初一动点问题答案
初一动点问题

动点问题专练1、如图所示,A点表示的数是-3,B点表示的数是6。
(1)线段AB中点所对应的数是______。
(2)M、N是数轴上的两个动点,点M从A点出发,速度是每秒2个单位长度;点N从B 点出发,速度是每秒4个单位长度。
若M、N在数轴上沿着不同方向运动,问经过多长时间M、N两点间的距离是15个单位长度,并求出此时线段MN中点所对应的数是多少?A B-3 0 6A B-3 0 62、如果点A表示的数是-3,将点A向右移动7个单位长度(1)那么终点B表示的数是______,A、B两点间的距离是______。
(2)若点A沿数轴以每秒2个单位的速度向右运动,同时B点沿数轴以每秒3个单位的速度向左运动,求几秒后两点相遇?(3)求几秒后两点之间距离是4个单位长度?3、已知:在数轴上的两点A、B分别表示-6和10。
(1)请在数轴上画出A、B两点,并求出A、B两点间的距离是几个单位长度?(2)若点P从B点出发,以每秒0.6个单位的速度向左运动,同时点Q恰好从A点出发,以每秒0.4个单位的速度也向左运动。
设P、Q两点在数轴上的D点相遇,求D点对应的数是多少?(3)在(2)的前提下,当P、Q两点相距10个单位时,求P、Q两点对应的数是多少?4、如图,在数轴上有A、B两点,A、B两点所表示的有理数分别是-k-4和-2k+5,且k 为最大的负整数。
(1)求A、B两点间的距离。
(2)动点P、Q分别从A、B两点同时出发,相向而行。
P、Q的运动速度分别是每秒2个单位长度和每秒3个单位长度。
当P、Q两点间的距离是5时,求点P、Q对应的有理数是多少?并求出此时A、Q两点间的距离是多少?A 0 BA 0 B5、已知数轴上A、B两点,A点是-4,B点距A点9个单位长度。
(1)B点表示的数是______。
(2)动点M、N分别从A、B两点同时出发,同向而行;M、N的运动速度分别是每秒2个单位长度和每秒3个单位长度。
经过多长时间M、N两点相距15个单位长度?此时M 点对应的数是多少?6、如图,在数轴上有A、B两点,A、B两点所表示的有理数分别是k-5和-k+7,且k为最大的负整数。
初一数学专题四:线段动态问题(含详解答案)

线段的动态问题为各个学校期末考试的重难点,主要包括动点问题和动线段问题.模块一:线段的动点问题1.主要分析步骤:(1)数形结合,画图;(2)设元,看清楚动点的速度和方向,表示线段长度;(3)根据题中的等量关系列方程,并解方程.2.动点问题求解的几个辅助工具:(1)数轴上两点的距离①两点间的距离=这两点分别所表示的数的差的绝对值;②两点间的距离=右端点表示的数-左端点表示的数.例如:a ,b 两点的距离可表示为b a -,也可表示为||a b -或者||b a -.特别地,||a 可以看成a 和0两点的距离,||b 可以看成b 和0两点的距离,如果||||a b =,那么有a b =或a b =-.(2)点在数轴上运动时,满足左减右加一个点表示的数为a ,若向左运动b 个单位后表示的数为a b -;一个点表示的数为a ,若向右运动b 个单位后所表示的数为a b +.(3)数轴上线段中点公式:如图,线段ab 的中点所表示的数是a b +2.模块二:动线段问题模块一线段的动点问题已知数轴上A 、B 两点对应数分别为-2和4,P 为数轴上一动点,对应数为x.(1)若P 为线段AB 的三等分点,求P 对应的数;(2)数轴上是否存在点P ,使P 点到A 点、B 点距离和为10?若存在,求出x 值,若不存在,请说明理由.(3)若A 、B 点和P 点(P 点在原点)同时向左运动,它们的运动速度分别为1、2、1个单位长度/分,则第几分钟时,P 为线段AB 的中点?第几分钟的时候P 到A 和B 的距离相等?学习是件很有意思的事(1)∵点P 为线段AB 的三等分点,∴AP AB 1=3或BP AB 1=3①当AP AB 1=3时,得到2=2x+,得x =0②当BP AB 1=3时,得到x 4-=2,得x =2∴P 对应的数为0或2.(2)假设存在点P ,则PA =+2x ,PB x =-4,∴||||x x +2+-4=10解得,x =-4或x =6.(3)①设经过t 分钟后,P 为AB 的中点则A 表示的数为t -2-,B 表示的数为t 4-2,P 表示的数为t -,则由题意得,t t t -2-+4-2=-2,得到t =2.②设经过x 分钟后,P 到A 和B 的距离相等.则A 表示的数为x -2-,B 表示的数为x 4-2,P 表示的数为x -,∴PA x x =-2-+=2,PB x x x=4-2+=4-∴||x 4-=2解得x =2或x =6.已知数轴上顺次有A 、B 、C 三点,分别表示数a 、b 、c ,并且满足()2a +|b +|=+1250,b 与c 互为相反数.两只电子小蜗牛甲、乙分别从A ,C 两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒.(1)求A 、B 、C 三点分别表示的数,并在数轴上表示A 、B 、C 三点(2)运动多少秒时,甲、乙到点B 的距离相等?(3)当点B 以每分钟一个单位长度的速度向左运动时,点A 以每分钟5个单位长度向左运动,点C 以每分钟20个单位长度向左运动,问它们同时出发,几分钟后B 点到点A 、点C的距离相等?(1)∵()2a +|b +|=+1250,∴a +12=0,b +5=0,解得a =-12,b =-5.又∵b 与c 互为相反数,∴c =5,∴A 、B 、C 三点分别表示的数是-12,-5,5.表示在数轴上是:学习是件很有意思的事(2)设运动x 秒时,甲、乙到点B 的距离相等.则甲所表示的数为x -12+2,乙所表示的数为x5-3则依题意,得x x 72=10-3-,解得x =3或x 17=5.答:运动3s 或者s 175时,甲、乙到点B 的距离相等.(3)设t 分钟后点B 到点A 和点C 的距离相等.则点A 所表示的数为t -12-5,点B 所表示的数为t -5-,点C 所表示的数为t 5-20.则由题意得,t t t t5-20+5+=-5-+12+5解得:t 3=23或者t 17=15.如图,已知A 、B 、C 是数轴上三点,O 为原点,点C 表示的数为6,BC =4,AB =12.(1)写出数轴上点A 、B 表示的数;(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴左匀速运动,M 为AP 的中点,点N 在线段CQ 上,且CN CQ 1=3,设运动时间为()t t >0秒.t 为何值时,OM=2BN.(1)C Q 表示的数为6,4BC =,OB ∴=6-4=2,∴B 点表示2.AB =12Q ,AO ∴=12-2=10,A ∴点表示-10;(2)由题意得,点P 表示的数为t -10+6,点Q 表示的数为t 6-3,则点M 表示的数为t t -10-10+6=-10+32,又∵CN CQ 1=3,∴点N 表示的数为t 6-,由题意可得t t -10+3=24-,即t t -10+3=8-2,解得t 18=5或t =2.如图,A 是数轴上表示-30的点,B 是数轴上表示10的点,C 是数轴上表示18的点,点A 、B 、C 在数轴上同时向数轴的正方向运动,点A 运动的速度是6个单位长度每秒,点B 和C 运动的速度是3个单位长度每秒.设三个点运动的时间为t (秒).(1)当t 为何值时,线段AC =6(单位长度)?(2)t ≠5时,设线段OA 的中点为P ,线段OB 的中点为M ,线段OC 的中点为N ,求PM PN 2-=2时t的值.学习是件很有意思的事(1)A 表示的数为t -30+6,B 表示的数为t 10+3,C 表示的数为t18+3||AC t =48-3=6,解得t =18或t =14(2)P 表示的数为t -15+3,M 表示的数为t 35+2,N 表示的数为t 39+2则PM t 3=-202,PN t 3=-242由题意得,PM PN 2-||t t 3=3-40--24=22解得,t 28=3或443.如图5-1,已知数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上的一动点,其对应的数为x .(1)如果点P 是AB 的中点,则x =________;(2)如图5-2,点P 以1个单位长度/s 的速度从点O 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB OP MN-的值是否发生变化?请说明理由.图5-1图5-2(1)x =1;(2)AB OP MN-的值不发生变化.由题意,O 为原点,设运动时间为t 分钟.则P 表示的数为t ,A 表示的数为t -1-5,B 表示的数为t 20+3,则M 表示的数为t -1-42,N 表示的数为t 20+32.则AB t =25+4,OP t =,MN t =12+2,则AB OP MN-=2为定值.如图,在射线OM 上有三点A 、B 、C ,满足20cm OA =,60cm AB =,10cm BC =(如图所示),点P 从点O 出发,沿OM 方向以1cm/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发.学习是件很有意思的事(1)当2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的速度;(2)若点Q 运动速度为3cm/秒,经过多长时间P 、Q 两点相距70cm ?(3)当点P 运动到线段AB 上时,取OP 和AB 的中点E ,F ,求OB AP EF -的值.(1)设O 为原点,则A 表示的数为20,B 表示的数为80,C 表示的数为90,设经过的时间t 秒后,PA =2PB.则P 表示的数为t ,PA t =20-,PB t =-80,∴t t 20-=2-80,可得t =60或t =140当t =60秒时,可得Q 的速度为550÷60=6(cm/s )或者130÷60=2(cm/s )当t =140秒时,可得Q 的速度为550÷140=14(cm/s )或者330÷140=14(cm/s )(2)设经过t 秒,P 、Q 两点相距70cm ,则P 表示的数为t ,Q 表示的数为903t -,∴PQ t =90-4=70,解得t =5或t =40∴t =5或t =40时,满足P 、Q 两点相距70cm(3)P 表示的数为t ,E 表示的数为t 2,F 表示的数为50,EF 的长度为()t t 50-20<<802OB =80,AP t =-20,所以OB AP EF-=2.模块二动线段问题如图,数轴上线段2AB =(单位长度),4CD =(单位长度),点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时8BC =(单位长度);(2)当运动到8BC =(单位长度)时,点B 在数轴上表示的数是_________;(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式BD AP PC-=3,若存在,求线段PC 的长;若不存在,请说明理由.(1)A 表示的数为t -10+6,B 表示的数为t -8+6,C表示的数为t16-2,D表示的数为t20-2由BC=8得到t t t-8+6-16+2=8⇒=4或t=2.(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.(3)存在关系式BD AP PC-=3.设运动时间为t秒,设P原来表示的数为x,A表示的数为t6-10,B表示的数为t6-8,C表示的数为t16-2,D表示的数为t20-2,P表示的数为x t+6BD t=28-8,AP x=+10,PC t x=8+-16代入BD APPC-=3,解得x t=15-8或者x t33=-82,所以PC t x=8+-16=1或12.模块一线段的动点问题已知A 、B 分别为数轴上两点,A 点对应的数为-20,B 点对应的数为100.(1)现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;(2)若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数.(1)设运动的时间为t ,∴P 表示的数为t 100-6,Q 表示的数为t -20+4,由题得,t t 100-6=-20+4,可得t =12,此时C 对应的数为28(2)设运动的时间为t ,∴P 表示的数为t 100-6,Q 表示的数为t -20-4,由题得,t t 100-6=-20-4,可得t =60s ,此时D表示的数为-260.如图2-1,点A 、B 分别在数轴原点O 的左右两侧,且OA OB 1+50=3,点B 对应数是90.(1)求A 点对应的数;(2)如图2-2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离;(3)如图2-3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求RQ RO PN 22-28-5.图2-1图2-2图2-3(1)A 对应的数为-120.(2)M 表示的数为2t ,N 表示的数为t -120+7,P 表示的数为t90-8||MN t =-120+5||PM t t s =10-90⇒=14.(3)N 表示的数为t -120-7,M 表示的数为t -2,P 表示的数为t 90+8,Q 表示的数为t 9-60-2,R 表示的数为t 45+4(.)()()RQ RO PN t t t 22-28-5=105+85⨯22-2845+4-5210+15=0.如图3-1,已知数轴上有三点A 、B 、C ,AB AC 1=2,点C 对应的数是200.(1)若300BC =,求点A 对应的数;(2)如图3-2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足4MR RN =(不考虑点R 与点Q 相遇之后的情形);(3)如图3-3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中,32QC AM -的值是否发生变化?若不变,求其值;若变化,请说明理由.图3-1图3-2图3-3(1)∵BC AC 1=300=2∴AC =600∵C 对应的数是200,则A 对应的数为200-600=-400(2)设t 秒时,MR RN =4则P 表示的数为t -400-10,R 表示的数为t -400+2,Q 表示的数为t 200-5,∵M 为PR 的中点,∴M 表示的数为t-400-4∵N 为RQ 的中点,∴N 表示的数为t 3-100-2()MR t t t =-400+2--400-4=6(M 在左,R 在右)()RN t t t 37=-100---400+2=300-22(N 在右,R 在左)MR RN t t t s 7⎛⎫=4⇒6=4⨯300-⇒=60 ⎪2⎝⎭.∴经过s 60时满足MR RN =4(3)设运动时间为t 秒,则P 表示的数为t -800-10,Q 表示的数为t -5.M 为PQ 的中点,则M 表示的数为t t t -800-10-515=-400-22.()QC t t =200--5=200+5,t AM 1515⎛⎫=-400--400-= ⎪22⎝⎭∴()QC AM t 3315-=200+5⨯-=300222为定值.模块二动线段问题如图,P 是定长线段AB 上一点,C 、D 两点同时从P 、B 出发分别以1cm/s 和2cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上).已知C 、D 运动到任一时刻时,总有PD AC =2.(1)线段AP 与线段AB 的数量关系是______________;(2)若Q 是线段AB 上一点,且AQ BQ PQ -=,求证:AP PQ =;(3)若C 、D 运动5秒后,恰好有CD AB 1=2,此时C 点停止运动,D 点在线段PB 上继续运动,M 、N 分别是CD 、PD 的中点,问MN AB 的值是否发生变化?若变化,请说明理由;若不变,请求出MNAB 的值.(1)根据C 、D 的运动速度知:2BD PC =,PD AC =2Q ,∴()BD PD PC AC +=2+,即2PB AP =,∴点P 在线段AB 上的13处,即AB AP =3.故答案为:AB AP =3;(2)证明:如图1,由题意得AQ BQ >,AQ AP PQ ∴=+,又AQ BQ PQ -=Q ,AQ BQ PQ ∴=+,AP BQ ∴=.由(1)得,AP AB 1=3,PQ AB AP BQ AB 1∴=--=3.(3)运动5秒时,cm PC =5,cm BD =10.由(1)可知AP AB 1=3设AP x =,则AC AP PC x =-=-5,PB x =2,PD PB BD x =-=2-10.CD AB 1=2Q ,()x x x x 1∴+2-10=⨯3⇒=102则D 仍为动点,设A 为原点AB AP =3=30Q ∴B 表示的数为30,设运动了t 秒(t >5)则D 表示的数为t 30-2,因为M 为CD 的中点,所以M 表示的数为t 5+30-22因为N 为PD 的中点,所以N 表示的数为t 10+30-22t t MN 10+30-25+30-25=-=222MN AB 512∴==3012为定值.。
初一数学上学期线段中的动点问题专题汇编练习(含答案)

初一数学上学期线段中的动点问题专题汇编练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3="14"解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.解:(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10;(2)PA=1×t=t,PC=AC-PA=36-t;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1(x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:Ⅰ)点Q从A点向点C运动时,如果点Q在点P的后面,那么1(x+16)-3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1(x+16)=2,解得x=9,此时点P表示的数是-1;Ⅱ)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1(x+16)+2=2×36,解得x=13.5,此时点P表示的数是3.5;如果点Q在点P的前面,那么3x+1(x+16)-2=2×36,解得x=14.5,此时点P表示的数是4.5.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3,-1,3.5,4.5.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。
初一数学上学期动点问题专题培优(含答案)

初一上学期动点问题练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3="14"解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.解:(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10;(2)PA=1×t=t,PC=AC-PA=36-t;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1(x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:Ⅰ)点Q从A点向点C运动时,如果点Q在点P的后面,那么1(x+16)-3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1(x+16)=2,解得x=9,此时点P表示的数是-1;Ⅱ)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1(x+16)+2=2×36,解得x=13.5,此时点P表示的数是3.5;如果点Q在点P的前面,那么3x+1(x+16)-2=2×36,解得x=14.5,此时点P表示的数是4.5.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3,-1,3.5,4.5.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。
初中数学动点问题及练习题附参考答案

例 1.如图,已知在矩形 AB C D 中,A D=8,C D=4,点 E 从点 D 出发,沿线段 DA 以每秒 1 个单位长的速度向点 A 方向移动,同时点 F 从点 C 出发,沿射线 C D 方向以每秒 2 个单位 长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为 t (秒). (1)求当 t 为何值时,两点同时停止运动;(2)设四边形 BC FE 的面积为 S ,求 S 与 t 之间的函数关系式,并写出 t 的取值范围; (3)求当 t 为何值时,以 E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当 t 为何值时,∠BEC=∠BF C .E AD FOBC例 2. 正方形 AB C D M B C C D、 M 上的两个动点, 当 点 在 边长为 4, 、 N 分别是 B C A M M N和 垂直,上运动时,保持 (1)证明:Rt △AB M ∽Rt △M C N;B Mx AB C Ny y x M的面积为 ,求 与 之间的函数关系式;当点运动到(2)设 ,梯形 AB C N 什么位置时,四边形 M 面积最大,并求出最大面积;,求此时 的值.x (3)当 点运动到什么位置时Rt △AB M ∽Rt △A M NA DNBCM例 3.如图,在梯形 AB C DA D ∥BC ,A D 3,D C 5,AB 4 2,∠B 45.动中, M B B CC C 以每秒 2 个单位长度的速度向终点 运动;动点 N 同时从 点点 从 点出发沿线段 出发沿线段C D以每秒 1 个单位长度的速度向终点 运动.设运动的时间为秒. t D B C (09 年济南中考) (1)求 的长。
A DM N ∥ ABt 时,求 的值. (2)当 t△M N C 为等腰三角形.(3)试探究: 为何值时, N BCM例 1. 解:(1)当 B ,E ,F 三点共线时,两点同时停止运动,如图2 所示.………(1 分)由题意可知:E D =t ,BC=8,F D= 2t -4,FC= 2t .FFD ED∵E D ∥B C ,∴△FE D ∽△FB C .∴. EFCBCABD2t 4 t∴.解得 t=4. 2t8 C图 2∴当 t=4 时,两点同时停止运动;……(3 分)1 1(2)∵E D =t ,CF =2t , ∴S=S + S = ×8×4+ ×2t ×t=16+ t 2.△BCE △BCF 2 2即 S=16+ t 2.(0 ≤t ≤4);………………………………………………………(6 分)(3)①若 EF =EC 时,则点 F 只能在 C D 的延长线上,(2t 4) t 5t 16t 16 ,∵EF 2= 22 2 4t t 16 5t 16t 16 t 16 = 2 .∴t=4 或 t=0(舍去);E C = 2 ,∴ 2 2 2 2 44 t t 16 t 16 =4t 2.∴t,FC 2=4t 2,∴ 23 ; ②若 EC =F C 时,∵EC 2= 22 23 (2t 4) t 5t 16t 16 ③若 EF =F C 时,∵EF 2= ,FC 2=4t 2, 22 2 5t 16t 16 16 83 16 8 3 .∴ 2 =4t 2.∴t = (舍去),t =1 2 43 16 8 3, 时,以 E ,F ,C 三点为顶点的三角形是等腰三∴当 t 的值为 4, 3 角形;………………………………………………………………………………(9 分)B C CFC D E D 2 ,(4)在 Rt △BCF 和 Rt △CE D 中,∵∠BC D=∠C D E =90°,∴Rt △BCF ∽Rt △C E D .∴∠BF C=∠CE D .………………………………………(10 分)∵A D ∥B C ,∴∠B CE=∠CE D .若∠BEC=∠BF C ,则∠BE C=∠BCE .即 BE=B C .t16t 80 ∵BE 2= 2t 16t 80,∴ 2=64.16 8 3 16 8 3 .∴t = (舍去),t = 1 2∴当 t=16 8 3时,∠BEC=∠BFC .……………………………………………(12 分)AB C D 例 2. 解:(1)在正方形 中,AB BC C D 4,B C 90° , DAA M ⊥M N , A M N 90° ,C M N AM B 90° ,Rt △AB M 中,MAB A MB 90°在 , C M N MAB N,Rt △AB M ∽Rt △M C N , CBRt △AB M ∽Rt △M C N (2) , MAB B M M C C N 4x , , 4 x CNx 4x2 CN ,41 x 4x 1 12 y S4·4 x 2x 8 x 2 10 2 2 , 2 4 2 2 梯形ABC Nx 2 y 当 时, 取最大值,最大值为 10. (3)B AM N 90°,A M AB要使△AB M ∽△A M N ,必须有 ,M N B MA M AB由(1)知 , M N M CB M MC ,当点 M 运动到 B C 的中点时,△AB M ∽△A M Nx 2,此时.A D A K BC K D HBC A D H K于 , 于 H ,则四边形例 3.解:(1)如图①,过 、 分别作 是矩形K H AD 3.∴ 在 2Rt △ABK A K AB s in 45 4 2. 4 中, 2 2 B K AB cos 45 4 2 42Rt △C D H H C 5 4 3 在 ∴ 中,由勾股定理得, 22 B C BK K HHC 4 3 3 10ADADNBCBCK HG M(图①)(图②)D D G ∥ AB BC G A D G B是平行四边形 (2)如图②,过 作 交 于 点,则四边形 M N ∥ ABM N ∥D G B G AD 3∵ ∴ ∴ ∴G C 10 3 7M N C Nt ,C M 10 2t . 由题意知,当 、 运动到t 秒时, D G ∥M N∵ ∴∠N M C ∠DG C 又∠C ∠C∴△M N C ∽△G D C即 t 10 2t 5 7 50 17解得,t (3)分三种情况讨论:N C M C 时,如图③,即t 10 2t10 ①当 ∴t3AD ADNNBCBCEM H M(图④)(图③)M N NCN N E M C E 时,如图④,过 作 于 ②当 ∵∠C ∠C ,D H C NEC 90∴△NE C ∽△D H CN C E CD C H C ∴即 t 5t 5 3 25 ∴t81 1M N M C MM F CN 作 F C NC t 于 F 点. ③当 时,如图⑤,过 2 2 AD∵∠C∠C ,M F C D H C 90∴△M F C ∽△D H C F C M CN ∴H C D CF1B CtH M10 2t2 即3 5 (图⑤) 60 17∴t103 25 8 60 17 综上所述,当t 、t 或t时,△M N C 为等腰三角形即 t 10 2t 5 7 50 17解得,t (3)分三种情况讨论:N C M C 时,如图③,即t 10 2t10 ①当 ∴t3AD ADNNBCBCEM H M(图④)(图③)M N NCN N E M C E 时,如图④,过 作 于 ②当 ∵∠C ∠C ,D H C NEC 90∴△NE C ∽△D H CN C E CD C H C ∴即 t 5t 5 3 25 ∴t81 1M N M C MM F CN 作 F C NC t 于 F 点. ③当 时,如图⑤,过 2 2 AD∵∠C∠C ,M F C D H C 90∴△M F C ∽△D H C F C M CN ∴H C D CF1B CtH M10 2t2 即3 5 (图⑤) 60 17∴t103 25 8 60 17 综上所述,当t 、t 或t时,△M N C 为等腰三角形即 t 10 2t 5 7 50 17解得,t (3)分三种情况讨论:N C M C 时,如图③,即t 10 2t10 ①当 ∴t3AD ADNNBCBCEM H M(图④)(图③)M N NCN N E M C E 时,如图④,过 作 于 ②当 ∵∠C ∠C ,D H C NEC 90∴△NE C ∽△D H CN C E CD C H C ∴即 t 5t 5 3 25 ∴t81 1M N M C MM F CN 作 F C NC t 于 F 点. ③当 时,如图⑤,过 2 2 AD∵∠C∠C ,M F C D H C 90∴△M F C ∽△D H C F C M CN ∴H C D CF1B CtH M10 2t2 即3 5 (图⑤) 60 17∴t103 25 8 60 17 综上所述,当t 、t 或t时,△M N C 为等腰三角形。
初一七年级动点问题专题讲解(10个题目)

解咎題(共4小题)k 己知点A 在数轴上对应的数为衝点B 对应的数为怕且|2b - 6|+ (时1),0? Ax B 21闾閔距离记作AB,定义:AB=|a - b|*(I )求线段AD 的长*C2)设点P 在融轴上对应的樹小 当班-PE=2时,求耳的值*(3)M.N 分别是的中点,当P 移功时.指出当F 列结论分别成立时:氢的取值范围.并说明理由:①PMTM 的值不变'②|PM - PN|的值不变.韦黒 一元一次方程的应用:;数轴;两点间的距离.分析;(1)很揭非负数的和为仏 各项都为0:(2)应考虑到A 、B. P 三点王何的位置关系的多种可能解题七(3〕利用中点性质饕化线段之间的倍分关系得岀.斡答,解=(1) V|2b - 6|+ <a+l ) M ),Au= - b b=3,AAB=a -h|-4r 即贱段AB 的长度为也(2)当F 在点A 左側时,|R\| - |PB|= - (|?B| - |PA|) =-|AB= - A2・ 当P 在点R 右测时,|班| - PB|=|AD|=4*2,二上述两种情况的点P 不存在.当P 在仏 B 之间时r - 1<X <3TV |PA| =|x+1| =x+1, |PB|=|7t - 3|=3 - XjA|PA| -|PB|=2t Ax+1 - C3 -x) =2・Jt=2:'■3.';三百•叮谒-:;PH —丄冬.F 、l 一丄PE, 2 2a©PM FN efjfTi^变时.PM :PN-R\ :PB +②pxi - FN|菇價不空咸立+故当P 在线段AH 上时. 点评:此題主要考查了一元一次方程的应用,港透了分类讨论的思想,体现了思维的严密性,在今后解决类似的 问題时,要阴止漏解.利用中点性质转化线段之间的倍分关累是解题的关缝.在不冋的带况下灵活选用它的不闫表示方法,有利 干無題的简洁性.同时,灵活运冃銭段的和、差、倍、分轻化纯段之间的数星关至也是十分关键的一点.PM+PN -丄(PA+PB ) -1A R-2, 2 2当P 在AB 延K 线上或BA 延长线上时,2.如田1,己知数轴上两点A. B对应的敖分别为-1、3,点P为数轴上的一动点,萇对应的数为x・A B .5t1A .20t•1 o3 A Xi A OP N3 B“图1E2(1) P4= |x+ll;PB-|x・31 (用含x的式子表示)(2)在数轴上是否存在点P,使臥+PB=5?若存在,请求出x的值:若不存在,请说明理由.(3)如图2,点P以I个单位/s的谏度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/5的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:朋~°卩的值是否发土变化?请说明理MN由.考点:一元一次方程的应用:数馆:两点间的距离.分析:(1)根据数轴上两点之间的距离求法得岀臥,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;<3)根据题意用t表示岀AB, OP, MN的长,进而求出答案.解答:解;(1) •・•数轴上两点A、B对应的数分别为・1、3,点P为数雜上的一动点,其对应的数为X, .•・M=|X+1| ;PB二|x・3| (用含x的式子表示);故答案为:|x+l|» |x - 3|;(2)分三种情况:①当点P在A、B之间时,PA+PB-4,故舍去.②当点P在B点右边时,BX=x+l, PB=x・3,:.(x+1) (x - 3) =5,/. x=3.5 •③当点P在A点左边时,映」x-1, PB=3-x,/. C-x-1) + (3-x) =5,:・X= - 1.5;(3)坐磐的值不发生变化.MN理由:设运动时间为〔分钟.则OIM, OA=5t+l, OB~20t+3,AB=OA+OB二2W+4, AP-OAP皆6t+l,AM=」AI>H+3t,2 2OM=OA - AM=5t+l - (l+3t) =2t+l,2 2ON=loB=10t+^,2 2・•・ MN=OM+ON= 12t+2,.AB _ 0£/5t+4 _ gMN _,・••在运动过程中,M、N分别是AP、OB的中点,齐吾的值不发生变化. 点评:此题主要考查了元一次方程的应用,根拒题意利用分类讨论得岀是解题关键.3. 如图1,直线AB±有-点P,点N 分别为线段M 、P13的中点•• • • • • • ♦ » « A M P N BA C BP AB=14・ 图1 圉2(1) 若点P 在线段AB 上,且AP=8,求线段MN 的长度;(2) 若点P 在直线AB 上运动,试说明线段MN 的长度与点P 在直线AB 上的位置无关:(3) 如图2,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:(严严的值不变:②£址巴的PCPC值不变,请选择一个正确的结论并求其值. 考点:两点间的距离.分析:(1)求岀MP, NP 的长度,即可得岀MN 的长度:(2) 分三种情况:①点P 在AB 之间;②点P 在AB 的延长线上:③点P 在BA 的延长线上,分别表示出MN 的长度即可作出判斷;(3) 设AC=BC=x, PB=y,分别表示岀①•②的值,继而可作岀判断.解答:解:<1) VAP=8,点M 是AP 中点,•••MP=2A P=4. 2ABP-AB - AP=6, 又;•点N 是PB 中点,•••PN 丄PB 3. 2AMN=MP+PN=7 ・⑵①点咗AB 之间:②点P 在AB 的延长线上:③点P 在BA 的延长线上.均有MN 寺I(3)选择②• 设 AC 二BOx, PB=y,点评|本題考査了两点何的距离.解答本題注意分类讨论思如的运用.理解线段中点的定义•难度一股.4. 如图,P 是定长线段AB±一点.C 、D 两点分别从P 、D 岀发以lcm£ 2cm ;s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C\ D 运动到任一时刻时,总有PD=2AC ,请说明P 点在线段AB 上的位宜:I C P D B⑵ 在(1)的条件下,Q 是査线AB 上一点,KAQ ・EQ=PQ,求普的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有口对肚,此时C 点停止运动,D 点继续运动(D 点在线段 PB 上),W N 分别是CD 、PD 的中点,下列结论:①PM-PN 的值不变;②螢值不变,可以说明,只有-个结论是正确的,请你找岀正确的结论并求值.考点:比较线段的长短.专赵:数形结合.分析:(1)根摇C 、D 的运动速度知BD=2PC,再由己知条件PD-2AC 求得PB=2AP,所以点P 在线段AB ±的三处;(2) 由題设画出图示,根摇AQ ・BQ=PQ 求得AQ=PQfBQ :然后求得AP=BQ,从而求得PQ 与AB 的关 系:(3) 当点C 停止运动时.有CD=^AB ,从而求得CM 与AB 的数虽关茶;然后求得以AB 表示的PM 弓PN 的PA-PB PC 型=卫(在变化片x+y x+y©PA+PB 二2x+2y PC — x+y=2 (定值).值,所以HN二PN-P胪丄;AE・解答:解:<1>根拒 6 D的运动速度知:BD-2PCVPD-2AC> •••BD+PD=2 (PC+AC),即PB=2AP, •••点P在线段AB上的丄处:3C2)如图:A P Q BVAQ - BQ=PQ, AAQ=PQ+BQ.又AQ二AP+PQ,AAP^BQt••・ PQ=^AB-•PQ 1•■—二•AB 3当点Q,在AB的延长线上时AQ • AP=PQ・所以匹二丄:AB 3②瞿的值不变.A D理由:如因,当点C停止运动时,有CD A AP*乙CM=^AP.:•WWCP 冷3 5,•・• PD=^AB・ 10,••- PN=^ (|A B-10)专AB-5, .••MN=PN-PM=^AB=当点C停止运动,D点继续运动时,MN的值不变,所以,丄理=丄乙 =丄.AB AB 12点讦:本題考査了比较线段的长短.利用中点性质转化线段之间的倍分关系是解逶的关键,在不同的情况下灵活选用它的不冋表示方法,育利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数丘关系也是十分关键的一点.5.如图1,己知敖轴上有三点A、B、C, AB=」AC,点C对应的数是200.2(1)若BC=300,求点A对应的数:(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长反母秒、2鱼位长度每秒•点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN (不考虑点R与点Q相遇之后的情形〉:<3)如图3, •在(1)的条件下,若点E、D对应的数分别为・800、0.动点P、Q分别从E、D两点同时岀发向左运动•点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点乂为线段PQ的中点,点Q在从是点D运动到点A的过程中,£QC・AM的值是否发生变化?若不变,求其值;若不变,请迸明理由.•4 B C -图1P R 0 20C图2考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300, AB二」AC,得岀A0600,利用点C灯应的数是200,即可得岀点A对应的数;2(2)假设x秒Q在R右边时,恰好满足MR-4RN,得岀等式方程求出即可:(3)假设经过的时间为y,得出PE=10y, QD=5y,进而得出叽5y・400=爭,得出年・3 (200+5y) 15岳㈣幻•工AM ------------ ----------- —y原题得证・2 2解答:解:(1) VBC=300, AB=^,2所以AC=600,C点对应200,/.A点对应的数为:200 - 600=・400;(2)设x秒时• Q在R右边时.恰好满足MR=4RN,/.MR= (10+2) 72RN=^[600・ (5+2) x]・/.MR=4RN,••• (10十2) x-?=4xl[600 - (5+2) x],2 2解得:x=60:•••60秒时怡好满足NfR=4RN;(3)设经过的时间为y,则PE=10y, QD-5y,于是PQ 点为[0 ・(・ 800) ]+10y ・ 5y=8OO+,y, 一半则是型也,2所以AM 点为:8°°+5丫+5丫- 400=芟*2 2又QC=20G+5y, 所以驱・AM*(20^y)-聖为定值.2 2 2点讦;此题考查了一元一次方程的应用,根据己知得出各线段之间的关系等童关系是解题关键,此題阅读量较大应细心分析.6.妇图1,己知点A、C、F、E、B为直线1上的点,且AB=12, CE=6, F为AE的中点.(1)如图1,若CF=2,则BE=_4_,若CF TH, BE与CF的数量关系是(2)当点E沿宜线1向左运动至图2的位宣时,(1)中BE与CF的数員关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得DD",且DF=3DE?若存在,请求岀12匹值:若不存在,请说明理由.CA F£”B圉2BC A F J E D圉3考点:两点间的距离: ^-工口rrA f-^T 中兀-次方桂的应用•分析;(1)先根据EF=CE-CF求出EF,再根据中点的定义求出AE,然后根据BE-AB - AE代入数据进行计算即可得解;根据BE、CF的长度写出数虽关系即可;(2)根攥中点定文可得AE=2EF,再根BE=AB・AE整理即可得解;(3)设DE=x,然后表示出DF、FF、CF> BF,然后代入BE=2CF求解得到x的值,再求岀DF、CF,计算即可得解.解答:解:(1) VCE=6, CF=2,/.EF=CE ・ CF=6 ・ 2=4 ・IF为AE的中点,・・・AE 二2EF 二2x48,/. BE=AB ・ AE=12 ・ 8=4 ・若CF=m・则BE=2m,BE=2CF:(2) (1)中BE=2CF仍然成立.理由如下:TF为AE的中点,・・・AE=2EF,BE=AB - AE,=12 - 2EF,=12 ・2 (CE ・CF),=12-2 (6・ CF),=2CF;(3)存在.DF=3.理由如下:设DE=x,则DF=3x,•\EF=2x, CF=6・x, BE=x+7,由(2)知:BE=2CF,•\x+7=2 (6- x),解得,X二1,/.DF=3, CF=5..••迦=6.CF点评:本题考查了两点间的距齬,中点的定义,灌越识图,找岀图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1, M是定长线段AB上一定点,C、D两点分别从M、B出发以lcm/s、3cm/s的速度沿貢线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C. D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM二丄AB.4—(3)在(2)的条件下,N是亘线AB±一点,且AN - BN=MN,求鹉的A C M DI ______________ I _____________________________ IA AZ B值.考点;比较线段的长短.专題:分类讨论.分祈:(1)计算出CM及BD的长,进而可得出答案:(2)根据图形聞可盲接解符:(3)分两种情况讨论,①当点N在线段AB上时.②当点N在线段AB的延长线上时,然后根据数虽关系即可求解.算答:解:(1)当点C、D 运动了2s 时,CM=2cm, BD=6cme/AB=10cn), CM=2cm, BT)=6anAC+MD-AB - CM ・ BD-10 ・ 2 ・ 6=2cm(2)丄4(3)当点N在线段AB±时.如图I _______________ I ________________ I_________ IJ \f.V BT AN ・ BN=MN・又T AN ・ AM=NfN••・BN二AM=」AB, •••MN=2A B,即型=1.4 2 AB 2当点N在线段AB的延长线上时,如图.4 A/ 3 XVAN - BN=MN,又TAN ・ BWAB/.MN-AB,即翌二].综上所述翌4或1AB AB 2点讦:本題考查求线段的长短的知识,有一定难度,关德是细心阅读题目,理清題意后再解答.&己知数轴上三点M, O, N对应的数分别为・3, 0, 1,点P为数轴上汪意一点.其对应的数为X.(1)如果点P到点M,点N的距离相等,那么x的值是・1 ;(2)数轴上是否存在点P,使点P到点卜1,点N的距离之和是5?若存在,请直接写出x的值:若不存在,请说明理由.(3)如果点P以每分钟3个单位长度対速度从点O向左运动时,点M和点N分别以每分钟1个单位七:度和每分钟4个单位长度的速度也向左运动,且三点同时岀发,那么几分钟时点P到点M,点N的聲离相等?考点:一元一次方程的应用:数轴:两点间的距蔑.分析:(1〉根据三点M, O, N对应的数•得出NM的中点为:x= ( -3+1) -2进而求出即可:(2)根摇P点在N点右侧或在M点左侧分别求岀即可;(3〉分别很掳①当点M和点N在点P同侧时,②当点和点N在点P两侧时求出即可.解答:解:(1) VM, O, N对应的数分别为・3, 0, I,点P到点M,点N的距离相等,Ax的值是-1.(2〉存在符合觊意的点P,此时x= - 3.5 或1.5.(3〉设运动t分钟时,点P对应的数是・3t.点M对应的数是-3・t,点N对应的数是l・4t.①当点M和点N在点P同侧时,因为P\I=PN,所以点M和点N重合,所以・3・(=1 - 4t,解得t」,符合迦意.3②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=・3t • ( - 3・t) =3・2t. PX= (1 -4t)-(・3t) = 1・t.因为PM=PN,所以3・2t=l・t,解得t=2.此时点M对应的数是・5,点N对应的数是・7,点M在点N右侧,不符合輕意,舍去. 情况2:如果点M在点N 右侧,PM= <・3t)・(1・4t) =2t・3. PN二・3t・(l+4t) =t・1・因为PM=PN,所以2t - 3=t・1,解得t=2.此时点M对应的数是・5,点N对应的数是-7,点fd在点N右侧,符合题意.综上所述,三点冋时出发,号分钟或2分钟时点P到点M,点N的距离相寻. 故答案为:~ 1.点评:此题主要考査了数轴的应用以及一元一次方程的应用,根据M. N位置的不同进行分类讨论得出是解题关9.如图,已知数轴上点A表示的数为6, B是数紬上一点,且AB=10・动点P从点A出发,以每秒6个单位长度的速度沿数袖向左匀速运动,设运动时间为t (t>0)秒.<1)写出数轴上点B表示的数・4 ,点P表示的教6・&用含(的代数式表示九(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时岀发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点•点P在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请你匝岀图形,并求岀线段MN的长;3 Q』0 6考点:数轴:一元一次方程的应用;两点间的胚离.专題:方程思想.分析:(1)B点表示的数为6 - 10=・4;点P表示的数为6・6t;(2〉点P运动X秒时,在点C处追上点R,然后建立方程6x・4x=10,解方程即可:(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求岀MN.輕答:解:(1)答案为• 4, 6 - 6t ;(2)设点P 运动x 秒时,在点C 处追上点R (如图)二 __________ S. ____ 2 _________ 0贝!J AC=6x, BC-4x,VAC • BC -AB, .e .6x - 4x=10,解得:X =5F.••点P 运动5秒时,在点C 处追上点R.(3)线段MN 的长度不发生变化,都等于5.理由如下:gMP+NP^AP 咿吩(AP+BP 〉 _—2 --------------- 上②当点P 运动到点B 的左侧时:P N"0 MN=MP ・ NP=-^AP ・丄BP=-^ (AP - BP ) =^AB=5, 2 2 2 2・•・综上所述,线段MN 的长度不发生变化,其值为5.点讦:本题考査了数轴:数轴的三夢素(正方向、原点和单位长度).也考査了一元一次方程的应用以及数釉上两 点之间的足巨离.10・妇图,己知数轴上点A 表示的数为6, B 是数袖上一点,且AB 二10,动点P 从点A 岀发,以每秒6个单位长 度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.<1)①写出教轴上点B 表示的数-4 ,.占P 表示的数6・6((用含(的代数式表示〉;②M 为AP 的中点,N 为PB 的中点•点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由: 若不变,请你画出图形,并求出线段MN 的长;(2)动点Q 从点A 出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R 从点B 出发.以每秒上个单位3 长度的速度沿数釉向左匀速运动,若P 、Q 、R 三动点同时出发,当点P 遇到点R 时,立即返回向点Q 运动,遇到 点Q 后则停止运动.那么点P 从开始运动到停止运动,行驶的路程是多少个单位长度?B O A------- ・ ・»0 6考点:一元一次方程的应用;数轴;两点间的距离.专題;动点型.分析:(1)①设B,点表示的数为X,根裾数雜上两点间的距离公式建立方程求岀其鲜.再根据数轴上点的运动就 可以求出P 点的坐标;②分类讨论;当点P 在点A 、B 两点之间运动时:当点P 运动到点B 的左侧时,利用中点的定义和线段的 和差易求岀MN ;<2)先求岀P 、R 从A 、B 岀发相遇时的时间,再求岀P 、R 相遇时P 、Q 之间剩余的路程的相遇时间,就 可以求出P 一共走的时间,由P 的速度就可以求出P 点行驶的路稈.解答:解:(1)设B 点表示的数为X.白題意.得6 ・ x=10.分两种情况:①当点P 在点A 、B 两点之间运动时:x=・4AB点表示的数为:・4,点P表示的数为:6-6t;②线段MN的长度不发生变化,都等于5.理由如下: 分两种情况;当点P在点A、B两点之间运动时;MN=NfP+NP—AP+-BP=- (AP+BP) —AB=5:2 2 2 2当点P运动到点B的左侧时:MN^NIP ・ NP」AP -丄BP」(AP ・ BP)」AB=5,2 2 2 2・・・综上所述,线段MN的长度不发生变化,其值为5.(2)由題意得:A 1 C;P、R的相遇时间为:10-(6+三)亠乩W 11P、Q剰余的路程为:10・(理)J 11 11P、Q相遇的时间为:普三(6+1)二ps,•••P点走的路程为:6x (普需)丄器点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度〕.一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问題中的路程二速度%时间的运用.。
初一数学上册数轴动点问题
初一数学上册数轴动点问题一、什么是数轴动点问题数轴动点问题呢,就是在数轴这个特定的数学环境里,有一些点是可以动来动去的,然后让我们根据这些点的运动情况去解决各种各样的数学问题。
比如说,一个点从数轴上的某个位置开始,按照一定的速度向左或者向右移动,然后问我们在某个时刻这个点的位置在哪里呀,或者几个点之间的距离是多少啦之类的。
这就像一群小蚂蚁在数轴这条小路上跑来跑去,我们得搞清楚它们的位置变化情况。
二、常见的题型类型1. 求动点表示的数这种题就是给你一个动点在数轴上的初始位置,还有它运动的方向和速度,然后让你求出经过一段时间后这个动点所表示的数。
比如说,一个点在数轴上表示3,它以每秒2个单位长度的速度向右运动,经过5秒后,这个点就向右移动了2×5 = 10个单位长度,那这个点表示的数就变成了3+10 = 13啦。
2. 求两点之间的距离有时候会给你两个动点,它们分别在数轴上运动,然后问你在某个时刻这两个动点之间的距离是多少。
这就需要我们先算出这两个动点在那个时刻分别在数轴上的位置,然后用较大的数减去较小的数(如果是求绝对值距离的话就直接求两个数差的绝对值)。
就像两个人在数轴这条跑道上跑,我们要看看他们之间隔了多远。
3. 动点与线段的关系还有一种题型是关于动点和线段的关系的。
比如说,一个动点在数轴上运动,问这个动点什么时候会在线段的中点上,或者什么时候这个动点会把某条线段分成一定比例的两段。
这就比较复杂啦,我们要综合考虑线段的端点位置、动点的运动情况等很多因素呢。
三、解决数轴动点问题的小技巧1. 画数轴这可是超级重要的一步哦。
把题目中的情况在数轴上画出来,这样我们就能很直观地看到各个点的位置关系啦。
就像画画一样,把那些抽象的数字和动点变成我们能看得见的东西。
比如说,题目里说一个点在 -2的位置,另一个点在4的位置,我们就把它们在数轴上标出来,然后再根据动点的运动情况,一点一点地画出它们的新位置。
初一数学下册动点问题
初一数学下册中的动点问题例1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3) 在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在请求出点F 的坐标;若不存在请说明理由。
ABDCS 四边形P D CBAOxy(4)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),设△CDP 与△BOP 的面积和为S ,则S 的取值范围是什么?(5)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:例2在平面直角坐标系中,点A,B 分别是x 轴,y 轴上的点,且OA=a ,OB=b ,其中a,b 满足1632=+-+-+a b b a ,将B 向左平移18个单位得到点C 。
(1)求点A,B,C 的坐标;(2)点M,N 分别为线段BC ,OA 上的两个动点,点M 从点B 以1个单位/秒的速度向左运动,同时点N 从点A 以2个单位/秒的速度向右运动,设运动时间为t 秒(0≤t ≤12).①当BM=ON 时,求t 的值。
②是否存在一段时间,使得BOACNACM S S 四边形四边形<21?若存在,求出t 的取值范围结论,并求其值。
确的,请你找出来这个其中有且只有一个是正是定值是定值;,BOPCPODCP OPC BOP DCP ∠∠+∠∠∠+∠练习:1.如图,在长方形ABCD中,边AB=8,BC=4,以点O为原点,OA,OC所在的直线为y轴和x轴,建立直角坐标系.(1)点A的坐标为(0,4),则B点坐标为______,C点坐标为______;(2)当点P从C出发,以2单位/秒速度向CO方向移动(不超过O点),Q 从原点O出发以1单位/秒速度向OA方向移动(不超过A点),P,Q同时出发,在移动过程中,四边形OPBQ的面积是否变化?若不变,求其值;若变化,请说明理由.如图AB∥CD,动点P所在的位置不同,∠PCD,∠PAB,∠APB三个角的关系就不同。
初一上学期动点问题练习(含答案)
初一上学期动点问题练习动点问题主要涉及到两个思想:一个是方程思想,化动为静,把线段的距离,或者点的位置用含未知数的代数式表达出来。
二个是分类讨论思想,一定要充分考虑,各种存在的可能性,解出所有可能存在的值。
而动点问题的题型主要有以下题型:(1)线段上动点与三等分点问题的综合1.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10 cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时,P、Q均停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(2)线段上动点问题中的存在性问题2.如图,已知数轴上A, B两点对应的数分别为-2,6,0为原点,点P为数轴上的一个动点,其对应的数为x.(1) PA= ,PB= .(用含x的式子表示) .(2)在数轴上是否存在点P,使PA+PB=10?若存在,请说明理由.(3)点P以1个单位长度/s的速度从点O向右运动,同时点A 以5个单位长度/s的速度向左运动,点B 以20个单位长度/s 的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:AB−OPMN的值是否发生变化?请说明理由.(3)线段和差倍分关系中的动点问题3.如图,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点,设P的运动时间为x秒.(1)当PB=2AM时,求x的值.(2)当P在线段AB上运动时,试说明2BM-BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变;选择一个正确的结论,并求出其值.(4)线段上动点的方程问题4.情景一:如图,从教学楼到图书馆,总有少数.同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:如图,A,B是河流1两旁的两个村庄,现要在河边修一个抽水站向两村供水.问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由.。
初一上数学线段动点问题
初一上数学线段动点问题1.这篇文章关于数学中的线段动点问题,涉及到数轴上的点和距离等概念。
首先,已知数轴上两点A、B对应的数分别为-1和3,点P为数轴上的动点,其对应的数为x。
第一个问题是如果点P到点A、点B的距离相等,求点P对应的数x。
第二个问题是数轴上是否存在点P,使点P到点A、点B的距离之和为5?如果存在,请求出x的值。
如果不存在,请说明理由。
第三个问题是当点P以每分钟一个单位长度的速度从O 点向左运动时,点A以每分钟5个单位长度向左运动,点B 以每分钟20个单位长度向左运动,问它们同时出发几分钟后P点到点A、点B的距离相等。
2.这篇文章讲述了数轴上的点A和点B,以及一只小虫甲从点B出发沿着数轴正方向以每秒4个单位长度的速度爬行至点C,再立即返回到点A,共用了4秒。
第一个问题是求点C对应的数。
第二个问题是如果小虫甲返回到A点后按照一定规律爬行,求它第10次停在的点所对应的数。
第三个问题是如果小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位长度的速度爬行,这时另一只小虫乙从点C出发沿着数轴的负方向以每秒7个单位长度的速度爬行,求|xAxExExFxFxB的值是否发生变化,若变化,请说明理由;若不变,请求出其值。
3.这篇文章涉及到数轴上的点A、B和P,其中A和B对应的数为-2和4,P为数轴上的动点,对应的数为x。
问题是如果P为AB线段的三等分点,求P对应的数x。
2.数轴上是否存在点P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由。
存在。
设P点的坐标为x,则AP+BP=|x-(-3)|+|x-7|=10,解得x=2或8.因此,存在点P使得AP+BP=10.3.A点、B点和P点(P在原点)分别以速度比1:10:2(长度:单位/分),向右运动几分钟时,P为AB的中点。
设P点向右运动t分钟,则A点和B点分别向右运动10t 和2t分钟。
由于P为AB的中点,因此有AP=BP,即10t=2(3-t),解得t=1.因此,A点、B点和P点向右运动1分钟时,P为AB的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段与角的动点问题 1.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发. (1)当P运动到线段AB上且PA=2PB时,点Q运动到的位置恰好是线段OC的三等分点,求点Q的运动速度; (2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm
【解答】解:(1)P在线段AB上,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒. 若CQ=OC时,CQ=30,点Q的运动速度为30÷60=(cm/s); 若OQ=OC,CQ=60,点Q的运动速度为60÷60=1(cm/s). (2)设运动时间为t秒,则t+3t=90±70,解得t=5或40, ∵点Q运动到O点时停止运动, ∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则 PQ=OP=70cm,此时t=70秒,
故经过5秒或70秒两点相距70cm. 2.如图,直线l上依次有三个点O,A,B,OA=40cm,OB=160cm. (1)若点P从点O出发,沿OA方向以4cm/s的速度匀速运动,点Q从点B出发,沿BO方向匀速运动,两点同时出发 ①若点Q运动速度为1cm/s,则经过t秒后P,Q两点之间的距离为 |160﹣5t| cm(用含t的式子表示) ②若点Q运动到恰好是线段AB的中点位置时,点P恰好满足PA=2PB,求点Q的运动速度. (2)若两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值. 【解答】解:(1)①依题意得,PQ=|160﹣5t|; 故答案是:|160﹣5t|; ②如图1所示:4t﹣40=2(160﹣4t),解得 t=30, 则点Q的运动速度为:=2(cm/s); 如图2所示:4t﹣40=2(4t﹣160),解得t=7, 则点Q的运动速度为:=(cm/s); 综上所述,点Q的运动速度为2cm/s或cm/s; (2)如图3,两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值. OP=xBQ=y,则MN=(160﹣x)﹣(160﹣y)+x=(x+y),
所以,==2.
3.如图,射线OM上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动. (1)当点P运动到AB的中点时,所用的时间为 90 秒. (2)若另有一动点Q同时从点C出发在线段CO上向点O匀速运动,速度为3cm/秒,求经过多长时间P、Q两点相距30cm
【解答】解:(1)当点P运动到AB的中点时,点P运动的路径为60cm+30cm=90cm, 所以点P运动的时间==90(秒); 故答案为90; (2)当点P和点Q在相遇前,t+30+3t=60+60+10,解得t=25(秒), 当点P和点Q在相遇后,t+3t﹣30=60+60+10,解得t=40(秒), 答:经过25秒或40秒时,P、Q两点相距30cm. 4.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍. (1)点B表示的数是 15 ;点C表示的数是 3 ; (2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6 (3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4若存在,请求出此时点P表示的数;若不存在,请说明理由.
【解答】解:(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3. 故答案为:15,3; (2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2; 点P与点Q相遇后,4t+2t=18+6,解得t=4; (3)假设存在, 当点P在点C左侧时,PC=6﹣4t,QB=2t, ∵PC+QB=4,∴6﹣4t+2t=4, 解得t=1. 此时点P表示的数是1; 当点P在点C右侧时,PC=4t﹣6,QB=2t, ∵PC+QB=4,∴4t﹣6+2t=4,解得t=. 此时点P表示的数是. 综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或. 5.将一副三角板放在同一平面内,使直角顶点重合于点O.
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数. (2)如图①,你发现∠AOD与∠BOC的大小有何关系∠AOB与∠DOC有何关系直接写出你发现的结论. (3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由. 【解答】解:(1)∠AOD=∠BOC=155°﹣90°=65°, ∠DOC=∠BOD﹣∠BOC=90°﹣65°=25°; (2)∠AOD=∠BOC, ∠AOB+∠DOC=180°; (3)∠AOB+∠COD+∠AOC+∠BOD=360°, ∵∠AOC=∠BOD=90°, ∴∠AOB+∠DOC=180°. 6.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处. (1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= 30° ; (2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线; (3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数. 【解答】解:(1)∵∠BOE=∠COE+∠COB=90°, 又∵∠COB=60°, ∴∠COE=30°, 故答案为:30°;
(2)∵OE平分∠AOC, ∴∠COE=∠AOE=COA, ∵∠EOD=90°, ∴∠AOE+∠DOB=90°,∠COE+∠COD=90°, ∴∠COD=∠DOB, ∴OD所在射线是∠BOC的平分线;
(3)设∠COD=x°,则∠AOE=5x°, ∵∠DOE=90°,∠BOC=60°, ∴6x=30或5x+90﹣x=120 ∴x=5或, 即∠COD=5°或° ∴∠BOD=65°或°. 7.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=130°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方. (1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:此时直线ON是否平分∠AOC请直接写出结论:直线ON 平分 (平分或不平分)∠AOC. (2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 13或49 .(直接写出结果) (3)将图1中的三角板绕点O顺时针旋转,请探究:当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化若不变,请求出这个差值;若变化,请举例说明.
【解答】解:(1)平分,理由:延长NO到D, ∵∠MON=90°∴∠MOD=90° ∴∠MOB+∠NOB=90°, ∠MOC+∠COD=90°, ∵∠MOB=∠MOC, ∴∠NOB=∠COD, ∵∠NOB=∠AOD, ∴∠COD=∠AOD, ∴直线NO平分∠AOC;
(2)分两种情况: ①如图2,∵∠BOC=130° ∴∠AOC=50°, 当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=25°, ∴∠BON=25°,∠BOM=65°, 即逆时针旋转的角度为65°, 由题意得,5t=65° 解得t=13(s); ②如图3,当NO平分∠AOC时,∠NOA=25°, ∴∠AOM=65°, 即逆时针旋转的角度为:180°+65°=245°, 由题意得,5t=245°, 解得t=49(s), 综上所述,t=13s或49s时,直线ON恰好平分锐角∠AOC; (3)∠AOM﹣∠NOC=40°, 理由:∵∠AOM=90°﹣∠AON∠NOC=50°﹣∠AON, ∴∠AOM﹣∠NOC =(90°﹣∠AON)﹣(50°﹣∠AON) =40°. 9.已知∠AOC=40°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.
(1)如图1,当点A与点M重合,点B与点N重合,且射线OC和射线OD在直线MN的同侧时,求∠BOP的余角的度数; (2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s时,求∠DOP的度数. 【解答】解:(1)∵∠AOC=40°,∠BOD=30°, ∴∠COD=180°﹣40°﹣30°=110°, ∵OP是∠COD的平分线,