福建省2016-2017学年八年级下学期期中质量检测数学试题
2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷

2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)计算:$\sqrt{27}=$.2.(3分)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数是$\frac{4+5}{2}=$.3.(3分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为$6+8+10=$.4.(3分)如图,函数$y=ax+4$和$y=bx$的图象相交于点A,则不等式$bx\geq ax+4$的解集为$x\geq 4\frac{1}{b-a}$.5.(3分)已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,$S_{\triangle AOE}=3$,$S_{\triangle BOF}=5$,则▱ABCD 的面积是$24$.6.(3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为$5$.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)要使式子$\sqrt{x+1}$有意义,则x的取值范围是(B).A.$x>1$ B.$x\geq -1$ C.$x\geq 1$ D.$x\geq 0$8.(4分)下列式子成立的是(B).A.$2+3=3$ B.$2-3=2-5$ C.$2\times3=6$ D.$\frac{2}{3}=0.6$9.(4分)为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:$S_{甲}^2=1.4$,$S_{乙}^2=18.8$,$S_{丙}^2=2.5$,则苗高比较整齐的是(A).A.甲种 B.乙种 C.丙种 D.无法确定10.(4分)下列各曲线中表示y是x的函数的是(D).A.$\sqrt{x+y}=1$ B.$x^2+y^2=1$ C.$y=\pmx$ D.$y=2x-1$11.(4分)如图,△ABC中,CD⊥AB于D,且E是AC 的中点.若AD=6,DE=5,则CD的长等于(C).A.$5$ B.$6$ C.$7$ D.$8$12.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是(B).A.$12$ B.$24$ C.$40$ D.$48$13.(4分)将一次函数$y=-3x-2$的图象向上平移4个单位长度后,图象不经过(C).A.第一象限 B.第二象限 C.第三象限 D.第四象限14.(4分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是(D).A.$2n-2$ B.$2n-1$ C.$2n$ D.$2n+1$三、解答题(本大题共9小题,共70分)15.(4分)计算:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=$.解:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=\frac{3\times 5\times 7}{5\times 7\times9}=\frac{1}{3}$.16.(5分)计算:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=$.解:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=\frac{10+3-5-2}{15}=\frac{6}{15}=\frac{2}{5}$.17.(8分)如图,在△ABC中,$AB=AC$,$D$是$BC$的中点,$E$是$AD$的垂足,$F$是$BE$的中点,$G$是$AF$的垂足,$AG$交$BC$于点$H$,求证:$BH=HC$.证明:因为$AB=AC$,所以XXX又因为$D$是$BC$的中点,所以$AD\perp BC$,即$\angle ADE=90^\circ$.又因为$E$是$AD$的垂足,所以$AE=DE$,又$\angle AFE=90^\circ$,所以$AF=EF$.因为$F$是$BE$的中点,所以$BF=FE$.又因为$AG\perp BF$,所以$AG$是$BF$的高,所以$AG=GF$.设$BH=x$,则$HC=BF-BH=2x-BC$.由勾股定理得$AE=\sqrt{AB^2-BE^2}=\sqrt{AB^2-\left(\frac{AD}{2}\right)^2}=\sqrt{AB^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{3}}{2}AB$.由相似三角形可得$\frac{EF}{AB}=\frac{1}{2}$,$\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{HC}{AB}=\frac{2x-AB}{AB}$.由正弦定理得$\frac{EF}{\sin \angle A}=\frac{AE}{\sin\angle AEF}$,即$\frac{EF}{AB}=\frac{\sin \angle A}{\sin\angle AEF}$.又$\angle AEF=90^\circ-\angle BAE=\angle C$,$\sin \angle A=\sin \angle B$,所以$\frac{EF}{AB}=\frac{\sin \angle B}{\sin \angle C}$.由正弦定理得$\frac{AG}{\sin \angle B}=\frac{AB}{\sin\angle BAG}$,即$\frac{AG}{AB}=\frac{\sin \angle B}{\sin\angle BAG}$.又$\angle BAG=90^\circ-\angle BAF=90^\circ-\angle C$,所以$\frac{AG}{AB}=\frac{\sin \angle B}{\cos\angle C}$.综上所述,$\frac{\sin \angle B}{\sin \angleC}=\frac{EF}{AB}=\frac{1}{2}$,$\frac{\sin \angle B}{\cos\angle C}=\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{2x-AB}{AB}=\frac{HC}{AB}$,即$\frac{2x-AB}{AB}=\frac{2x-2BH}{AB}=\frac{2x-2BC}{AB}+1$,即$x=BC$,所以XXX.18.(8分)已知函数$f(x)=\frac{2x^2-8x}{x-2}$,求$f(2+\frac{1}{x})$的值.解:$f(2+\frac{1}{x})=\frac{2(2+\frac{1}{x})^2-8(2+\frac{1}{x})}{2+\frac{1}{x}-2}=\frac{2(4+\frac{4}{x}+\frac{1}{x^2})-8-\frac{8}{x}}{\frac{1}{x}}=-2x^2-4x-8+\frac{16}{x}$.所以$f(2+\frac{1}{x})=-2x^2-4x-8+\frac{16}{x}$.19.(10分)如图,已知$\odot O$是正方形ABCD内切圆,P是线段AD上一点,连接PB、PC,交$\odot O$于点E、F,交BC于点Q,求证:$PQ=2QF$.证明:因为$\odot O$是正方形ABCD内切圆,所以$\angle AOE=45^\circ$,所以$\angle EOF=90^\circ$,所以$\angle EPF=45^\circ$,所以XXX.因为$BE=BF$,所以XXX,又因为$\angle EFB=90^\circ$,所以$\angle FBE=45^\circ$,所以$\angle EPQ=90^\circ+\angle FPQ$.所以$\angle EPQ+\angle FPQ=135^\circ$,所以$\anglePQF=45^\circ$,所以$\angle FQP=45^\circ$,所以$\triangle PQF$是等腰直角三角形,所以$PQ=2QF$.20.(10分)如图,在△ABC中,$D$、$E$、$F$分别是$BC$、$AC$、$AB$上的三个点,$AD$、$BE$、$CF$交于点$O$,且$\frac{BO}{OE}=\frac{CO}{OF}=2$,求证:$AD$、$BE$、$CF$交于一点,并且$S_{\triangle ABC}=4S_{\triangle OEF}$.证明:作$BE$的平行线$GH\parallel BE$,交$AC$于点$H$,则$\frac{AH}{HC}=\frac{BG}{GE}=2$.作$AD$的平行线$IJ\parallel AD$,交$BC$于点$J$,则$\frac{BJ}{JC}=\frac{AI}{ID}=2$.作$CF$的平行线$KL\parallel CF$,交$AB$于点$L$,则$\frac{BL}{LA}=\frac{CK}{KF}=2$.设$\triangle ABC$的面积为$S$,则$\triangle AHE\sim\triangle ABC$,$\triangle BGF\sim \triangle ABC$,$\triangle CKE\sim \triangle ABC$,所以$S_{\triangleAHE}=\frac{1}{9}S$,$S_{\triangle BGF}=\frac{1}{9}S$,$S_{\triangle CKE}=\frac{1}{9}S$,所以$S_{\triangle OEF}=S-S_{\triangle AHE}-S_{\triangle BGF}-S_{\triangleCKE}=\frac{4}{9}S$.又因为$\frac{BO}{OE}=\frac{CO}{OF}=2$,所以$\frac{BG}{GE}=\frac{BO}{OE}-1=1$,$\frac{CK}{KF}=\frac{CO}{OF}-1=1$,所以$GH\parallel BE$,$KL\parallel CF$,所以XXX$,所以$\frac{AJ}{JC}=\frac{HL}{LK}=\frac{3}{2}$。
2016-2017年广东省深圳市宝安区沙井中学八年级(下)期中数学试卷(解析版)

2016-2017学年广东省深圳市宝安区沙井中学八年级(下)期中数学试卷一、选择题(每题3分,共36分)1.(3分)使分式有意义的条件是()A.x=±1B.x≠±1C.x≠1D.x≠﹣1 2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)下列从左到右的变形,是因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2+2xy+y2=(x+y)2C.(x﹣2)(x﹣2)2=(x﹣2)3D.(x﹣1)(x+1)=x2﹣14.(3分)如果a>b,那么下列不等式成立的是()A.﹣5a>﹣5b B.5a<5b C.<D.a﹣5>b﹣5 5.(3分)将A(﹣4,1)先向右平移5个单位长度,再向上平移2个单位长度,平移后点的坐标是()A.(﹣9,3)B.(1,3)C.(﹣9,﹣1)D.(1,﹣1)6.(3分)不等式2x﹣1>3的解集()A.x>1B.x>﹣2C.x>2D.x<27.(3分)下列各式中,能用平方差公式进行因式分解的是()A.x2﹣xy2B.﹣1+y2C.2y2+2D.x3﹣y38.(3分)如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤39.(3分)若4x2+mxy+9y2是一个完全平方式,则m=()A.﹣6B.12C.±6D.±12 10.(3分)点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>B.m<4C.m>4D.<m<4 11.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.612.(3分)如图,一次函数y=2x与y=kx+3交于点A(m,2),则不等式2x<kx+3的解集为()A.x>1B.x<1C.x>3D.x<3二、填空题(每题3分,共12分)13.(3分)因式分解:2a2+a=.14.(3分)分式的值为0,则a的取值为.15.(3分)若不等式组有实数解,则实数m的取值范围是.16.(3分)如图,在△ABC中,∠ACB=90°,∠B=30°,AC=6,将△ABC 绕点C旋转后得到△DEC,点D恰好落在AB边上,连接AE,则△AEC的面积是.三、解答题(共52分)17.(12分)因式分解(1)ab2﹣a(2)2xy2﹣12x2y+18x3(3)a4﹣8a2+16(4)x2﹣4x﹣12.18.(4分).19.(9分)解下列不等式(组),并在数轴上表示解集.(1)(2).20.(6分)如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD的各顶点均在网格点上(1)将四边形ABCD平移,使得D点平移到D1(3,4),画出平移后的四边形A1B1C1D1;(2)画出四边形ABCD绕着原点O逆时针旋转90°后的四边形A2B2C2D2.21.(7分)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,且BD=CE,连接AO.(1)求证:△BOC是等腰三角形;(2)求证:AO平分∠BAC.22.(7分)某工厂每月能生产甲乙两种型号机器共40台,考虑原材料搭配问题,每月甲种型号机器的生产量不超过乙种型号机器数量的三分之二,销售甲种型号机器每台可获利4万元,销售乙种型号机器每台可获利5万元.(1)该工厂甲种型号机器每月至多生产多少台?(2)若甲种型号机器每月生产不少于13台,那么该工厂每月可获最大利润是多少?23.(7分)如图1,在△ABC中,∠B=22.5°,AC=5,AD是BC边上的高,AB的垂直平分线交AB于点E,交BC于点F.(1)判别AD与DF的数量关系并证明;(2)过F点作FG⊥AC于点G,交AD于点O(如图2),若OD=3,求BC的长度.2016-2017学年广东省深圳市宝安区沙井中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)使分式有意义的条件是()A.x=±1B.x≠±1C.x≠1D.x≠﹣1【考点】62:分式有意义的条件.【解答】解:分式有意义的条件是:x﹣1≠0,解得:x≠1.故选:C.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.(3分)下列从左到右的变形,是因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2+2xy+y2=(x+y)2C.(x﹣2)(x﹣2)2=(x﹣2)3D.(x﹣1)(x+1)=x2﹣1【考点】51:因式分解的意义.【解答】解:A、不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.4.(3分)如果a>b,那么下列不等式成立的是()A.﹣5a>﹣5b B.5a<5b C.<D.a﹣5>b﹣5【考点】C2:不等式的性质.【解答】解:A、∵a>b,∴﹣5a<﹣5b,故本选项不符合题意;B、∵a>b,∴5a>5b,故本选项不符合题意;C、∵a>b,∴>,故本选项不符合题意;D、∵a>b,∴a﹣5>b﹣5,故本选项符合题意;故选:D.5.(3分)将A(﹣4,1)先向右平移5个单位长度,再向上平移2个单位长度,平移后点的坐标是()A.(﹣9,3)B.(1,3)C.(﹣9,﹣1)D.(1,﹣1)【考点】Q3:坐标与图形变化﹣平移.【解答】解:∵点A(﹣4,1)向右平移5个单位长度,再向上平移2个单位长度,∴平移后点的横坐标为﹣4+5=1,纵坐标为1+2=3,即平移后点的坐标为(1,3).故选:B.6.(3分)不等式2x﹣1>3的解集()A.x>1B.x>﹣2C.x>2D.x<2【考点】C2:不等式的性质;C6:解一元一次不等式.【解答】解:2x﹣1>3,移项得:2x>3+1,合并同类项得:2x>4,∴不等式的解集是x>2.故选:C.7.(3分)下列各式中,能用平方差公式进行因式分解的是()A.x2﹣xy2B.﹣1+y2C.2y2+2D.x3﹣y3【考点】54:因式分解﹣运用公式法.【解答】解:A、x2﹣xy2不符合平方差公式的特点,不能用平方差公式进行因式分解;B、﹣1+y2符合平方差公式的特点,能用平方差公式进行因式分解;C、2y2+2的两平方项符号相同,不能用平方差公式进行因式分解;D、x3﹣y3是两立方项,不能用平方差公式进行因式分解.故选:B.8.(3分)如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【考点】C4:在数轴上表示不等式的解集.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.9.(3分)若4x2+mxy+9y2是一个完全平方式,则m=()A.﹣6B.12C.±6D.±12【考点】4E:完全平方式.【解答】解:∵4x2+mxy+9y2是一个完全平方式,∴4x2+mxy+9y2=(2x±3y)2,∴m=±12,故选:D.10.(3分)点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>B.m<4C.m>4D.<m<4【考点】CB:解一元一次不等式组;D1:点的坐标.【解答】解:∵点A(m﹣4,1﹣2m)在第四象限,∴,解不等式①得,m>4,解不等式②得,m>,所以,不等式组的解集是m>4,即m的取值范围是m>4.故选:C.11.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6【考点】KF:角平分线的性质.【解答】解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选:A.12.(3分)如图,一次函数y=2x与y=kx+3交于点A(m,2),则不等式2x<kx+3的解集为()A.x>1B.x<1C.x>3D.x<3【考点】FD:一次函数与一元一次不等式.【解答】解:把A(m,2)代入y=2x得2m=2,解得m=1,则A点坐标为(1,2),所以当x<1时,2x<kx+3,即不等式2x<kx+3的解集为x<1.故选:B.二、填空题(每题3分,共12分)13.(3分)因式分解:2a2+a=a(2a+1).【考点】53:因式分解﹣提公因式法.【解答】解:2a2+a=a(2a+1).故答案为:a(2a+1).14.(3分)分式的值为0,则a的取值为3.【考点】63:分式的值为零的条件.【解答】解:∵分式的值为0,∴a2﹣5a+6=0,a2﹣4≠0,解得:a=3.故答案为:3.15.(3分)若不等式组有实数解,则实数m的取值范围是m≤2.【考点】C3:不等式的解集.【解答】解:由6﹣3x≥0,解得x≤2.由x﹣m≥0,解得x≥m,由不等式组有实数解,则实数m的取值范围是m≤2,故答案为:m≤2.16.(3分)如图,在△ABC中,∠ACB=90°,∠B=30°,AC=6,将△ABC 绕点C旋转后得到△DEC,点D恰好落在AB边上,连接AE,则△AEC的面积是.【考点】R2:旋转的性质.【解答】解:如图所示:过点D作DF⊥AC于点F,∵∠DCE=∠ACB=90°,∠B=30°,∴∠BAC=60°,∵将△ABC绕点C旋转后得到△DEC,∴AC=DC,∠EDC=60°,∴△ADC是等边三角形,∴∠ACD=∠EDC=60°,∴DE∥AC,∵AC=6,DF⊥AC,∴AD=6,AF=3,∴DF==3,∴△AEC的面积是:×3×6=9.故答案为:9.三、解答题(共52分)17.(12分)因式分解(1)ab2﹣a(2)2xy2﹣12x2y+18x3(3)a4﹣8a2+16(4)x2﹣4x﹣12.【考点】55:提公因式法与公式法的综合运用.【解答】解:(1)原式=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a+2)2(a﹣2)2;(4)原式=(x﹣6)(x+2).18.(4分).【考点】6A:分式的乘除法.【解答】解:原式=×==.19.(9分)解下列不等式(组),并在数轴上表示解集.(1)(2).【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【解答】解:(1)不等式两边同乘以6,得2﹣4x≥4﹣3x,移项及合并同类项,得﹣2≥x,∴原不等式的解集是x≤﹣2,在数轴表示如下图所示,;(2),解不等式①,得x>﹣2,解不等式②,得x≤3,故原不等式组的解集是﹣2<x≤3,在数轴上表示如下图所示,.20.(6分)如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD的各顶点均在网格点上(1)将四边形ABCD平移,使得D点平移到D1(3,4),画出平移后的四边形A1B1C1D1;(2)画出四边形ABCD绕着原点O逆时针旋转90°后的四边形A2B2C2D2.【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【解答】解:(1)四边形A1B1C1D1即为所求;(2)四边形A2B2C2D2即为所求.21.(7分)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD与CE 相交于点O,且BD=CE,连接AO.(1)求证:△BOC是等腰三角形;(2)求证:AO平分∠BAC.【考点】KD:全等三角形的判定与性质;KJ:等腰三角形的判定与性质.【解答】证明:(1)∵BD⊥AC于点D,CE⊥AB于点E,∴∠BDC=∠CEB=90°,在Rt△BDC与Rt△CEB中,∴Rt△BDC≌Rt△CEB(HL),∴∠DBC=∠ECB,∴OB=OC,∴△BOC是等腰三角形;(2)∵BD=CE,OB=OC,∴BD﹣OB=CE﹣OC,即OD=OE,∵BD⊥AC,CE⊥AB,∴AO平分∠BAC.22.(7分)某工厂每月能生产甲乙两种型号机器共40台,考虑原材料搭配问题,每月甲种型号机器的生产量不超过乙种型号机器数量的三分之二,销售甲种型号机器每台可获利4万元,销售乙种型号机器每台可获利5万元.(1)该工厂甲种型号机器每月至多生产多少台?(2)若甲种型号机器每月生产不少于13台,那么该工厂每月可获最大利润是多少?【考点】FH:一次函数的应用.【解答】解:(1)设该工厂甲种型号机器每月生产x台,由题意,得解得x≤16答:该工厂甲种型号机器每月至多生产16台(2)设甲种型号机器生产a台时该工厂每月利润为y万元,由题意,得y=4a+5(40﹣a),y=﹣a+200由﹣1<0可知,y随a的增大而减小,∵13<a<16,∴当a=13时,y取最大值,=﹣13+200=187∴y最大答:该工厂每月可获最大利润是187万元.23.(7分)如图1,在△ABC中,∠B=22.5°,AC=5,AD是BC边上的高,AB的垂直平分线交AB于点E,交BC于点F.(1)判别AD与DF的数量关系并证明;(2)过F点作FG⊥AC于点G,交AD于点O(如图2),若OD=3,求BC的长度.【考点】KG:线段垂直平分线的性质;KQ:勾股定理.【解答】(1)AD=DF,理由如下:证明:如图1,连结AF,∵EF是AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=22.5°,∴∠AFD=45°,∵AD是BC边上的高,∴△AFD是等腰直角三角形,∴AD=DF;(2)解:∵FG⊥AC,AD⊥BC,∴∠FGC=∠ADF=90°,∠GFC+∠C=90°,∠DAC+∠C=90°,∴∠GFC=∠DAC,∵AD=DF,∴△ODF≌△CDA,∴OD=CD=3,在Rt△ACD中,由勾股定理得AD===4,连结AF,在Rt△ADF中,AD=DF=4,∴AF===4,∴BF=AF=4,∴BC=BF+DF+CD=4+4+3=7+4.。
福建省龙岩市一级达标校2016-2017学年高二第二学期期末教学质量检查理科数学试卷(扫描版含答案)

福建省龙岩市一级达标校2016-2017学年高二第二学期期末教学质量检查理科数学试卷(扫描版含答案)龙岩市一级达标校2016-2017学年第二学期期末高二教学质量检查数学(理科)试题参考答案一、选择题(每小题5分,共60分)1.B2.A3.C4.C5.D6.B7.A8.C9.B10.A11.D12.D二、填空题(每小题5分,共20分)13.914.2715.a(45,81)16.m≤e+2三、解答题(共70分)17.(本小题满分12分)Ⅰ)列出列联表:男女合计课外体育不达标 60 90 150课外体育达标 30 20 50合计 90 110 200Ⅱ)依表格数据得跳远成绩的平均数x=70,短跑100米成绩的平均数y=66.b=(∑xy-5x·y)/(∑x^2-5x^2)=-5·70·66/2250=0.54b=y-b x=66-0.54·70=28.2所求的回归方程为y=0.54x+28.2.因为k=2200/33≈6.06<6.635,所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关。
17.(本小题满分12分)Ⅰ)解得z=1+i,所以ω=(2-i)/(2+i)=1-i。
OA=(1,-1),OB=(0,2)。
逆时针旋转5π/4可得到OA的位置,即θ的最小值为5π/4.Ⅱ)由已知可得n=10.设第r+1项的系数最大,则C(10,r+1)=2·C(10,r)。
2(r+2)/(r+1)≥10/(r+1),解得2≥r+1,即1≤r≤3.r=1,2,3.所以3≤n-r≤9,即n-r=3,4,5,6,7,8,9.解得x=1/3或x=-1/2.所求的三项式为3x^2-2x或2x^3-3x^2.答案不唯一。
注:原文章中,解答题的第17题和第18题没有明确区分,已修改。
所以r=7,即系数最大的项为T77.根据分式拆分,2x^2=x^2,化简得x=±24.解:(Ⅰ)由题意得y=(4+202)/(p-10-2p-x)=10+2p-x/(4+x+1)。
广东省深圳市宝安区2016-2017学年八年级下学期数学期中考试试卷及参考答案

A . PC⊥OA,PD⊥OB B . OC=OD C . ∠OPC=∠OPD D . PC=PD 8. 如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为( )
A . 140 B . 70 C . 35 D . 24
9. 明明准备用自己节省的零花钱充值共享单车“摩拜”,他现在已存有45元,计划从现在起以后每个月节省30元,直到
的文学名著价格都一样,所采购的动漫书价格都一样).
(1) 求每本文学名著和动漫书各多少元? (2) 若学校要求购买文学名著比动漫书多20本,动漫书和文学名著总数不超过72本,如何购买总费用最少?最少是
多少?
23. 如图①已知△ACB和△DCE为等腰直角三角形,按如图的位置摆放,直角顶点 C重合.
(1) 求证:AD=BE; (2) 将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD= 求AB 的长;
A . ±2 B . 2 C . ﹣2 D . 4
4. 下列从左边到右边的变形,是因式分解的是( ) A . (a+3)(a﹣3)=a2﹣9 B . x2+x﹣5=x(x+1)﹣5 C . x2+1=x(x+
5. 函数
中自变量x的取值范围在数轴上表示正确的是( )
) D . x2+4x+4=(x+2)2
21. 如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
(1) 求证:CF=EB. (2) 若AF=2,EB=1,求AB的长. 22. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备采购文学名著 和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购
八年级数学下学期期中教学质量检测试题扫描版新人教版

广西南宁市马山县2017-2018学年八年级数学下学期期中教学质量检测试题马山县2018年春季学期八年级期中教学质量检测数学试题 参考答案一选择题(每题3分,共36分)1.B2.D 3 B 4.C 5.B 6.C 7.A 8.A 9.D 10.B 11.B 12.C 二.填空题:(每题3分,共18分) 13.1≥x 14.2215. 72π 16.()1,12+ 17.030 18. 3三、解答题(本大题共8小题,满分66分)19 (本小题满分6分) 解:原式=31321++--…………………………5分=0 …………………6分20.(本小题满分6分)解:原式=221223241218÷+÷-÷…………2分=113+-……………………………………5分 = 3…………………………………6分21. (本小题满分6分)解:依题意得:ED =BC =30米………1分设AE =x 米在Rt△ADE 中,∠ADE =30° ∴AD =2x …………2分 由勾股定理得:AE 2+ED 2=AD2即x 2+302=(2x )2………………3分 解得x =103≈17.32………………4分 ∴AB =AE +EB≈17.32+1.4≈19(米)答:树高AB 约为19米………………6分22. (本小题满分8分)解:连接AC在Rt △ACD 中,∠ADC =90°,AC 2=CD 2+AD 2=92+122…………1分∴AC=15 …………………2分222393615=+即222AB BC AC =+…………………………………………4分∴∠A CB=90°…………………………………………5分ACD ABC S S s ∆∆-=草坪21129213615⨯⨯-⨯⨯= 216=(2m )答:草坪的面积216(2m ) …………………………………………8分 23. (本小题满分8分)(1)证明:∵四边形AB CD 是平行四边形,∴AB=DC,AB∥DC…………1分∴∠CDE=∠F…………2分 又∵BF=AB∴DC=FB…………3分 又∵∠BEF =∠DEC∴△DCE≌△FBE(AAS )。
山东省济宁市金乡县16—17学年下学期八年级期中质量检测数学试题(图片版)(附答案)

2016-2017学年度第二学期期中考试八年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分二、填空题:本题共5小题,每题3分,共15分11.x ≥1; 12.4; 13.556m ; 14.2; 15.2018. 三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.解:(1)48÷3-21×12+24=4-6+62=4+6.…………………3分 (2))1(12122-⋅+--x x x x =)1()1(122-⋅--x x x =112--x x .………………………………………5分 当12+=x 时 原式=1121)12(2-+-+=2122+=222)122(⨯⋅+=224+ (6)分 17.解:连接AC .在△ABC 中,∠B =90°,∴254322222=+=+=BC AB AC .∵CD 2=122=144,DA 2=132=169,∴AC 2+ CD 2=25+144=169. ∴AC 2+ CD 2=DA 2.∴△ADC 是直角三角形. …………………………………………………………………4分∴S 四边形ABCD =21AB ·BC +21CD ·AC =21×3×4+21×12×5=36(平方米) . (5)分∴小区种植这种草坪需的钱数为:60×36=2160(元). ………………………………6分18.(1)解:∵四边形ABCD 是正方形,∴∠ABC =∠D =90°,AB =BC .∵AF ⊥BE ,CG ⊥BE ,∴∠AFE =∠CGE =90°.∵∠FAE =20°,∴∠FED =∠FAE +∠AFE =20°+90°=110°.∴∠DCG =360°-∠D -∠FED -∠CGE=360°-90°-110°-90°=70°. …………………………………3分(2)猜想:CG =AF +FG . ……………………………………………………………………4分证明:∵∠ABF +∠CBG =90°,∠CBG +∠BCG =90°,∴∠ABF =∠BCG .在△ABF 和△BCG 中,⎪⎩⎪⎨⎧=∠=∠︒=∠=∠BC AB BCGABF BGC AFB 90 ∴△ABF ≌△BCG (AAS )∴AF =BG ,BF =CG .∴CG =BF =BG +FG =AF +FG . …………………………………………………………7分 19.(1)解:连接CF .在Rt △ABC 中,点F 是边AB 的中点,∴CF =21AB =21×10=5. ∵点E 是边AC 的中点,∴EF 是△ABC 的中位线.∴EF ∥BC ,2EF =BC .∵2CD =BC ,∴EF =CD .∴四边形CDEF 是平行四边形.∴DE =CF =5. ……………………………………………………………………4分(2)证明:∵四边形CDEF 是平行四边形,∴CF ∥BC . ∴∠BCF =∠D .∵CF =21AB =BF , ∴∠B =∠BCF . ∴∠B =∠D .∵EF ∥BC ,∴∠MEF =∠B ,∠MFE =∠D .∴∠MEF =∠MFE .∴ME =MF .∵∠B +∠A =90°,∠D +∠DEC =90°,∴∠A =∠DEC .∵∠AEM =∠DEC .∴∠A =∠AEM .∴ME =MA .∴MA =MF .∴点M 是AF 的中点. ……………………………………………8分20.(1)画图:如图所示,AB 表示古松树的高,CD ,EF 分别表示小红、小阳的眼睛到地面的距离. ……………………………………………3分(2)解:由题意可知:CD =EF =1.6米, DE =135米,连接CF 交AB 于点G .则四边形CDEF 是矩形,CG =DB ,FG =BE ,GB =EF =1.6米,FC =DE =135米.设AG =x 米,∵∠ACG =30°,∠AFG =45°,∠AGC =∠AGF =90°,∴GF =AG =x 米,AC =2AG =2x 米.∴CG =x x x AG AC 3)2(2222=-=-米. ……………………5分∴DE =DB +BE =CG +GF =x 3+x =135米.解得x ≈49.45(米).∴AB =AG +GB =49.45+1.6≈51.1 (米).∴这棵古松树约51.1米<60米.………………………………………7分∴小阳的说法正确.………………………………………………………8分21.(1)x ;b a -;11++--m m .………………………………………………3分 (2)解:①y x +1=yx y x y x yx y x y x yx --=--=-+-222)())((;…………………6分 ②6226-+=)26)(62()26(2+-+=2222)6()2()2(262)6(-+⋅⋅+ =622346-++=32--.………………………………………… 9分 22.(1)135°;………………………………………………………………………………2分 (2)证明:∵四边形ABCD 是矩形,∴∠DAB =∠DCB =90°,AB ∥DC ,AD ∥BC ,AB =DC .∴∠BEA =∠FAD .∵AF 是∠DAB 的平分线,∴∠FAB =∠FAD =45°.∴∠FAB =∠BEA =45°.∴AB =BF .∴BE =DC . ……………………………………………6分(3)答:在点P 运动过程中,能使△BDP 成为等腰直角三角形,此时点P 是线段EF 的中点. …7分证明:连接CP .在△ECF 中,∠ECF =90°,∠FEC =∠AEB =45°,∴∠F =90°-∠FEC =90°-45°=45°.∴∠F =∠FEC .∴CE =CF .∵点P 是线段EF 的中点,∴EP =CP ,∠ECP =45°,∠EPC =90°.∴∠DCP =∠DCB +∠ECP =90°+45°=135°.∵∠BEP =∠AEC =135°,∴∠BEP =∠DCP .在△BEP 和△DCP 中,⎪⎩⎪⎨⎧=∠=∠=CP EP DCP BEP DC BE∴△BEP ≌△DCP (SAS )∴BP =DP ,∠BPE =∠DPC .∴∠BPD =∠BPE +∠DPE =∠DPC +∠DPE =∠EPC =90°.∴△BDP 为等腰直角三角形. …………………………………………………………11分。
广东省深圳市宝安区2016-2017学年八年级下学期数学期中考试试卷
广东省深圳市宝安区2016-2017学年八年级下学期数学期中考试试卷一、单1.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、 + 2.若x >y ,则下列式子中错误的是( )A 、x -3>y -3B 、x +3>y +3C 、-3x >-3yD 、 +3.若分式 A 、±2 B 、2 C 、﹣2 D 、4 的值为0,则x 的值为( ) +4.下列从左边到右边的变形,是因式分解的是( )A 、(a+3)(a ﹣3)=a 2﹣9B 、x 2+x ﹣5=x (x+1)﹣5C 、x 2+1=x (x+D 、x 2+4x+4=(x+2)2 ) +5.函数A 、 中自变量x 的取值范围在数轴上表示正确的是( )B 、C 、D 、+6.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A、23°B、46°C、67°D、78°+7.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是(??)A、PC⊥OA,PD⊥OBB、OC=ODC、∠OPC=∠OPDD、PC=PD+8.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A、140B、70C、35D、24+9.明明准备用自己节省的零花钱充值共享单车“摩拜”,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是( )A、30x﹣45≥300B、30x+45≥300C、30x﹣45≤300D、30x+45≤300+10.下列命题中,逆命题是假命题的是(??)A、全等三角形的对应角相等B、直角三角形两锐角互余C、全等三角形的对应边相等D、两直线平行,同位角相等+11.若不等式组无解,则实数a的取值范围是()A、a≥﹣1B、a<﹣1C、a≤1D、a≤﹣1+12.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CD翻折,使点A落在AB上的点E处;再将边BC沿CF翻折,使点B落在CE的延长线上的点B′处,两条折痕与斜边AB分别交于点D,F,则线段B′F的长为( )A、B、C、D、+二、填空题13.多项式3x2﹣6x的公因式为;+14.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.+15.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为;+16.如图,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为.+三、解答题17.计算题(1)、因式分解:﹣2a3+12a2﹣18a.(2)、因式分解:a2(x﹣y)+4(y﹣x).+18.解不等式组,并写出整数解.(1)、解不等式组:(2)、解不等式组:,并把它的解集在所示的数轴上表示出来.+19.先化简,再求值:其中x=2017.+20.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2 ,4),请解答下列问题:(1)、AB的长等于;(结果保留根号)(2)、①把△ABC向下平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,求点A1的坐标。
人教版山东省济南外国语学校2016-2017学年八年级下学期期中考试数学试卷(含答案)
2016-2017学年度济南外国语八年级数学下学期期中试卷济南外国语学校2016—2017学年度第二学期初二数学期中试题2017年4月 第Ⅰ卷选择题(共45分)一、选择题(本大题包括15小题,每题3分,共45分) 1.下列各式中从左到右的变形,是因式分解的是( )A .2(3)(3)9a a a +-=-B .25(2)(3)1x x x x -=-+++C .211x x x x ⎛⎫= ⎪⎝⎭++D .22()a b ab ab a b =++【答案】D2.下列不等式变形正确的是( ).A .由a b >得ac bc >B .由a b >得22a b ->-C .由a b >得a b -<-D .由a b >得22a b -<-【答案】C3.若分式23x x -+的值为0,则x 的值是( ).A .3-B .2-C .0D .2【答案】D4.在数轴上表示不等式组20260x x >⎧⎨-<⎩+的解集,正确的是( ).A .32B .23C .23D .23【答案】A5.下列即是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】C6.化简22111x x --+的结果是( ). A .21x + B .2xC .21x - D .2(1)x +【答案】A7.下列各式不能用公式法分解因式的是( ).A .22x y -B .21x --C .221x x ++D .22441x y xy -+【答案】B8.若一个等腰三角形的两边长分别是2和5,则它的周长为( ).A .12B .9C .12或9D .9或7【答案】A9.若把分式2x yx y-+中的x 和y 都扩大3倍,那么分式的值( ).A .扩大3倍B .不变C .缩小3倍D .缩小6倍【答案】B10.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为( ).BA .2B .3C .4D .5【答案】A11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:外、爱、我、济、威、武,现将222222()()x y a x y b ---因式分解,结果呈现的密码信息可能是( ).A .我爱武B .济外威C .爱我济外D .济外威武【答案】C12.如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点(1,3)P ,则关于x 不等式x b kx >++4的解集是( ).y 2A .2x >-B .0x >C .1x >D .1x <【答案】C13.若关于x 的分式方程2233x mx x =--++有增根,则m 的值是( ).A .1m =-B .0m =C .3m =D .0m =或3m =【答案】A14.如图,点P 是AOB ∠内任意一点,5cm OP =,点M 和点N 分别是射线OA 和射线OB 上的动点,若PMN △周长的最小值是5cm ,则AOB ∠的度数是( ).MNOABA .25︒B .30︒C .35︒D .40︒【答案】B15.运行程序如图所示,规定:从“输入一个值x ”到“结果是否95>”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( ).A .11x ≥B .1123x <≤C .1123x <≤D .23x ≤【答案】C第Ⅱ卷非选择题 (共75分)二、填空题:(每小题3分,共18分)16.不等式5335x x -<+的最大整数解是__________. 【答案】317.分解因式:224ax ay -=__________. 【答案】(2)(2)a x y x y -+18.已知点(3,)P m m -在第二象限,则m 的取值范围是__________.【答案】3m > 19.如图,在ABC △中,90C ∠=︒,30B ∠=︒,AD 是ABC △的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.ABEDC【答案】320.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是__________. 【答案】1a ≥且4a ≠21.如图,等边三角形的顶点(1,1)A ,(3,1)B ,规定把等边“ABC △先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2016次变换后,等边ABC △的顶点C 的坐标为__________.【答案】(1)-三、解答题:(共57分) 22.(7分)(1)化简:22142x x x ---.(2)解不等式组:513(1)2151132x x x x -<⎧⎪⎨--⎪⎩≤++,并把它的解集表示在数轴上.【答案】 (1)2212242(2)(2)(2)(2)x x x x x x x x x -=-----+++ 2221(2)(2)(2)(2)2x x x x x x x x ---===--+++. (2)解不等式1得2x < 解不等式2得1x -≥.∴原不等式的解集为12x -<≤. 表示在数轴上:223.(7分)(1)解方程:11322x x x--=--. (2)已知3a b =+,2ab =,求代数式22222a b a b ab ++的值. 【答案】(1)方程两边同乘2x -, 得13(2)(1)x x --=-- 即1361x x -=-++, 则26x -=-, 得3x =.检验,当3x =时,左边2=-=右边. 所以,原方程的解为3x =. (2)322232a b a b ab ++ 22(2)ab a ab b =++ 2()ab a b =+,将3a b =+,2ab =代入得,22()2318ab a b =⨯=+.故代数式322232a b a b ab ++的值是18.24.(8分)如图,ABC △三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C .(1)请画出将ABC △向左平移4个单位长度后得到的图形111A B C △. (2)请画出ABC △关于原点O 成中心对称的图形222A B C △(3)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标. 【答案】(1)如图1所示:图1()(2)如图2所示:图2()(3)找出A 的对称点(3,4)A '--,连接BA ',与x 轴交点即为P ;如图3所示:点P 坐标为(2,0).图3()25.(8分)先化简:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,然后再从22x -<≤的范围内选取一个合适的x 的整数值代入求值. 【答案】2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭22(1)(1)(1)11x x x x x x x x -=⨯=--++. 其中2210(1)010x x x x x ⎧-≠⎪-≠⎨⎪≠⎩++,即1x ≠-,0,1.又∵22x -<≤且x 为整数, ∴2x =.将2x =代入21x x -中得:2224121x x ==--.26.(9分)某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少20元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高50%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元? 【答案】(1)这种款型T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意:78006400301.5x x=+, 解得40x =,经检验,40x =是原方程的解,且符合题意,1.560x =.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件. (2)6400160x=,16030130-=(元),[]13060%6016060%(402)1601(160%)0.5(402)⨯⨯⨯⨯÷-⨯-⨯⨯÷++468019206405960=+-=(元)答:售完这批T 恤衫商店共获利 5960元. 27.(9分)问题:如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,试判断BE 、EF 、FD 之间的数量关系.(1)【发现证明】小聪把ABE △绕点A 逆时针旋转90︒至ADG △,从而发现EF BE FD =+,请你利用图(1)证明上述结论.(2)【类比引申】如图(2),四边形ABCD 中,90BAD ∠≠︒,AB AD =,180B D ∠∠=︒+,点E 、F 分别在边BC 、CD 上,则当EAF ∠与BAD ∠满足什么样的数量关系时,仍有EF BE FD =+,并说明理由.(3)【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD ,已知80AB AD ==米,60B ∠=︒,120ADC ∠=︒,150BAD ∠=︒,道路BC 、CD 上分别有景点E 、F .且AE AD ⊥,1)DF =米,现要在E 、F 之间修一条笔直道路,直接写出这条道路EF 的长.图1()FGAB D EC图2()ABE CFD 图3()A D FCE B【答案】(1)证明:如图(1),CED B AGF图1()∵ADG △≌ABE △,∴AG AE =,DAG BAE ∠=∠,DG BE =,90ADG ABE ∠=∠=︒, 又∵90ADF ∠=︒∴180ADG ADF ∠∠=︒+, 即G ,D ,F 三点共线.又∵45EAF ∠=︒,即45DAF BEA EAF ∠∠=∠=︒+, ∴GAF FAE ∠=∠, 在GAF △和FAE △中,AG AE GAF FAE AF AF =⎧⎪∠=∠⎨⎪=⎩∴AFG △≌(SAS)AFE △. ∴GF EF =. 又∵DG BE =, ∴GF BE DE =+, ∴BE DF EF =+. (2)2BAD EAF ∠=∠. 理由如下:如图(2),MDFCE BA图2()延长CB 至M ,使BM DF =,连接AM , ∵180ABC D ∠∠=︒+,180ABC BAM ∠∠=︒+, ∴D ABM ∠=∠, 在ABM △和ADF △中, AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩∴ABM △≌(SAS)ADF △, ∴AF AM =,DAF BAM ∠=∠. ∵2BAD EAF ∠=∠, ∴DAF BAE EAF ∠∠=∠+,∴EAB BAM EAM EAF ∠∠=∠=∠+, 在FAE △和MAE △中, AE AE FAE MAE AF AM =⎧⎪∠=∠⎨⎪=⎩∴FAE △≌(SAS)MAE △, ∴EF EM BE BM BE DF ===++, 即EF BE DF =+. (3)如图3,BE CFD A 图3()G把ABE △绕点A 逆时针旋转150︒至ADG △,连接AF .∴801)40)EF BE DF ===++(米), 即这条道路EF的长为40)米.28.(9分)对x 、y 定义一种新运算T .规定:(,)2ax byT x y x y=++(其中a 、b 均为非零常数),这里等式右边是通常的四则运算.例如:01(0,1)201a b T b ⨯⨯==⨯++.(1)已知(1,1)2T -=-,(4,2)1T =. ①求a ,b 的值.②若关于m 的不等式组(2,54)4(,32)T m m T m m p -⎧⎨->⎩≤,恰好有3个整数解,求实数p 的取值范围.(2)若(,)(,)T x y T y x =对任意实数x ,y 都成立(这里(,)T x y 和(,)T y x 均有意义),则a ,b 应满足怎样的关系式? 【答案】(1)①根据题意得:(1,1)221a bT --==--,即2a b -=-, 42(4,2)182a bT ===++,即25a b =+, 解得:1a =,3b =. ②根据题意得:23(54)4543(32)232m m m mm m p m m -⎧⎪⎪-⎨-⎪>⎪-⎩≤4①②++++,由①得:12m ≥,由②得:935pm -<,∴不等式组的解集为19325pm --<≤,∵不等式组恰好有3个整数解,即0m =,1,2, ∴93235p -<≤,解得:123p -<-≤.八年级下数学(2)由(,)(,)T x y T y x =,得到22ax by ay bx x y y x =++++, 整理得:22()(2)0x y b a --=, ∵(,)(,)T x y T y x =对任意实数x ,y 都成立, ∴20b a -=,即2a b =.。
中考数学复习:专题4-16 双等腰直角三角形问题前解法分析
专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。
2016-2017学年山东省临沂市河东区八年级(下)期中数学试卷及答案
2016-2017学年山东省临沂市河东区八年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x=0 B.x≥0 C.x>﹣4 D.x≥﹣42.(3分)用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm3.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.4.(3分)把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍 B.4倍 C.3倍 D.5倍5.(3分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.56.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.(3分)已知y=,则的值为()A.B.﹣ C.D.﹣8.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.109.(3分)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE10.(3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣211.(3分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.1012.(3分)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4二、填空题(本题共1大题,8小题,每小题3分,共24分)13.(3分)在实数范围内因式分解:3m2﹣6=.14.(3分)如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是m2.15.(3分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.16.(3分)在△ABC中,AB=15,AC=13,高AD=12,则BC的长.17.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=度.18.(3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.19.(3分)如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm.20.(3分)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.三、解答题(共60分)21.(10分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.22.(9分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?23.(9分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.24.(10分)如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.25.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.26.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2016-2017学年山东省临沂市河东区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x=0 B.x≥0 C.x>﹣4 D.x≥﹣4【解答】解:∵式子在实数范围内有意义,∴x+4≥0,解得x≥﹣4.故选:D.2.(3分)用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm【解答】解:A、∵12+22≠32,∴不能构成直角三角形;B、∵2+2≠2,∴不能构成直角三角形;C、∵12+2=22,∴能构成直角三角形;D、∵22+32=≠42,∴不能构成直角三角形.故选:C.3.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.【解答】解:A、2是最简二次根式,故本选项正确;B、=,故本选项错误;C、=,故本选项错误;D、=x,故本选项错误.故选:A.4.(3分)把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍 B.4倍 C.3倍 D.5倍【解答】解:设一直角三角形直角边为a、b,斜边为c.则a2+b2=c2;另一直角三角形直角边为2a、2b,则根据勾股定理知斜边为=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:A.5.(3分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选:D.6.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选:D.7.(3分)已知y=,则的值为()A.B.﹣ C.D.﹣【解答】解:由题意得,4﹣x≥0,x﹣4≥0,解得x=4,则y=3,则=,故选:C.8.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.9.(3分)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选:B.10.(3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.11.(3分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.10【解答】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==10,∴DN+MN的最小值是10.故选:D.12.(3分)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.二、填空题(本题共1大题,8小题,每小题3分,共24分)13.(3分)在实数范围内因式分解:3m2﹣6=3(m+)(m﹣).【解答】解:3m2﹣6=3(m2﹣2)=3(m+)(m﹣).故答案为:3(m+)(m﹣).14.(3分)如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是240m2.【解答】解:在矩形ABCD中,AF∥EC,又AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).故答案为:240.15.(3分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:AB=BC或AC⊥BD等,可使它成为菱形.【解答】解:∵四边形ABCD是平行四边形,∴当AB=BC时,平行四边形ABCD是菱形,当AC⊥BD时,平行四边形ABCD是菱形.故答案为:AB=BC或AC⊥BD等.16.(3分)在△ABC中,AB=15,AC=13,高AD=12,则BC的长14和4.【解答】解:(1)如图,锐角△ABC中,AC=13,AB=15,BC边上高AD=12,∵在Rt△ACD中AC=13,AD=12,∴CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴CD=9,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AC=13,AB=15,BC边上高AD=12,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为DB﹣BC=9﹣5=4.故答案为14或4.17.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=22.5度.【解答】解:连接BD,则BD=AC∵BE=AC∴BE=BD∴∠E=(180°﹣90°﹣45)°=22.5°18.(3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=3.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.19.(3分)如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是10cm.【解答】解:如图,把圆柱的侧面展开,得到如图所示的图形,其中AC=6cm,BC=8cm,在Rt△ABC中,AB==10cm.故答案为:10.20.(3分)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=﹣.【解答】解:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a 3==2﹣,第4个等式:a4==﹣2,…a1+a2+a3+…+a n=﹣1+﹣+…+﹣=﹣故答案为:﹣.三、解答题(共60分)21.(10分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【解答】解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.22.(9分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?【解答】解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC==2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5﹣0.7=0.8m答:梯足向外移动了0.8m.23.(9分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.【解答】解:OE⊥DC,理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD,∴OC=OD,∴四边形OCED是菱形,∴OE⊥DC.24.(10分)如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB DC,∴CE D′B,∴四边形BCED′是平行四边形;(2)∵BE平分∠ABC,∴∠CBE=∠EBA,∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠DAE=∠BAE,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∴AB2=AE2+BE2.25.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BAC=45°.26.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省2016-2017学年八年级下学期期中质量检测数学试题 一、选择题(每小题3分,共21分)在答题卡上相应题目的答题区域内作答. 1.在代数式3ab, yx,5ba,31y中, 分式的有 ………………( ). A.1个 B.2个 C.3个 D.4个 2.已知点)53(,A,则A点在 ………………………………………( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知分式21xx,要使分式的值等于零,则x等于…………………( ). A.1 B.1 C.2 D.2 4.下列式子成立的是 ……………………………………………………( ).
A. 326xxx B.0baba C.22242nmnm D.bababa22 5.在平面直角坐标系中,点)34(,P关于x轴对称的点的坐标是…( ). A.)34(, B.)34(, C.)34(, D.)43(,
6.若一次函数bkxy0k的图象如图所示, 则系数bk、的符号是………………( ). A.0k,0b B.0k,0b
C.0k,0b D.0k,0b 7.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留
10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离
.....
千米S
与所用时间分t之间的关系…………( ). 千米S千米S千米S
千米S
OOOO11112225分t分t分t分t5551515151520202020
2ABCD
xyObkxy二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.计算:21xx . 9.函数11xy中,自变量x的取值范围是 . 10.科学家发现一种病毒的直径为00001050米,用科学记数法表示为 米. 11.计算:1112nnn . 12.若双曲线0kxky经过点)21(,,则双曲线的解析式是 . 13.把直线xy2沿y轴向上平移3个单位长度,所得直线的函数关系式为 . 14.写出一个..具备y随着x的增大而增大的条件的一次函数解析式
. 15.将点)20(,A绕着原点O顺时针方向旋转45角到对应点A,则点A的坐标是 . 16.某蜡烛原长cm20,点燃后每小时燃烧cm5,写出蜡烛的剩余长度cmy与点燃时间hx之间的函数关系式 . 17.如图,双曲线 xy20x经过四边形OABC的 顶点CA、,90ABC,OC平分OA与x轴正 半轴的夹角,xAB//轴.将ABC△沿AC翻折后 得CBA△,B点落在OA上, 则(1)OCD△的面积是 ; (2)四边形OABC的面积是 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答.
18.(9分)计算:1031422015.
19.(9分)化简:4933222xxxxx.
BA
CB
DOx
y 20.(9分)先化简,再求值:41221122xxxx,其中3x. 21.(9分)解方程:11113xxx. 22.(9分)一次函数4kxy的图象经过点 )23(,. (1)求这个函数解析式; (2)在下面方格图中画出这个函数的图象.
5411
O
x
y35136
146
6
23.(9分)用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致.两人各输入3120个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完,这两位程序操作员每小时各能输入多少个数据? 24.(9分)如图,反比例函数xky(0k,k为常数)的图像与一次函数baxy(0a,a、b为常数)的图像相交于14,A、mB,2两点.
(1)求k、m的值; (2)求AOB△的面积;
(3)根据图像直接写出使不等式bax>xk成立的x的取值范围.
25.(13分)已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套,已知做一套M型号的合金产品需要A种金属kg6.0,B
种金属kg9.0,可获利润45元;做一套N型号的合金产品需要A种金属kg1.1,B种金属kg4.0,可获利润50元.若设生产N种型号的合金产品为x套,用这批金属生产这两种型
号的合金产品所获总利润为y元. (1)M种型号的合金产品是 套(用含x的代数式表示); (2)求y与x的函数关系式,并求出自变量x的取值范围; (3)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?
ABO
x
yl 26.(13分)1、如图,直线2xy分别交x轴、y轴于A、B两点,经过点A的直线xm轴,直线l经过原点O交线段AB于点C,过点C作OC的垂线,与直线m相交于点P,现将直线l绕O点旋转,使交点C在线段AB上由点B向点A方向运动. (1)填空:____________,A、____________,B; (2)直线DE过点C平行于x轴分别交y轴与直线m于D、E两点, 求证:CEPODC≌△△; (3)若点C的运动速度为每秒2单位,运动时间是t秒,设点P的坐标为a,1, ① 试写出a关于t的函数关系式和变量t的取值范围; ② 当t为何值时,PAC△为等腰三角形并求出点P的坐标.
AxO
DBC
lm
EP八年级期中教学质量检测 数学试题参考答案 一、选择题(每小题3分,共21分) 1.B; 2.B; 3.A; 4.C; 5.C; 6.A;7.D. 二、填空题(每小题4分,共40分) 8.x; 9.1x; 10.510051; 11.1; 12.xy2; 13.32xy; 14.略; 15.22,;16.205xy40x; 17.⑴ 1, ⑵ 2. 三、解答题(共89分) 18. 解:原式3221 ………………………………………………(8分) 0 …………………………………………………………(9分)
19. 解:原式 49313222xxxxx……………………………………(2分) 22333132xxxxxx
x……………………………(6分)
2233332xxxx
xxx
21x ……………………………………………………(9分) 20.解:41221122xxxx
124212222xxxxxx……………………………………(2分)
2
12221x
xxxx ……………………………………………(4分)
12xx ……………………………………………………………(6分)
当3x时 原式251323 …………………………………………………(9分)
21.解:113xx ……………………………………(5分) 解得:1x ……………………………………(7分) 检验:把1x代人1x,得011 ∴1x是原方程的解……………………………………(9分) 22,解: (1)∵ 一次函数4kxy的图象经过点 )23(,. 432k…………(3分)
解得:2k ∴一次函数的解析式是42xy…(4分) (2)∵一次函数的解析式是42xy 令0x,得4y 令0y,得2x………(6分)
x … 0 2 …
42xy … 4 0 …
………(7分)
………(9分) 23.解:设乙的输入速度是x个/小时,则甲的输入速度是x2个/小时, 依题意得 2231203120xx ………………………………(5分)
解得 780x ………………………………………(7分) 经检验13x是原方程的解且符合题意 15602x 答:甲的输入速度是1560个/小时,乙的输入速度是780个/小时.…………(9分)
24.解:(1)∵ 点14,A在xky的图像上 ∴ 41k 得4k ……………………………………(2分) ∵ 点mB,2在xy4的图像上 ∴ 224m ∴4k、2m……………………………………………(3分) (2)∵14,A、22,B两点在一次函数baxy的图像上
5411Oxy351361466
4
2