once and drained immediately after that. Itshall be filled again and left in an air constant temperature chamber at a specified temperature for a specified time. The fluid, then, shall be discharged into a glassvessel and the sample shall be dried under a specified temperature and pressure fora specified time. It shall, then, left in a room temperature for 3 hours and weighed foran extracted material.5.17 Flame Resistance TestApproximately 100mm long sample shall be extracted from a hose and filled up with water in it. Blue flame from a Bunsen burner of about 10mm outlet diameter shall be adjusted to a height of 40mm and the sample shall be held horizontally about 100mm above the tip of flame in a manner as shown in Fig. 6 for 3 minutes. The sample shall be bent by 180°after that and checked for water leak.Fig. 65.18 Deformation Test by BendingBy the method in 6.5 of JASO M 319.5.19 Deformation Test by CompressionBy the method in 10.9 of FMVSS 106.5.20 Zinc Chloride Solution Immersion TestA sample shall be immersed into 50% solution of zinc chloride at a room temperaturefor 200 hours. It shall be left in the air at a room temperature for 3 hours, and, then checked for crack.Document Secret Rank:■Extremely Secret□Secret□Ordinary5.21 Medium Immersion TestA sample shall be immersed into a specified medium for a specified time under aspecified temperature. It shall be wiped off lightly of the medium left on it immediately after the immersion and checked for noticeable expansion of rubber surface, rubber dissolution, etc.5.22 Battery Electrolyte Immersion TestApproximately 100mm long sample shall be extracted from a hose and immersed into an electrolyte as specified in 5.9 of JIS D 5301 (specific gravity at 20℃, 1.280°0.010) under a room temperature for 5 minutes and left in the air at a roomtemperature for 1 hour. It shall, then, be blown off of water droplets left on it bycompressed air and aged under a specified temperature for 24 hours. After the said operation is repeated 5 times, it shall be compressed to an extent that the innerdiameter will be squeezed to 50% and checked for crack and other faulty condition.5.23 Fuel Permeation Test5.23.1 Test EquipmentAn equipment used in this test shall comply with the following stipulation or Title 13, CCR § 1976 standards and Test Procedures for motor vehicle Fuel EvaporativeEmissions issued by California Air Resources Board of USA.5.23.1.1 Fuel Evaporative Emission measurement Enclosure (SHED Enclosure)5.23.1.1.1 Size and structure of SHED EnclosureThe SHED enclosure shall have an ample space in a way that a fuel evapotranspiration equipment as specified herein can be accommodated without touching to the wall. The nominal SHED volume shall bedetermined by measuring all pertinent dimensions to an accuracy of 5mmand calculating the net enclosure nominal volume to the nearest 001m3.The latching system shall provide of fixed volume with an accuracy andrepeatability of 0.005×V. It shall use materials on its interior surfaces,which do not absorb or desorbs hydrocarbons.It shall be constructed with a minimum number of seams and joints, whichprovide potential leakage paths. Particular attention shall be given tosealing and gasket of such seams and joints to prevent leakage.5.23.1.1.2 Air Temperature Management SystemAn air temperature management system installed in SHED enclosure (typicallyair to water heat exchangers and associated programmable temperaturecontrols) shall be able to keep a room temperature not higher than 14℃ abovea specified maximum temperature and not lower than 14℃below a minimumtemperature. The temperature conditioning system shall be capable ofcontrolling the internal enclosure air temperature to follow the prescribedtemperature versus time cycle as specified in (8) of the test procedures shownDocument Secret Rank:■Extremely Secret□Secret□Ordinaryin 5.23.3 within an instantaneous tolerance of ±1.5℃of the nominaltemperature versus time profile throughout the test, and an average toleranceof ±1.1℃over the duration of the test. The control system shall be tuned toprovide a smooth temperature pattern, which has a minimum of overshoot,hunting, and instability about the desired long-term temperature profile.The blower shall be sized to provide a nominal total flow rate within a range of0.3 to 0.6m3/min per m3 of the nominal SHED volume (V) and an outlet andinlet of air ventilation unit and a diffuser shall be provided in a way that atemperature and concentration of hydrocarbon (hereinafter referred to as HC)in SHED enclosure will be maintained at uniform level.A thermocouple shall be fitted each on a center of both side wallsapproximately at a height of the center of fuel oil evapotranspiration equipmentabove ground and protruding 8~10cm to the inside of room. They shall beconnected in a way that both of then will output a same mean value.5.23.1.1.3 Pressure Control SystemA system by which the enclosure capacity can be expand or contracted (pleasesee the note for details) and a pressure converter having an accuracy to1mmAg shall be provided in SHED enclosure so that a pressure differencebetween enclosure inside and the atmosphere will be maintained at smallerthan 50mmAg. An adjustment of room capacity shall be ample enough toaccommodate variation of atmospheric pressure up to 20mmHg and variation of enclosure air pressure due to temperature difference between inside and outside of the enclosure. The capacity of adjustment shall be larger than ±7% of SHED enclosure nominal volume.Note) Two potential means of providing the volume accommodation capabilities area moveable ceiling, which is joined to the enclosure walls with a flexure: or aflexible bag or bags of fluoro-resin or other suitable materials, which are ininstalled in the SHED enclosure and provided with flow paths, whichcommunicate with the ambient air outside the enclosure.5.23.1.1.4 Purge BlowerOne or more portable or fixed blowers shall be used to purge the enclosure.The blowers shall have sufficient flow capacity to reduce the enclosure HCconcentration from the test level to the ambient level between tests.5.23.1.2 HC Analysis ApparatusA HC analysis apparatus utilizing flame ionization principle (FID) shall be used inthis test 90% responding time of the apparatus shall be smaller than 1.5seconds and a drift between zero and span in the whole operating shall beDocument Secret Rank:■Extremely Secret□Secret□Ordinary±0.1%/8h.smallerthanRepeatability of the analyzer shall be better than ±1% of full scale.Instrument by pass flow may be returned to the enclosure.5.23.1.3 Recording EquipmentAn on-line computer system or a strip chart recording system having a timeresolution of 30 seconds shall be sued for the continuous recording of the following parameters..SHED enclosure internal air temperature.Fuel tank liquid temperature.SHED enclosure internal pressure.SHED enclosure temperature control system surface temperature.FID output voltage recording the following parameters for each sample analysis: - zero gas and span gas adjustments- zero gas and span gas readings- SHED sample reading5.23.1.3.1 HC Concentration Data Recording SystemThe recording system must have operational characteristics (signal to noiseratio, speed of response, etc.) equivalent to or better than those of signalsource being recorded. HC concentration shall be recorded at least in thecommencement and at the end of a test. Continuous or very frequentdetermination during a test way may be performed to an extent that they willnot induce a wrong effect on the test results.5.23.1.3.2 Temperature Recording SystemThe temperature recording system (recorder and sensor) shall have anof±1℃. The temperature recorder or data processor shall record accuracyeach temperature at least once in every minute. The recording system shall becapable of resolving time to ±15 seconds and capable of resolving temperature0.5℃.to5.23.3 CalibrationThe following calibration shall be applied to equipments to be used in a test.5.23.2.1 The Calibration of the SHED EnclosureC alibration of SHED enclosure shall consist of the following parts..Initial and periodical determination of SHED enclosure background emission..Initial determination of SHED enclosure internal volume.Document Secret Rank:■Extremely Secret□Secret□Ordinary.Periodical HC retention check and calibration.The calibration shall preferably be done prior to an adoption to a test, aftermodification or repair work, which could change SHED enclosure performance and at a regular interval (preferably 4 times in a year) even when there is no particular requirement.5.23.2.1.1 Initial and Periodical Determination of SHED Enclosure Background EmissionA determination shall be done in the following procedures and an emission (MHC) tobe calculated by the formula in (8) below shall not exceed 0.05g in 4 hours.P rocedures(1) Temperature in SHED enclosure shall be maintained at 40.6℃.(2) Purge the enclosure until a stable background HC reading is obtained.(3) SHED enclosure may be left standing for up to 12 hours after it is sealed andbefore HC concentration reading at the test commencement is taken.(4) Zero and span (calibrate if required) the hydrocarbon analyzer.(5) Measurements of HC concentration, temperature and atmospheric pressure shallbe taken. They shall be the reading CHCi, PBi and Ti, representing testcommencement readings, which will be used for SHED enclosure backgroundemission measurement.(6) Allow the enclosure to stand undisturbed without sampling for 4 hours.(7) Measure the HC concentration on the same FID. These are final concentration(CHCf). Also measure final temperature (Ti) and barometric pressure (PBF).(8) Background emission shall be calculated by the following formula.MHC: Background emission (g)V: SHED enclosure nominal volume (m3)CHC: SHED enclosure concentration (ppmc)PB: SHED enclosure barometric pressure (kPa)T: SHED enclosure temperature (°K)f: In final conditioni: In initial conditionDocument Secret Rank:■Extremely Secret□Secret□Ordinary5.23.2.1.2 Initial Determination of SHED Enclosure internal volumeAn initial determination of SHED enclosure internal volume shall be done in thefollowing procedures and the result shall be consistent with the nominal capacity, V, obtained by the method given in 5.23.1.1.1 above with an error smaller than ±2%.P rocedures(1) Zero and span the HC analyzer.(2) Purge the enclosure until a stable background HC reading is obtained.(3) Turn on the mixing blower.(4) Seal SHED enclosure and measure background HC concentration (CHCi)temperature (Ti) and barometric pressure (PBi).(5) Inject into SHED enclosure a known quantity of pure propane. The propane maybe measured by a critical flow orifice or by mass measurement which have an accuracy and precision of ±2% of the measured value.(6)After a minimum of 5 minimum of mixing, analyze SHED enclosure atmospherefor HC concentration (CHCf), also record temperature (Tf) and pressure (PBf) shall be measured.(7) MHC shall be obtained by the formula given in 5.23.2.1.1, (8) above and verifiedagainst propane injection quantity for a consistency with an error smaller than ±2%.5.23.2.1.3 Check on HC Retention in SHED EnclosureA check on HC retention shall be done by the following procedures in combinationwith HC mass measurement accuracy of SHED enclosure and HC retention power of SHED enclosure.P rocedures(1) Zero and span the HC analyzer.(2) Purge the enclosure until a stable enclosure HC level is attained.(3) Turn on the enclosure air mixing and temperature control system and adjust it foran initial temperature of 18.3℃.(4) Close the enclosure door. On variable volume SHED enclosures, latch theenclosure to the nominal volume position.(5) When the enclosure temperature stabilizes at 18.3℃±1℃seal the enclosure;measure the enclosure HC concentration (CHCi) and the temperature (Ti) andpressure (Pi) in the enclosure.(6) Inject into the enclosure a known quantity of propane of between 4 to 8 grams.(7) Allow the enclosure internal HC concentration to mix and stabilize for up to 300seconds.Document Secret Rank:■Extremely Secret□Secret□Ordinary(8) Initial SHED HC concentration, CHCe2, shall be measured.(9) On variable volume SHED enclosures, unlatch the enclosure from the nominalvolume configuration to accommodate temperature and barometric pressurechanges.(10) Start the temperature cycling function.Note) The operations given in (5) through (10) shall be completed in less than 900 seconds.(11) Calculate the initial recovered HC mass (MHCel) according to the followingformula;MHCel={17.60×V×10-4×Pi×(CHCe2-CHCel)}/Ti, whereMHCel: initial recovered mass (g)V: SHED enclosure nominal volume (m3)Pi: SHED enclosure initial pressure (kPa)CHCen: SHED enclosure concentration at event n (ppmc)Ti: SHED enclosure initial temperature (°K)(12) At the completion of the 24 hours temperature cycling period measure the finalenclosure HC concentration (CHCe3). Calculate the final recovered HC mass (MHCe2) as follows.MHCe2={17.60×V×10-4×Pi×(CHCe3-CHCe2)}/Ti, whereMHCe2: final recovered HC mass (g)V: SHED enclosure nominal volume (m3)Pi: SHED enclosure initial pressure (kPa)CHCen: SHED enclosure concentration at event n (ppmc)Ti: SHED enclosure initial temperature (°K)(13) A compensation shall be necessary if a calculated initial recovered mass andinjected propane mass differ larger than ±2% and also final and initial recovered mass differ larger than ±3%.5.23.2.2 Calibration of Analysis Apparatus.A fuel permeation shall be tested by the following procedures by using a fuelevapotranspiration equipment and test liquid as designated in this specification.5.23.3.1 Procedures for measurement of Blank of Fuel Evapotranspiration EquipmentProcedures(1) A test fluid shall be filled into a tank up to about 40% of the capacity.Document Secret Rank:■Extremely Secret□Secret□Ordinary(2) A sample fitting port and pressure discharge outlet of a tank shall be pluggedsecurely and the tank shall be left in an ambience at 24℃for 24 hours.(3) The tank shall be placed in a static condition in SHED enclosure and a tube shallbe fitted to the pressure discharge outlet in a way that the tank will be connected with outside atmosphere by a medium of connector panel.(4) A thermal sensor in the tank shall be connected to a temperature recorder andthe unit shall be put in operation.(5) Zero and span of an analysis apparatus shall be adjusted immediately before the commencement of a test.(6) When the fluid temperature reaches at least 17℃, immediately;(a) Turn off purge blowers, if not already off at this time.(b) Close and seal enclosure doors.(7) When the fluid temperature reaches 18.3±1℃, immediately;(a) Analyze enclosure atmosphere for HC and record (CHC1).(b) Start the temperature cycling function and the time shall be recorded.(8) SHED enclosure temperature shall be varied in the following manner.Time hrTimehrTimehrTemperature ℃Temperature ℃Temperature ℃0 18.3 8 38.4 1629.11 19.2 9 39.7 1727.12 22.6 10 40.5 1825.43 26.8 11 40.6 1924.14 30.1 12 40.1 2022.25 32.6 13 38.4 2121.16 34.8 14 35.2 2220.17 36.7 15 31.6 2318.3 (9) Zero and span of analysis apparatus shall be adjusted just before an end of atest.(10) An end of cycle test occurs 24 hours ±2 minutes after the test build begins,paragraph (7) above.Analyze SHED enclosure atmosphere for HC (CHC2) and record. The time (orelapsed time) of this analysis shall be recorded.(11) The procedures given in (7) through (10) shall be repeated twice more.Document Secret Rank:■Extremely Secret□Secret□Ordinary(12) Blank, MHCbn, in each cycle shall be calculated by the following formula.MHCbn={17.60×V×10-4×Pi×(CHC2-CHCl)}/Ti, whereMHCbn: blank in each cycle (g)nominal volume (m3)enclosureSHEDVs:Vt: fuel evaporation system volume ※1 (m3)Pi: SHED enclosure initial pressure (kPa)CHC1: initial SHED enclosure concentration (ppmc)CHC2: final SHED enclosure temperature (ppmc)Ti: SHED enclosure initial temperature (°K)※1: Volume of fuel evaporation system shall be calculated to a unit of 0.01m3by measuring each dimension to a unit of 1mm. Capacity of solid componentsuch as jig may be obtained by weighing it and calculating with a density.(13) A blank, MHCB, shall be mean value of measurement in 3 cycles, however, if adifference between blanks in each cycle calculated by the following formula, BLS,is not smaller than 0.05, the blank shall be measured again.BLS= maximum value of MHCbn-minimum value of MHCbn5.23.3.2 Fuel Permeation measurement Procedures(1) A sample shall be pretreated by the method in 5.13 of ES-X83224 “StandardTest methods-Rubber Hoses” for 168 hours under a temperature at 40±2℃.(2) After the pretreatment, a sample shall be left in a room temperature for 4 to24 hours. It shall be discharged of a test fluid filled in it a fitted to a tank filledwith a test fluid up to 40% of the capacity immediately after the discharge.(3) The tank fitted with a sample shall be placed in SHED enclosure in a staticcondition and a pressure discharge tube fitted to the tank shall be connectedto the outside air by a medium of connector panel.(4) A thermal sensor in the tank shall be connected to a temperature recorderand the unit shall be put in operation.(5) Zero and span of an analysis apparatus shall be adjusted immediately beforethe commencement of test.(6) When the fluid temperature reaches at least 17℃, immediately;(a) Turn off purge blowers, if not already off at this time.(b) Close and seal enclosure doors.(7) When fluid temperature reaches at 18.3±1℃ immediately;(a) Analyze enclosure atmosphere for HC and record (CHC1).。
密封条文档

密封条1. 密封条的概述密封条是一种用于填充和密封隙缝的材料。
它通常由柔软的材料制成,如橡胶、硅胶、聚氨酯等。
密封条具有良好的弹性和耐腐蚀性,常用于建筑、机械、汽车等领域,用于防水、防尘、减振、隔热等目的。
本文将对密封条的种类、应用领域和选择要点进行详细介绍。
2. 密封条的种类2.1 按材料分类•橡胶密封条:由橡胶制成,具有良好的耐老化性和耐温性。
常见的橡胶密封条有EPDM密封条、硅胶密封条等。
•聚氨酯密封条:由聚氨酯材料制成,具有耐磨性和耐油性。
聚氨酯密封条常用于机械设备的密封。
•泡沫密封条:由泡沫材料制成,具有良好的防水和隔热性能。
泡沫密封条常见于建筑领域的门窗密封。
2.2 按结构分类•带状密封条:呈带状结构,可用于填充较大的缝隙。
这种密封条适用于门窗缝隙、防水堵漏等场合。
•泡沫背胶密封条:由泡沫材料和背胶组成,易于安装和固定。
这种密封条常用于门窗、玻璃等较薄的材料的密封。
•密封胶条:为流体或胶状状密封体,能在接合两个或以上独立的部件时完全固化,并且在固化后保持其形状。
3. 密封条的应用领域3.1 建筑领域在建筑领域,密封条广泛应用于门窗、玻璃、墙体和屋顶等部位。
通过使用密封条,可以实现门窗的密封防水、隔热降噪效果,保证建筑的舒适性和耐久性。
3.2 机械设备领域在机械设备领域,密封条用于填充设备的接缝,保证设备在高温、高压环境下的正常运行。
例如,汽车发动机密封条用于防止燃烧室内的燃气泄漏,确保发动机的工作效率和安全性。
3.3 汽车领域汽车密封条的应用范围很广泛,包括车门密封条、车窗密封条、引擎盖密封条等。
汽车密封条主要用于防水、减少噪音和隔离震动,提高车辆的驾驶舒适性。
4. 密封条的选择要点在选择密封条时,需要考虑以下要点:•材料选择:根据实际使用环境选择适合的材料,例如EPDM密封条适用于户外环境,硅胶密封条适用于高温环境。
•尺寸尺寸:根据实际缝隙大小选择合适的密封条尺寸,确保密封效果。
•安装便捷性:选择易于安装和固定的密封条,减少工作流程和时间。
齿形带文档

齿形带简介齿形带,也称同步带,是一种广泛应用在机械传动系统中的传动元件。
它通过在齿轮上设置齿形,实现齿轮之间的传动。
齿形带通常由橡胶和纤维增强材料组成,具有耐磨、抗拉伸和耐化学腐蚀等优点。
齿形带广泛应用于各种传动系统,如汽车发动机、风力发电机和工业机械等领域。
结构齿形带的结构主要包含三个部分:齿形、橡胶和增强材料。
齿形齿形是齿形带的核心组成部分。
它通过在齿轮上设置齿形,与其他齿形带或齿轮咬合,实现传递动力。
齿形的设计和形状会影响齿形带的传动效率和工作性能。
常见的齿形包括圆弧齿、梯形齿和凸缘齿等。
橡胶齿形带的橡胶部分通常由合成橡胶制成,具有良好的耐磨和耐蚀性能。
橡胶可以使齿形带具有一定的弹性,提高传动效率并减少齿轮噪音。
此外,橡胶还可以减震和缓冲冲击力,延长齿形带的使用寿命。
增强材料齿形带的增强材料主要有纤维素和金属丝等。
这些材料的加入可以增加齿形带的强度和刚度,提高其传动能力和承载能力。
增强材料还可以增加齿形带的耐磨性和耐温性,确保其在各种工作环境下的可靠性。
工作原理齿形带通过齿形与齿轮的咬合,实现动力传输。
当一个齿形带咬合到一个齿轮上时,齿形带上的齿形与齿轮上的齿形咬合,将动力传递给齿轮。
齿形带的橡胶部分具有一定的弹性,可以减少齿轮传动过程中的冲击力,提高传动效率。
应用领域齿形带广泛应用于各种传动系统。
汽车发动机齿形带作为汽车发动机的重要传动部件之一,主要用于传递发动机的动力和扭矩。
它可以准确地将动力传递给汽车的各个零部件,如空调压缩机、发电机和水泵等,确保汽车正常运行。
风力发电机在风力发电机中,齿形带被用于传递风力产生的动力。
它可以将风力传递给发电机,产生电能。
由于齿形带具有耐磨和耐化学腐蚀等特性,能够在恶劣的环境下长时间稳定运行。
工业机械齿形带在各种工业机械中也得到了广泛的应用。
例如,它被用于传输和控制机械设备的动力和扭矩,如印刷机、纺织机和机床等。
维护和保养齿形带的维护和保养可以延长其使用寿命和保证其传动效率。
单螺杆挤出机的规格型号与基本参数(精编文档).doc

【最新整理,下载后即可编辑】单螺杆挤出机的规格型号与基本参数(1) 挤出机的型号标注国内橡胶塑料机械标准。
GB/T12783—91中规定,对挤出机的标牌上型号标注说明如下。
从左向右顺序:第一格是塑料机械代号为S;第二格是挤出机代号为J;第三格是指挤出机不同的结构形式代号。
三个格组合在一起就是塑料挤出机为SJ;塑料排气式挤出机为SJP;塑料发泡挤出机为SJF;塑料喂料挤出机为SJW;塑料鞋用挤出机为SJE;阶式塑料挤出机为SJJ;双螺杆挤出机为SJS;锥形双螺杆挤出【最新整理,下载后即可编辑】机为SJSF;多螺杆挤出机为SJD。
第四格表示辅机,代号为F;如果是挤出机组,则代号为E。
第五格参数是指螺杆直径和螺杆的长径比。
第六格是指产品的设计顺序,按字母A、B、C...顺序排列,第一次设计不标注设计号。
例如SJ-45×25,此型号表示塑料挤出机,螺杆直径为45mm,螺杆的长径比为25 : 1。
螺杆长径比为20 : 1时不标注。
(2) 挤出机的基本参数规定高密度聚乙烯制品挤出成型用挤出机的基本参数见表1。
聚丙烯制品挤出成型用挤出机的基本参数见表2。
聚氯乙烯制品挤出成型用挤出机的基本参数见表3。
表1 聚乙烯(HD PE)制品挤出成型用挤出机基本参数(JB/T 8061—1996)【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】表2 聚丙烯(PP)制品挤出成型用挤出机基本参数(JB/T 8061—1996)【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】表3 聚氣乙烯(PVC)制品挤出成型用挤出机基本参数(ZBG 95009. 1—88)【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】(3) 单螺杆挤出机的主要参数说明① 螺杆直径,是指螺杆的螺纹部分的外圆直径,一般用D 表TK ,单位为mm 。
橡胶物性及用途

4、适用于各种耐燃、耐化学腐蚀的橡胶制品。
丁基橡胶/IIR
为异丁稀与少量isoprenes聚合而成,保有少量不饱合基供加硫用,因甲基的立体障碍泥分子的运动比其它聚合物少,帮气体透过性较少,对热、日光、臭氧之抵抗性大,电器绝缘性佳;对极性溶剂如醇、酮、酯等抵抗大,一般使用温度范围为54°C 110°C。
优点:
1、适用于特别用途,如要求能抗含氧的化学物,含芳香氢的溶剂及含氯的溶剂的侵蚀。
缺点:
1、不建议暴露于刹车油,酮类及胼的溶液中。
1、太空机件上。
天然橡胶/NR
由橡胶树采集胶乳制成,是异戊二烯的聚合物。耐温:20°C─100°C。
优点:
1、具有很好的耐磨性、很高的弹性、扯断强度及伸长率。
缺点:
1、在空氧中易老化,遇热变粘、在矿物油或汽油中易膨胀和溶解,耐碱但不耐强酸。
5、室外的防护套。
硅橡胶/SI
硅胶主链由硅(-si-o-si)结合而成。具有极佳的耐热、耐寒、耐臭氧、耐大氧老化。有很好的电绝缘性能。抗拉力强度较一般橡胶差且不具耐油性。
优点:
1、调制配方后抗张强度可达到500PSI及抗斯性可达88LBS。
2、良好及具良好的压缩变形。
3、对中性溶剂具有良好的抵抗性。
1、空调制冷业、广泛用于环保冷媒R134a系统中的密封件。
2、汽车发动机系统密封件。
三元乙丙胶/EPDM
由乙稀及丙烯共聚合而成主链不合双链,因此耐热性、耐老化性、耐臭氧性、安定性均非常优秀,但无法硫磺 加硫。为解决此问题,在EP主链上导入少量有双链之第三成份而可硫黄加硫即成EPDM,一般使用温度范围为50°C─150°C。对极性溶剂如醇、硐、乙二醇及磷酸脂类液压油抵抗性极佳。
丁腈_精品文档
丁腈概述丁腈是一种合成橡胶,也称为丁腈橡胶或NBR橡胶。
它由丁二烯与丙烯腈共聚合而成,具有优异的油性和耐化学性能。
丁腈橡胶被广泛应用于汽车、航空、化工、医疗和工业等领域,其独特的物理和化学特性使其成为一种重要的工程材料。
组成与结构丁腈橡胶的化学名为丁二烯/丙烯腈共聚合物,其主要组成成分是丁二烯和丙烯腈。
丁二烯是一种具有双键结构的低聚合度烯烃,而丙烯腈是一种具有多个氰基的单体。
这两种单体在反应时发生共聚合,形成高分子量的丁腈橡胶。
丁腈橡胶的结构中含有氰基,使其具有耐油、耐磨、抗热和耐化学品的性能。
性能特点1. 良好的耐油性:丁腈橡胶具有出色的耐油性能,能够在油性环境下长时间使用,不易发生膨胀或溶解。
2. 优良的耐磨性:丁腈橡胶具有出色的耐磨性能,能够在高摩擦环境下保持其物理和机械性能。
3. 良好的耐化学性:丁腈橡胶对许多酸、碱和溶剂具有优异的耐化学腐蚀性能,能够在恶劣的化学环境下稳定使用。
4. 良好的耐热性:丁腈橡胶具有较高的热稳定性,可以在高温环境下保持其强度和弹性。
5. 优异的尺寸稳定性:丁腈橡胶在机械应力下具有良好的尺寸稳定性,不易产生变形和压缩变形。
6. 良好的弹性和可塑性:丁腈橡胶具有良好的弹性和可塑性,能够适应多种形状和尺寸的需求。
应用领域丁腈橡胶的优异性能使其在各个领域得到广泛应用,主要包括以下几个方面:1. 汽车工业:丁腈橡胶广泛应用于汽车制造过程中,用于制造密封件、软管、O形圈、挡泥橡胶等零部件。
丁腈橡胶的耐油性能使其成为引擎和传动系统中的理想材料。
2. 航空航天工业:丁腈橡胶在航空航天领域的应用也非常广泛。
它常用于制造航空发动机和液压系统的密封件、振动隔离垫、悬挂器件等。
3. 化工工业:丁腈橡胶在化工领域中的应用非常重要。
它常用于制造化学管道、储罐和泵阀等设备的密封件,因为其可耐受许多化学物质的腐蚀。
4. 医疗行业:丁腈橡胶被广泛应用于医疗器械和药品包装中,如手套、输液管、防护服和药瓶塞等。
橡胶材料种类性能表精选文档
具有优异的耐热、耐油、耐寒、耐臭氧等性能。根据需要,可与氟橡胶,丁睛橡胶,氯磺化聚乙烯、三元乙丙橡胶等并用,从而获得耐高温、耐油性能。
广泛用于汽车、军事装备的高温油封材料、容器管道衬里胶粘剂及建筑物密封胶,隔音和减震制品特种电线电缆的外层护套等
13
硅橡胶
聚硅氧烷
通常有二甲基硅橡胶(MQ),甲基乙烯基硅橡胶(MVQ),甲基苯基硅橡胶(MPQ),甲基苯基乙烯基硅橡胶(MPVQ)等
不宜与酯、酮、磷酸酯液压油、浓酸、碱、蒸汽等接触
适于制作各种形状的密封能量吸收装置、冲孔模板、振动阻尼装置、机械支承垫片、柔性联接、防磨涂层、摩擦动力传动装置、胶辊等
-60~80℃
10
聚硫橡胶(T)
多硫烷烃聚合物
聚氨基甲酸酯。通常有聚酯型(AU)和聚醚型(EU)两种,耐油性好、耐天候老化,透气性小,电绝缘性亦佳
氯丁二烯聚合物
耐天候,耐臭氧老化,有自熄性,耐油性能仅次于丁腈橡胶,拉伸强度、伸长率、回弹性优良,与金属和织物粘结性很好
制品不耐合成双酯润滑油及磷酸酯液压油
适于制作密封圈及密封型材、胶管、涂层、电线绝缘层、胶布及配制胶粘剂等
-35~130℃
5
丁腈橡胶(NBR)
丁二烯丙烯腈的共聚物
一般含丙烯腈18%、26%或40%,含量愈高,耐油、耐热、耐磨性能愈好,但耐寒性则相反。含羧基的丁腈橡胶,耐磨、耐高温、耐油性能优于丁腈橡胶
适于制作燃油、双酯润滑油、液压油系统的密封圈、膜片。
使用温度范围-65~250℃
制品不耐天候、不耐臭氧老化、不耐磷酸酯液压油
丁腈橡胶适于制作各种耐油密封零件、膜片、胶管和软油箱
-55~130℃
6
乙丙橡胶(EPM、EPDM)
内蒙古华月橡胶机械设备有限公司_中标190923
招标投标企业报告内蒙古华月橡胶机械设备有限公司本报告于 2019年9月23日 生成您所看到的报告内容为截至该时间点该公司的数据快照目录1. 基本信息:工商信息2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标的甲方排名、合作甲方排名3. 股东及出资信息4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚5. 企业信息:工程人员、企业资质* 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。
中国比地招标网不对该查询结果的全面、准确、真实性负责。
本报告应仅为您的决策提供参考。
一、基本信息1. 工商信息企业名称:内蒙古华月橡胶机械设备有限公司统一社会信用代码:91150202078398231Y 工商注册号:150202000036651组织机构代码:078398231法定代表人:李秀荣成立日期:2013-10-23企业类型:有限责任公司(自然人投资或控股)(1130)经营状态:存续注册资本:2000万人民币注册地址:内蒙古自治区包头市东河区铁西豪德高端五金机电精品城三栋十九号营业期限:2013-10-23 至 2023-10-22营业范围:输送机及相关配件、输送机配套系列、输送带及橡胶制品系列的生产及销售;劳保用品、润滑油、消防器材、五金机电、阀门、工具、量具、轮胎、机电产品、交通设施、保温材料、空压机、紧固件、防水材料、焊割设备、焊材、水性涂料(不含危险品)、电线电缆、轴承、托辊、三角带、滚筒、工业用品(不含危险品)、工矿设备及配件、标准件的销售。
联系电话:***********二、招投标分析2.1 中标/投标数量企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间)32.2 中标/投标情况(近一年)截止2019年9月23日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。
不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。
gpz(2009)15.0型盆式橡胶支座规格参数
gpz(2009)15.0型盆式橡胶支座规格参数1.引言本文档旨在提供关于g pz(2009)15.0型盆式橡胶支座的详细规格参数。
橡胶支座是一种用于建筑物和桥梁等结构中的重要支撑元件,能够减震、吸能、隔振和传递荷载等功能。
本文档将介绍该型号盆式橡胶支座的主要规格参数,以帮助用户更好地了解和选购合适的产品。
2.规格参数2.1尺寸参数-外径:15.0cm-内径:12.0cm-盆高:8.0c m-盆厚:2.0c m-盆底面积:176.71c m²2.2材质参数-橡胶硬度:65±5度-橡胶材质:天然橡胶-嵌块材料:Q235钢板镀锌-锚固板材料:Q235钢板镀锌2.3荷载参数-垂直荷载:225.0kN-垂直最大变形:0.43cm-垂直刚度:520.0kN/cm-水平荷载:75.0kN-水平最大变形:1.21cm-水平刚度:62.0kN/c m3.产品特点g p z(2009)15.0型盆式橡胶支座具有以下特点:3.1减震隔振该橡胶支座采用优质天然橡胶材料制造而成,具有较好的弹性和抗震性能。
在建筑物或桥梁受到外来荷载冲击时,橡胶支座能够吸收和分散震动能量,减轻结构破坏风险。
3.2良好的荷载传递性能盆式橡胶支座采用高强度Q235钢板镀锌作为嵌块材料和锚固板材料,能够有效传递荷载并保持稳定的支撑效果。
它经过严格的测试和校准,能够承受垂直和水平方向上的荷载,确保结构的稳定性和安全性。
3.3安装简便由于盆式橡胶支座的结构简单、体积小巧,它在安装和维护方面具有独特的优势。
用户只需将支座放置在适当的位置,根据设计要求进行固定,即可完成安装。
3.4耐久性强天然橡胶材质和镀锌钢板的结合使得盆式橡胶支座具有较高的耐久性,能够在恶劣的环境条件下长时间稳定工作。
它不易老化、不易龟裂、不易变形,能够满足长期使用的需求。
4.应用领域g p z(2009)15.0型盆式橡胶支座适用于以下领域和项目:-建筑物结构-桥梁和高架桥-地铁和轨道交通-工业设备和机械基础5.结论本文档介绍了gp z(2009)15.0型盆式橡胶支座的规格参数、特点和适用领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
橡胶机械 百科名片 橡胶机械是用以制造轮胎等各种橡胶制品的机械,包括通用橡胶机械、轮胎机械和其他橡胶制品机械三大类。
通用橡胶机械
通用橡胶机械是制备胶料或半成品的机械,包括原材料加工机械、炼胶机、挤出机、压延机、帘帆布预处理装置和裁断机等。
炼胶机 炼胶机分为开放式和密闭式两类。 开放式炼胶机 主要用于橡胶的热炼、压片、破胶、塑炼和混炼。它由辊筒、辊筒轴承、辊距调整装置、紧急刹车装置、机架、机座、传动装置和加热与冷却系统等组成。开放式炼胶机的工作原理是:生胶或胶料在两个异速相向回转的辊筒间借助摩擦力作用被拉入辊隙,经强烈的剪切和挤压作用以增加可塑度。这种双辊筒开放式炼胶机1826年就开始用于生产。它的结构比较简单,现代仍普遍使用。 密闭式炼胶机 主要用于橡胶的塑炼和混炼。它比开放式炼胶机多一个密炼室(图1)。生胶和配合剂从加料斗装入密炼室后,料门关闭,压料装置的上顶栓压下,密炼室内两个转子以不同或相同速度相向回转。装入的胶料在转子之间、转子与密炼室之间受到不断的搅拌、折卷和强烈的捏炼作用,产生氧化断链,增加了可塑度。同时,胶料由于受到剪切作用而分散并均匀混合,从而达到炼胶的目的。自从1916年发明椭圆形转子密闭式炼胶机以来,密闭式炼胶机在橡胶工业中迅速发展。后来又出现其他形式转子的密闭式炼胶机。现代密闭式炼胶机的炼胶周期为2.5~3分钟,密炼室的最大容量达650升。
挤出机 用于挤出胎面、内胎、胶管和各种橡胶型条,还用于包覆电缆和电线产品。常见的是螺杆挤出机。它的工作原理是:胶料借助挤出螺杆的旋转作用在机筒内搅拌、混合、塑化和压紧,然后向机头方向移动,最后从口型挤出一定形状的产品。根据产品的需要,可采用多机台进行多种胶料的复合挤出。螺杆挤出机分为热喂料和冷喂料两种。热喂料挤出机通常喂入经过开放式炼胶机预热的条料。冷喂料挤出机喂入的胶料不经过热炼,可以省去热炼设备。
压延机 主要用于帘帆布的贴胶或擦胶、胶料的压合、贴合压型和压花。压延机的主要工作部件是辊筒,辊筒数目通常在3个或3个以上。具有一定温度和可塑度的胶料喂入相向回转的辊筒间隙时,在摩擦力作用下受到强烈的挤压和延展,形成所需的产品。第一台压延机于1857年制成并用于生产,其后不断得到改进。尤其是20世纪50年代以来,塑料工业的发展有力地促进了高精度、高速度压延机的改进。为了获得厚度均匀的压延制品,新型压延机一般都设有辊筒挠度补偿装置。所压延的半成品厚度则用专用设备测量,有些压延机还装有由电子计算机控制的厚度自动调节系统。
轮胎机械
这类机械包括轮胎成型机、轮胎钢丝圈机械、轮胎定型硫化机、胶囊硫化机、垫带硫化机、内胎接头机和内胎硫化机,以及力车胎机械、轮胎翻修机械和再生胶生产机械。世界60%以上的橡胶用于制造轮胎,因此轮胎机械在橡胶机械中占有重要地位。图2是轮胎生产流程图。
轮胎成型机 用于将挂胶帘布、钢丝圈、胎面等各种部件贴合加工成轮胎的胎坯。按用途分为普通轮胎成型机和子午线轮胎成型机两大类。普通轮胎胎身帘布的各层帘线成一定角度斜交,成型时先将帘布筒套在成型鼓上,然后在两侧上钢丝圈,在中间覆以缓冲层和胎面胶,成型的胎坯成为筒状。子午线轮胎与普通轮胎在结构上的主要区别是缓冲层帘线与胎体轴线呈90°~75°(近乎直交),故缓冲层成型后的直径尺寸不能作较大的变化,因此胎体制成后需要膨胀到近似定型后的形状再贴上缓冲层。因此,子午线轮胎成型机的结构也与普通轮胎成型机有所不同。 由一台成型机完成子午线轮胎成型全过程的,称为一次成型法。胎体用经过改造的普通轮胎成型机制作,然后再在子午线轮胎成型机上成型的,称为两段成型法。
轮胎定型硫化机 用于汽车、工程车、拖拉机和飞机等充气轮胎的外胎硫化。这种机器出现于20世纪40年代。在定型硫化机上可完成装胎、定型、硫化、卸胎和后充气冷却等操作,对胶囊内过热水的温度、压力和蒸汽室温度等均能测量、记录和控制,整个生产过程可自动进行。轮胎定型硫化机的型式很多,主要有AFV型、BOM型和AUBO型(中国分别简称为A型、B型和AB型)。它们的主要差别在于胶囊及其操纵机构有所不同。 AFV 型轮胎定型硫化机的特点是下模的下部没有复杂的中心机构,仅有一个囊筒,在上模的上部则装有气动推囊机构。硫化结束时,胶囊由推囊机构推入囊筒内,在通入囊筒内的蒸汽压力作用下将胶囊推出,伸入胎坯内腔。 BOM 型轮胎定型硫化机的胶囊由上下两个夹盘固定,在中心机构的水缸驱动下实现胶囊的伸缩和整体升降。在装卸轮胎时,胶囊伸直,其内腔同时抽成真空,直立于下模之上。 AUBO型轮胎定型硫化机的特点是,胶囊上下口均由夹持环固定,并可缩进囊筒内。装胎时,囊筒上升,胎坯下胎圈与囊筒上的钢圈接触。然后,上夹盘升起,在定型蒸汽压力的作用下,胶囊在胎坯内展开,然后囊筒下降,合模硫化。硫化结束卸胎时,囊筒上升,胶囊由上夹盘抽入囊筒内,下夹盘固定不动。 子午线轮胎硫化活络模 子午线轮胎的发展,对轮胎定型硫化机的制造精度提出了更高的要求。新研制出的定型硫化机有 NRMPost型和R.I.B型(Rolling in Bladder)等。 活络模是为适应子午线轮胎的特殊结构及其对硫化工艺的要求而产生和发展起来的。在活络模中,外胎花纹定形圈是由几个活动的扇形块组成的。装胎时这些扇形块可以张开,硫化时可以移动。这种扇形块采用从径向包拢生胎胎面的合模方式,有效地消除了生胎带束层的变形和位移,有利于保证硫化后子午线轮胎的质量。
轮胎翻修机械 用来翻修磨损或损伤的轮胎。轮胎翻修机械的类型取决于翻修工艺。轮胎翻修工艺可分为传统法、预硫化胎面法、压力胎面法和缠绕胎面法等。①传统法采用的机械主要有检胎机、磨胎机、贴胶机和硫化机等。②预硫化胎面法是用粘合剂将预先硫化过的胎面粘贴到削磨好的旧轮胎胎体上,然后套上用橡胶做的包封套,放入硫化罐内,在低温低压下进行硫化。③压力胎面法用的机械主要是将胎面直接挤贴在胎体上的压力胎面挤出贴合机。④缠绕胎面法用的是以小胶条缠绕方式贴合在胎体上构成胎面胶条的挤出缠贴机。
变频器在橡胶机械上的应用
三晶变频器橡胶机械专业配套特点: 1、低频力矩大、输出平稳 2、控制精度高 3、高性能矢量控制 4、RS485串行接口,实现多台控制 5、可取代直流调速和伺服控制
其他橡胶制品机械
包括胶带、胶管、胶鞋、模型制品、胶浆和乳胶制品所用的机械。 硫化罐 用于硫化胶管、胶鞋、电缆、胶辊、胶布、胶板等橡胶制品。此外,巨型的工程轮胎也需要大型的硫化罐硫化。硫化罐的主要部分为圆柱形的罐体和可开闭的罐盖。按不同的工艺要求,硫化罐分别用蒸汽、蒸汽-空气混合气或在硫化罐翅管内用蒸汽对产品加热硫化。
平板硫化机 用来硫化橡胶模型制品、胶带和胶板等。它主要由热板、封闭受力构件和加压机构组成。需要硫化的橡胶制品放在热板之间用蒸汽或电加热硫化,靠液压的或机械的加压机构产生硫化压力。
鼓式硫化机 用来硫化胶带和胶板。它通过钢带(或钢丝带)把制品紧压在回转中的硫化鼓上加热,实现连续硫化。鼓式硫化机的生产能力取决于制品经过的硫化过程(硫化鼓直径)、运动速度、硫化鼓表面工作温度和制品材料特性。硫化鼓直径和工作长度可达1500~2000毫米,鼓式硫化机生产能力可达1.5~2米/分。为强化硫化过程,有时可装备红外线加热器。
胶浆和乳胶制品机械 大批量形状复杂的薄膜橡胶制品均用胶浆和乳胶生产。胶乳制品的生产工艺与干胶制品不同。胶浆和乳胶制品机械包括原材料加工机械、浸渍制品机械、压出制品机械和海绵生产机械等。其中最主要的是把模型在胶浆槽(或乳胶槽)内浸渍的浸渍制品机械。它的工作原理是:在其上平板上放数只模型,当平板移动时,模型浸渍在位于下方的乳胶槽内,在槽内持续一段时间后,模型从槽内抽出送往下一道生产工序。
中国橡胶机械行业发展简况
中国橡机工业生产连年飙升,销售扶摇直上,呈现井喷式发展之势。中国橡机正在世界东方崛起,并开始确立大国地位。 2004年,中国橡胶机械行业销售收入突破60亿元,实现了跨越式发展,其中26家企业销售收入达45.7亿元,同比增长57%;出口交货值4.53亿元,同比增长171%;产品销售率达到99.2%。2005年,中国橡胶机械行业的增长速度较2003和2004年的“井喷”式行情明显放慢,但利润持续增长,出口创汇也有较大幅度增长。 2006年,中国橡胶机械29个主要单位实现橡胶机械产值52.6亿元,比上年增长16.1%;销售收入52.48亿元,比上年增长14.8%。以此估算中国橡胶机械销售收入达到72亿元,比上年增长10.8%。 2007上半年,中国25家主要橡机企业实现销售收入26.86亿元,同比增长17.4%,实现利润同比增长53.7%,表明橡机行业经济效益进一步好转。 中国橡胶机械产业在不断发展的同时,科技创新和产业化能力还亟待加强,现有的专利主要集中在少数企业,且主要集中在硫化机、成型机上,在数量上也与国外存在较大差距,而实际在科技成果转化方面还有较大潜力可挖。中国橡胶机械品牌意识及影响力不足也是制约其做“强”的一大因素,而且大多企业的国际化步伐较慢,此外,产品的售后服务更是软肋,还没有建立起完善的全球服务体系。 中国橡胶机械厂家必须建立自己的科技创新体系,加大产品开发的力度,开发出一批具有自主知识产权的新产品。并树立全球大市场的观念,加速从“国内型”工厂向“国际化”企业的转换。同时,企业还要树立品牌意识,争创中国的橡胶机械名牌,进而争创世界的橡胶机械名牌。 “十一五”期间,橡胶制品将全面更新换代,这向国内橡机行业提出了新要求,也提供了新商机,国内橡机还需进一步跟上和满足橡胶制品技术进步的要求,尤其要注重非轮胎橡胶制品橡机的开发,以实现和橡胶工业的同步发展。“十一五”期间,中国轮胎年总产量将达到3亿条,子午化率将达到70%,其中全钢胎要发展无内胎及公制轮胎,半钢胎要发展宽断面、高速度级别产品,工程胎子午化也势在必行,这些都需要橡机制造厂提供新型设备,同时还要满足橡胶工业安全、节能、环保的发展要求。除轮胎设备外,橡机企业还应将目光转向非轮胎橡胶制品设备。