I2C总线详细介绍
i2c总线协议(中文版pdf)

I2C总线规范目录1序言 (3)1.1 版本1.0-1992 (3)1.2 版本2.0-1998 (3)1.3 版本2.1-2000 (3)1.4 购买Philips的I2C总线元件 (3)2I2C总线使设计人员和厂商都得益 (3)2.1 设计人员的得益 (4)2.2 厂商的得益 (5)3介绍I2C总线规范 (6)4I2C总线的概念 (6)5总体特征 (7)6位传输 (7)6.1 数据的有效性 (7)6.2 起始和停止条件 (8)7传输数据 (9)7.1 字节格式 (9)7.2 响应 (9)8仲裁和时钟发生 (10)8.1 同步 (10)8.2 仲裁 (10)8.3 用时钟同步机制作为握手 (11)97位的地址格式 (12)107位寻址 (13)10.1 第一个字节的位定义 (13)10.1.1 广播呼叫地址 (14)10.1.2 起始字节 (15)10.1.3 CBUS的兼容性 (16)11标准模式I2C总线规范的扩展 (16)12快速模式 (17)13Hs模式 (17)13.1 高速传输 (17)13.2 Hs模式的串行数据传输格式 (19)13.3 从F/S模式切换到Hs模式以及返回 (20)13.4 低速模式中的快速模式器件 (21)13.5 串行总线系统的混合速度模式 (21)13.5.1 在混合速度总线系统中的F/S模式传输 (22)13.5.2 在混合速度总线系统中的Hs模式传输 (22)13.5.3 混合速度总线系统中电桥的时序要求 (24)1410位寻址 (24)14.1 头两个字节位的定义 (24)14.2 10位寻址的格式 (24)14.3 广播呼叫地址和10位寻址的起始字节 (26)15I/O级和总线线路的电气规范和时序 (26)15.1 标准和快速模式器件 (26)15.2 Hs模式器件 (28)16I2C总线器件到总线线路的电气连接 (30)16.1 标准模式I2C总线器件电阻R p和R S的最大和最小值 (31)17应用信息 (33)17.1 快速模式I2C总线器件的斜率控制输出级 (33)17.2 快速模式I2C总线器件的开关上拉电路 (34)17.3 总线线路的配线方式 (34)17.4 快速模式I2C总线器件电阻R p和R S的最大和最小值 (35)17.5 Hs模式I2C总线器件的电阻R p和R S的最大和最小值 (35)18F/S模式I2C总线系统的双向电平转换器 (35)18.1 连接逻辑电平不同的器件 (36)18.1.1 电平转换器的操作 (36)19Philips提供的开发工具 (37)20支持的文献 (37)1序言1.1 版本1.0-19921992 I2C总线规范的这个版本有以下的修正• 删除了用软件编程从机地址的内容因为实现这个功能相当复杂而且不被使用• 删除了低速模式实际上这个模式是整个I2C总线规范的子集不需要明确地详细说明• 增加了快速模式它将位速率增加4倍到达400kbit/s快速模式器件都向下兼容即它们可以在0~100kbit/s的I2C总线系统中使用• 增加了10位寻址允许1024个额外的从机地址• 快速模式器件的斜率控制和输入滤波改善了EMC性能注意100kbit/s的I2C总线系统或100kbit/s器件都没有改变1.2 版本2.0-1998I2C总线实际上已经成为一个国际标准在超过100种不同的IC上实现而且得到超过50家公司的许可但是现在的很多应用要求总线速度更高电源电压更低这个更新版的I2C总线规范满足这些要求而且有以下的修正• 增加了高速模式Hs模式它将位速率增加到3.4Mbit/s Hs模式的器件可以和I2C总线系统中快速和标准模式器件混合使用位速率从0~3.4Mbit/s• 电源电压是2V或更低的器件的低输出电平和滞后被调整到符合噪声容限的要求而且保持和电源电压更高的器件兼容• 快速模式输出级的0.6V 6mA要求被删除• 新器件的固定输入电平被总线电压相关的电平代替• 增加了双向电平转换器的应用信息1.3 版本2.1-2000I2C总线规范的V2.1版有以下微小的修改• 在Hs模式的重复起始条件后可以延长时钟信号SCLH见13.2节的图2225和32• Hs模式中的一些时序参数变得更随意见表6和表71.4 购买Philips的I2C总线元件购买Philips的I2C元件同时传递了一个在Philips的I2C专利下在I2C系统使用元件使系统符合由Philips定义的I2C规范的许可证2I2C总线使设计人员和厂商都得益在消费者电子电讯和工业电子中看上去不相关的设计里经常有很多相似的地方例如几乎每个系统都包括• 一些智能控制通常是一个单片的微控制器• 通用电路例如LCD驱动器远程I/O口RAM EEPROM或数据转换器• 面向应用的电路譬如收音机和视频系统的数字调谐和信号处理电路或者是音频拨号电话的DTMF发生器为了使这些相似之处对系统设计者和器件厂商都得益而且使硬件效益最大电路最简单Philips开发了一个简单的双向两线总线实现有效的IC之间控制这个总线就称为Inter IC或I2C总线现在Philips 包括超过150种CMOS和双极性兼容I2C总线的IC可以执行前面提到的三种类型的功能所有符合I2C 总线的器件组合了一个片上接口使器件之间直接通过I2C总线通讯这个设计概念解决了很多在设计数字控制电路时遇到的接口问题下面是I2C总线的一些特征• 只要求两条总线线路一条串行数据线SDA一条串行时钟线SCL• 每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机从机关系软件设定地址主机可以作为主机发送器或主机接收器• 它是一个真正的多主机总线如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁防止数据被破坏• 串行的8位双向数据传输位速率在标准模式下可达100kbit/s快速模式下可达400kbit/s高速模式下可达3.4Mbit/s• 片上的滤波器可以滤去总线数据线上的毛刺波保证数据完整• 连接到相同总线的IC数量只受到总线的最大电容400pF限制图1是两个I2C总线应用的例子2.1 设计人员的得益符合I2C总线的IC允许系统设计快速向前推进直接从功能结构图到原型此外由于它们直接剪贴到I2C总线没有任何额外的外部接口所以允许简单地通过从或者向总线剪贴或不剪贴IC 来修改或升级原型系统符合I2C总线的IC还有一些功能特别吸引设计人员• 结构图的功能模块与实际的IC对应设计快速从结构图向最后的原理图推进• 不需要设计总线接口因为I2C总线接口已经集成在片上• 集成的寻址和数据传输协议允许系统完全由软件定义• 相同类型的IC经常用于很多不同的应用• 由于设计人员快速熟悉了用兼容I2C总线的IC表示经常使用的功能模块使设计时间减少• 在系统中增加或删除IC不会影响总线的其他电路• 故障诊断和调试都很简单故障可被立即寻迹• 通过聚集一个可再使用的软件模块的库减少软件开发时间除了这些优点外符合I2C总线的CMOS IC还向设计者在特别吸引的可移植装置和电池供电系统方面提供了特殊的功能它们都有• 极低的电流消耗• 抗高噪声干扰• 电源电压范围宽• 工作的温度范围广图1 I2C应用的两个例子a高性能的高度集成电视b DECT无绳电话基站2.2 厂商的得益符合I2C总线的IC不只帮助了设计者它们也使设备厂商得到很多益处因为• 简单的两线串行I2C总线将互联减到最小因此IC的管脚更少而且PCB的线路也减少结果使PCB更小和更便宜• 完全完整的I2C总线协议不需要地址译码器和其他胶合逻辑• I2C总线的多主机功能允许通过外部连接到生产线快速测试和调整最终用户的设备• 符合I2C总线的IC提供SO小型VSO超小型以及DIL封装甚至减少了IC的空间要求这些只是一些益处另外兼容I2C总线的IC通过允许简单地构造设备变量和保持设计是最新的简易升级功能增加了系统设计的灵活性这样整个装置系列可以围绕一个基本的模型开发新设备的升级或者功能增强的模型即扩展的存储器远程控制等等可以简单地通过剪贴相应的IC到总线上产生如果需要更大的ROM只需要从我们广泛的IC中选择一个有更大ROM的微控制器就可以了由于新的IC要取代旧的增加新功能到装置或者提升它的性能只要简单地从总线上移去过时的IC然后换上它的后续IC 就可以了3介绍I2C总线规范对于面向8位的数字控制应用譬如那些要求用微控制器的要建立一些设计标准• 一个完整的系统通常由至少一个微控制器和其他外围器件例如存储器和I/O扩展器组成• 系统中不同器件的连接成本必须最小• 执行控制功能的系统不要求高速的数据传输• 总的效益由选择的器件和互连总线结构的种类决定产生一个满足这些标准的系统需要一个串行的总线结构尽管串行总线没有并行总线的数据吞吐能力但它们只要很少的配线和IC连接管脚然而总线不仅仅是互连的线还包含系统通讯的所有格式和过程串行总线的器件间通讯必须有某种形式的协议避免所有混乱数据丢失和妨碍信息的可能性快速器件必须可以和慢速器件通讯系统必须不能基于所连接的器件否则不可能进行修改或改进应当设计一个过程决定哪些器件何时可以控制总线而且如果有不同时钟速度的器件连接到总线必须定义总线的时钟源所有这些标准都在I2C总线的规范中4I2C总线的概念I2C总线支持任何IC生产过程NMOS CMOS双极性两线――串行数据SDA和串行时钟SCL线在连接到总线的器件间传递信息每个器件都有一个唯一的地址识别无论是微控制器LCD驱动器存储器或键盘接口而且都可以作为一个发送器或接收器由器件的功能决定很明显LCD驱动器只是一个接收器而存储器则既可以接收又可以发送数据除了发送器和接收器外器件在执行数据传输时也可以被看作是主机或从机见表1主机是初始化总线的数据传输并产生允许传输的时钟信号的器件此时任何被寻址的器件都被认为是从机表1 I2C总线术语的定义术语描述发送器发送数据到总线的器件接收器从总线接收数据的器件主机初始化发送产生时钟信号和终止发送的器件从机被主机寻址的器件多主机同时有多于一个主机尝试控制总线但不破坏报文仲裁是一个在有多个主机同时尝试控制总线但只允许其中一个控制总线并使报文不被破坏的过程同步两个或多个器件同步时钟信号的过程I2C总线是一个多主机的总线这就是说可以连接多于一个能控制总线的器件到总线由于主机通常是微控制器让我们考虑以下数据在两个连接到I2C总线的微控制器之间传输的情况见图2这突出了I2C总线的主机从机和接收器发送器的关系应当注意的是这些关系不是持久的只由当时数据传输的方向决定传输数据的过程如下1假设微控制器A要发送信息到微控制器B• 微控制器A主机寻址微控制器B从机• 微控制器A主机发送器发送数据到微控制器B从机接收器• 微控制器A终止传输2如果微控制器A想从微控制器B接收信息• 微控制器A主机寻址微控制器B从机• 微控制器A 主机接收器从微控制器B 从机发送器接收数据 •微控制器A 终止传输甚至在这种情况下主机微控制器A也产生定时而且终止传输连接多于一个微控制器到I 2C 总线的可能性意味着超过一个主机可以同时尝试初始化传输数据为了避免由此产生混乱发展出一个仲裁过程它依靠线与连接所有I 2C 总线接口到I 2C总线如果两个或多个主机尝试发送信息到总线在其他主机都产生的情况下首先产生一个1的主机将丢失仲裁仲裁时的时钟信号是用线与连接到SCL 线的主机产生的时钟的同步结合关于仲裁的更详细信息请参考第8章图2 使用两个微控制器的I 2C 总线配置举例在I 2C 总线上产生时钟信号通常是主机器件的责任当在总线上传输数据时每个主机产生自己的时钟信号主机发出的总线时钟信号只有在以下的情况才能被改变慢速的从机器件控制时钟线并延长时钟信号或者在发生仲裁时被另一个主机改变5总体特征SDA 和SCL 都是双向线路都通过一个电流源或上拉电阻连接到正的电源电压见图3当总线空闲时这两条线路都是高电平连接到总线的器件输出级必须是漏极开路或集电极开路才能执行线与的功能I 2C 总线上数据的传输速率在标准模式下可达100kbit/s 在快速模式下可达400kbit/s 在高速模式下可达3.4Mbit/s 连接到总线的接口数量只由总线电容是400pF 的限制决定关于高速模式主机器件的信息请参考第13章6位传输由于连接到I 2C 总线的器件有不同种类的工艺CMOS NMOS 双极性逻辑0低和1高的电平不是固定的它由V DD 的相关电平决定见第15章的电气规范每传输一个数据位就产生一个时钟脉冲6.1 数据的有效性SDA 线上的数据必须在时钟的高电平周期保持稳定数据线的高或低电平状态只有在SCL 线的时钟信号是低电平时才能改变见图4DEVICE 1DEVICE 2图3 标准模式器件和快速模式器件连接到I 2C 总线data line stable;data validchange of data allowedSDASCL图4 I 2C 总线的位传输6.2 起始和停止条件 在I 2C 总线中唯一出现的是被定义为起始S 和停止P 条件见图5的情况其中一种情况是在SCL 线是高电平时SDA 线从高电平向低电平切换这个情况表示起始条件当SCL 是高电平时SDA 线由低电平向高电平切换表示停止条件起始和停止条件一般由主机产生总线在起始条件后被认为处于忙的状态在停止条件的某段时间后总线被认为再次处于空闲状态总线的空闲状态将在第15章详细说明如果产生重复起始Sr条件而不产生停止条件总线会一直处于忙的状态此时的起始条件S和重复起始Sr条件在功能上是一样的见图10因此在本文档的剩余部分符号S 将作为一个通用的术语既表示起始条件又表示重复起始条件除非有特别声明的Sr如果连接到总线的器件合并了必要的接口硬件那么用它们检测起始和停止条件十分简便但是没有这种接口的微控制器在每个时钟周期至少要采样SDA 线两次来判别有没有发生电平切换SDASCLPSTOP conditionSDASCLSSTART condition图5 起始和停止条件7传输数据7.1 字节格式发送到SDA线上的每个字节必须为8位每次传输可以发送的字节数量不受限制每个字节后必须跟一个响应位首先传输的是数据的最高位MSB见图6如果从机要完成一些其他功能后例如一个内部中断服务程序才能接收或发送下一个完整的数据字节可以使时钟线SCL保持低电平迫使主机进入等待状态当从机准备好接收下一个数据字节并释放时钟线SCL后数据传输继续在一些情况下可以用与I2C总线格式不一样的格式例如兼容CBUS的器件甚至在传输一个字节时用这样的地址起始的报文可以通过产生停止条件来终止此时不会产生响应见10.1.3节7.2 响应数据传输必须带响应相关的响应时钟脉冲由主机产生在响应的时钟脉冲期间发送器释放SDA线高在响应的时钟脉冲期间接收器必须将SDA线拉低使它在这个时钟脉冲的高电平期间保持稳定的低电平见图7当然必须考虑建立和保持时间在第15章详细说明通常被寻址的接收器在接收到的每个字节后除了用CBUS地址开头的报文必须产生一个响应见10.1.3节当从机不能响应从机地址时例如它正在执行一些实时函数不能接收或发送从机必须使数据线保持高电平主机然后产生一个停止条件终止传输或者产生重复起始条件开始新的传输如果从机接收器响应了从机地址但是在传输了一段时间后不能接收更多数据字节主机必须再一次终止传输这个情况用从机在第一个字节后没有产生响应来表示从机使数据线保持高电平主机产生一个停止或重复起始条件如果传输中有主机接收器它必须通过在从机不产生时钟的最后一个字节不产生一个响应向从机发送器通知数据结束从机发送器必须释放数据线允许主机产生一个停止或重复起始条件图6 I2C总线的数据传输图7 I 2C 总线的响应8仲裁和时钟发生8.1 同步所有主机在SCL 线上产生它们自己的时钟来传输I 2C 总线上的报文数据只在时钟的高电平周期有效因此需要一个确定的时钟进行逐位仲裁时钟同步通过线与连接I 2C 接口到SCL 线来执行这就是说SCL 线的高到低切换会使器件开始数它们的低电平周期而且一旦器件的时钟变低电平它会使SCL 线保持这种状态直到到达时钟的高电平见图8但是如果另一个时钟仍处于低电平周期这个时钟的低到高切换不会改变SCL 线的状态因此SCL 线被有最长低电平周期的器件保持低电平此时低电平周期短的器件会进入高电平的等待状态C LK 1CLK 2SCLstart counting图8 仲裁过程中的时钟同步当所有有关的器件数完了它们的低电平周期后时钟线被释放并变成高电平之后器件时钟和SCL 线的状态没有差别而且所有器件会开始数它们的高电平周期首先完成高电平周期的器件会再次将SCL 线拉低这样产生的同步SCL 时钟的低电平周期由低电平时钟周期最长的器件决定而高电平周期由高电平时钟周期最短的器件决定8.2 仲裁主机只能在总线空闲的时侯启动传输两个或多个主机可能在起始条件的最小持续时间t HD;STA内产生一个起始条件结果在总线上产生一个规定的起始条件当SCL 线是高电平时仲裁在SDA 线发生这样在其他主机发送低电平时发送高电平的主机将断开它的数据输出级因为总线上的电平与它自己的电平不相同仲裁可以持续多位它的第一个阶段是比较地址位有关的寻址信息请参考第10章和第14章如果每个主机都尝试寻址相同的器件仲裁会继续比较数据位如果是主机发送器或者比较响应位如果是主机接收器因为I 2C 总线的地址和数据信息由赢得仲裁的主机决定在仲裁过程中不会丢失信息丢失仲裁的主机可以产生时钟脉冲直到丢失仲裁的该字节末尾由于Hs 模式的主机有一个唯一的8位主机码因此一般在第一个字节就可以结束仲裁见第13章 如果主机也结合了从机功能而且在寻址阶段丢失仲裁它很可能就是赢得仲裁的主机在寻址的器件因此丢失仲裁的主机必须立即切换到它的从机模式图9显示了两个主机的仲裁过程当然可能包含更多的内容由连接到总线的主机数量决定此时产生DATA1的主机的内部数据电平与SDA 线的实际电平有一些差别如果关断数据输出这就意味着总线连接了一个高输出电平这不会影响由赢得仲裁的主机初始化的数据传输DATA 1DATA 2SDASCL图9 两个主机的仲裁过程由于I2C 总线的控制只由地址或主机码以及竞争主机发送的数据决定没有中央主机总线也没有任何定制的优先权必须特别注意的是在串行传输时当重复起始条件或停止条件发送到I 2C 总线的时侯仲裁过程仍在进行如果可能产生这样的情况有关的主机必须在帧格式相同位置发送这个重复起始条件或停止条件也就是说仲裁在不能下面情况之间进行• 重复起始条件和数据位 • 停止条件和数据位 • 重复起始条件和停止条件从机不被卷入仲裁过程8.3 用时钟同步机制作为握手 时钟同步机制除了在仲裁过程中使用外还可以用于使能接收器处理字节级或位级的快速数据传输在字节级的快速传输中器件可以快速接收数据字节但需要更多时间保存接收到的字节或准备另一个要发送的字节然后从机以一种握手过程见图6在接收和响应一个字节后使SCL 线保持低电平迫使主机进入等待状态直到从机准备好下一个要传输的字节在位级的快速传输中器件例如对I 2C 总线有或没有限制的微控制器可以通过延长每个时钟的低电平周期减慢总线时钟从而任何主机的速度都可以适配这个器件的内部操作速率在Hs 模式中握手的功能只能在字节级使用见第13章97位的地址格式数据的传输遵循图10所示的格式在起始条件S后发送了一个从机地址这个地址共有7位紧接着的第8位是数据方向位R/W0表示发送写1表示请求数据读数据传输一般由主机产生的停止位P终止但是如果主机仍希望在总线上通讯它可以产生重复起始条件Sr和寻址另一个从机而不是首先产生一个停止条件在这种传输中可能有不同的读写格式结合图10 完整的数据传输可能的数据传输格式有• 主机发送器发送到从机接收器传输的方向不会改变见图11• 在第一个字节后主机立即读从机见图12在第一次响应时主机发送器变成主机接收器从机接收器变成从机发送器第一次响应仍由从机产生之前发送了一个不响应信号A的主机产生停止条件• 复合格式见图13传输改变方向的时侯起始条件和从机地址都会被重复但R/W位取反如果主机接收器发送一个重复起始条件它之前应该发送了一个不响应信号A注意1复合格式可以用于例如控制一个串行存储器在第一个数据字节期间要写内部存储器的位置在重复起始条件和从机地址后数据可被传输2自动增加或减少之前访问的存储器位置等所有决定都由器件的设计者决定3每个字节都跟着一个响应位在序列中用A或A模块表示4兼容I2C总线的器件在接收到起始或重复起始条件时必须复位它们的总线逻辑甚至在这些起始条件没有根据正确的格式放置它们也都期望发送从机地址5起始条件后面立即跟着一个停止条件报文为空是一个不合法的格式图11 主机发送器用7位地址寻址从机接收器传输方向不变图12 在第一个字节后主机立即读从机图13 复合格式107位寻址I2C总线的寻址过程是通常在起始条件后的第一个字节决定了主机选择哪一个从机例外的情况是可以寻址所有器件的广播呼叫地址使用这个地址时理论上所有器件都会发出一个响应但是也可以使器件忽略这个地址广播呼叫地址的第二个字节定义了要采取的行动这个过程将在10.1.1节详细介绍有关10位寻址的信息请参考第14章10.1 第一个字节的位定义第一个字节的头7位组成了从机地址见图14最低位LSB是第8位它决定了报文的方向第一个字节的最低位是0表示主机会写信息到被选中的从机1表示主机会向从机读信息当发送了一个地址后系统中的每个器件都在起始条件后将头7位与它自己的地址比较如果一样器件会任务它被主机寻址至于是从机接收器还是从机发送器都由R/W位决定图14 起始条件后的第一个字节从机地址由一个固定和一个可编程的部分构成由于很可能在一个系统中有几个同样的器件从机地址的可编程部分使最大数量的这些器件可以连接到I2C总线上器件可编程地址位的数量由它可使用的管脚决定例如如果器件有4个固定的和3个可编程的地址位那么相同的总线上共可以连接8个相同的器件I2C总线委员会协调I2C地址的分配进一步的信息可以从最后列出的Philips代理商处获得保留的两组8位地址0000XXX和1111XXX的用途见表2从机地址的11110XX位组合保留给10位寻址见第14章。
i2c 时序约束

i2c 时序约束I2C时序约束I2C(Inter-Integrated Circuit)是一种串行通信协议,用于在芯片之间传输数据。
在使用I2C进行通信时,需要遵守一定的时序约束,以确保数据的正确传输和处理。
本文将详细介绍I2C时序约束的相关内容。
一、I2C总线简介I2C总线是由Philips公司(现为NXP公司)开发的一种串行通信总线,用于在集成电路之间进行数据传输。
它采用两根信号线,即串行数据线(SDA)和串行时钟线(SCL),支持多主机和多从机的通信。
I2C总线上的设备通过地址进行识别,并通过时钟同步来实现数据传输。
二、I2C时序约束1. 起始条件(Start Condition):起始条件是I2C通信的开始,它表示主机准备发送数据或请求读取数据。
起始条件的时序约束包括: - SDA线上的高电平期间,SCL线上的高电平期间,称为起始条件的建立时间(tSU:STA);- SDA线上的低电平期间,SCL线上的高电平期间,称为起始条件的保持时间(tHD:STA)。
2. 停止条件(Stop Condition):停止条件是I2C通信的结束,它表示主机完成数据发送或读取操作。
停止条件的时序约束包括:- SDA线上的低电平期间,SCL线上的高电平期间,称为停止条件的建立时间(tSU:STO);- SCL线上的高电平期间,SDA线上的高电平期间,称为停止条件的保持时间(tBUF)。
3. 数据传输(Data Transfer):数据传输是I2C通信中最重要的部分,它包括数据的发送和接收。
数据传输的时序约束包括:- 数据线上的数据保持时间,即数据稳定的时间(tSU:DAT);- 数据线上的数据变化时间,即数据改变的时间(tHD:DAT);- 时钟线上的数据稳定时间,即时钟稳定的时间(tSU:CLK);- 时钟线上的数据变化时间,即时钟改变的时间(tLOW)。
4. 确认应答(Acknowledgement):确认应答是从机向主机发送的一个信号,用于确认数据的接收。
i2c总线协议中文版

I2C总线规范目录1序言 (3)1.1 版本1.0-1992 (3)1.2 版本2.0-1998 (3)1.3 版本2.1-2000 (3)1.4 购买Philips的I2C总线元件 (3)2I2C总线使设计人员和厂商都得益 (3)2.1 设计人员的得益 (4)2.2 厂商的得益 (5)3介绍I2C总线规范 (6)4I2C总线的概念 (6)5总体特征 (7)6位传输 (7)6.1 数据的有效性 (7)6.2 起始和停止条件 (8)7传输数据 (9)7.1 字节格式 (9)7.2 响应 (9)8仲裁和时钟发生 (10)8.1 同步 (10)8.2 仲裁 (10)8.3 用时钟同步机制作为握手 (11)97位的地址格式 (12)107位寻址 (13)10.1 第一个字节的位定义 (13)10.1.1 广播呼叫地址 (14)10.1.2 起始字节 (15)10.1.3 CBUS的兼容性 (16)11标准模式I2C总线规范的扩展 (16)12快速模式 (17)13Hs模式 (17)13.1 高速传输 (17)13.2 Hs模式的串行数据传输格式 (19)13.3 从F/S模式切换到Hs模式以及返回 (20)13.4 低速模式中的快速模式器件 (21)13.5 串行总线系统的混合速度模式 (21)13.5.1 在混合速度总线系统中的F/S模式传输 (22)13.5.2 在混合速度总线系统中的Hs模式传输 (22)13.5.3 混合速度总线系统中电桥的时序要求 (24)1410位寻址 (24)14.1 头两个字节位的定义 (24)14.2 10位寻址的格式 (24)14.3 广播呼叫地址和10位寻址的起始字节 (26)15I/O级和总线线路的电气规范和时序 (26)15.1 标准和快速模式器件 (26)15.2 Hs模式器件 (28)16I2C总线器件到总线线路的电气连接 (30)16.1 标准模式I2C总线器件电阻R p和R S的最大和最小值 (31)17应用信息 (33)17.1 快速模式I2C总线器件的斜率控制输出级 (33)17.2 快速模式I2C总线器件的开关上拉电路 (34)17.3 总线线路的配线方式 (34)17.4 快速模式I2C总线器件电阻R p和R S的最大和最小值 (35)17.5 Hs模式I2C总线器件的电阻R p和R S的最大和最小值 (35)18F/S模式I2C总线系统的双向电平转换器 (35)18.1 连接逻辑电平不同的器件 (36)18.1.1 电平转换器的操作 (36)19Philips提供的开发工具 (37)20支持的文献 (37)1序言1.1 版本1.0-19921992 I2C总线规范的这个版本有以下的修正• 删除了用软件编程从机地址的内容因为实现这个功能相当复杂而且不被使用• 删除了低速模式实际上这个模式是整个I2C总线规范的子集不需要明确地详细说明• 增加了快速模式它将位速率增加4倍到达400kbit/s快速模式器件都向下兼容即它们可以在0~100kbit/s的I2C总线系统中使用• 增加了10位寻址允许1024个额外的从机地址• 快速模式器件的斜率控制和输入滤波改善了EMC性能注意100kbit/s的I2C总线系统或100kbit/s器件都没有改变1.2 版本2.0-1998I2C总线实际上已经成为一个国际标准在超过100种不同的IC上实现而且得到超过50家公司的许可但是现在的很多应用要求总线速度更高电源电压更低这个更新版的I2C总线规范满足这些要求而且有以下的修正• 增加了高速模式Hs模式它将位速率增加到3.4Mbit/s Hs模式的器件可以和I2C总线系统中快速和标准模式器件混合使用位速率从0~3.4Mbit/s• 电源电压是2V或更低的器件的低输出电平和滞后被调整到符合噪声容限的要求而且保持和电源电压更高的器件兼容• 快速模式输出级的0.6V 6mA要求被删除• 新器件的固定输入电平被总线电压相关的电平代替• 增加了双向电平转换器的应用信息1.3 版本2.1-2000I2C总线规范的V2.1版有以下微小的修改• 在Hs模式的重复起始条件后可以延长时钟信号SCLH见13.2节的图2225和32• Hs模式中的一些时序参数变得更随意见表6和表71.4 购买Philips的I2C总线元件购买Philips的I2C元件同时传递了一个在Philips的I2C专利下在I2C系统使用元件使系统符合由Philips定义的I2C规范的许可证2I2C总线使设计人员和厂商都得益在消费者电子电讯和工业电子中看上去不相关的设计里经常有很多相似的地方例如几乎每个系统都包括• 一些智能控制通常是一个单片的微控制器• 通用电路例如LCD驱动器远程I/O口RAM EEPROM或数据转换器• 面向应用的电路譬如收音机和视频系统的数字调谐和信号处理电路或者是音频拨号电话的DTMF发生器为了使这些相似之处对系统设计者和器件厂商都得益而且使硬件效益最大电路最简单Philips开发了一个简单的双向两线总线实现有效的IC之间控制这个总线就称为Inter IC或I2C总线现在Philips 包括超过150种CMOS和双极性兼容I2C总线的IC可以执行前面提到的三种类型的功能所有符合I2C 总线的器件组合了一个片上接口使器件之间直接通过I2C总线通讯这个设计概念解决了很多在设计数字控制电路时遇到的接口问题下面是I2C总线的一些特征• 只要求两条总线线路一条串行数据线SDA一条串行时钟线SCL• 每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机从机关系软件设定地址主机可以作为主机发送器或主机接收器• 它是一个真正的多主机总线如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁防止数据被破坏• 串行的8位双向数据传输位速率在标准模式下可达100kbit/s快速模式下可达400kbit/s高速模式下可达3.4Mbit/s• 片上的滤波器可以滤去总线数据线上的毛刺波保证数据完整• 连接到相同总线的IC数量只受到总线的最大电容400pF限制图1是两个I2C总线应用的例子2.1 设计人员的得益符合I2C总线的IC允许系统设计快速向前推进直接从功能结构图到原型此外由于它们直接剪贴到I2C总线没有任何额外的外部接口所以允许简单地通过从或者向总线剪贴或不剪贴IC 来修改或升级原型系统符合I2C总线的IC还有一些功能特别吸引设计人员• 结构图的功能模块与实际的IC对应设计快速从结构图向最后的原理图推进• 不需要设计总线接口因为I2C总线接口已经集成在片上• 集成的寻址和数据传输协议允许系统完全由软件定义• 相同类型的IC经常用于很多不同的应用• 由于设计人员快速熟悉了用兼容I2C总线的IC表示经常使用的功能模块使设计时间减少• 在系统中增加或删除IC不会影响总线的其他电路• 故障诊断和调试都很简单故障可被立即寻迹• 通过聚集一个可再使用的软件模块的库减少软件开发时间除了这些优点外符合I2C总线的CMOS IC还向设计者在特别吸引的可移植装置和电池供电系统方面提供了特殊的功能它们都有• 极低的电流消耗• 抗高噪声干扰• 电源电压范围宽• 工作的温度范围广图1 I 2C 应用的两个例子a 高性能的高度集成电视bDECT 无绳电话基站2.2 厂商的得益符合I 2C 总线的IC 不只帮助了设计者它们也使设备厂商得到很多益处因为• 简单的两线串行I 2C 总线将互联减到最小因此IC 的管脚更少而且PCB 的线路也减少结果使PCB 更小和更便宜• 完全完整的I 2C 总线协议不需要地址译码器和其他胶合逻辑• I 2C 总线的多主机功能允许通过外部连接到生产线快速测试和调整最终用户的设备•符合I 2C 总线的IC 提供SO 小型VSO 超小型以及DIL 封装甚至减少了IC 的空间要求这些只是一些益处另外兼容I 2C 总线的IC 通过允许简单地构造设备变量和保持设计是最新的简易升级功能增加了系统设计的灵活性这样整个装置系列可以围绕一个基本的模型开发新设备的升级或者功能增强的模型即扩展的存储器远程控制等等可以简单地通过剪贴相应的IC 到总线上产生如果需要更大的ROM 只需要从我们广泛的IC 中选择一个有更大ROM 的微控制器就可以了由于新的IC 要取代旧的增加新功能到装置或者提升它的性能只要简单地从总线上移去过时的IC然后换上它的后续IC 就可以了3介绍I2C总线规范对于面向8位的数字控制应用譬如那些要求用微控制器的要建立一些设计标准• 一个完整的系统通常由至少一个微控制器和其他外围器件例如存储器和I/O扩展器组成• 系统中不同器件的连接成本必须最小• 执行控制功能的系统不要求高速的数据传输• 总的效益由选择的器件和互连总线结构的种类决定产生一个满足这些标准的系统需要一个串行的总线结构尽管串行总线没有并行总线的数据吞吐能力但它们只要很少的配线和IC连接管脚然而总线不仅仅是互连的线还包含系统通讯的所有格式和过程串行总线的器件间通讯必须有某种形式的协议避免所有混乱数据丢失和妨碍信息的可能性快速器件必须可以和慢速器件通讯系统必须不能基于所连接的器件否则不可能进行修改或改进应当设计一个过程决定哪些器件何时可以控制总线而且如果有不同时钟速度的器件连接到总线必须定义总线的时钟源所有这些标准都在I2C总线的规范中4I2C总线的概念I2C总线支持任何IC生产过程NMOS CMOS双极性两线――串行数据SDA和串行时钟SCL线在连接到总线的器件间传递信息每个器件都有一个唯一的地址识别无论是微控制器LCD驱动器存储器或键盘接口而且都可以作为一个发送器或接收器由器件的功能决定很明显LCD驱动器只是一个接收器而存储器则既可以接收又可以发送数据除了发送器和接收器外器件在执行数据传输时也可以被看作是主机或从机见表1主机是初始化总线的数据传输并产生允许传输的时钟信号的器件此时任何被寻址的器件都被认为是从机表1 I2C总线术语的定义术语描述发送器发送数据到总线的器件接收器从总线接收数据的器件主机初始化发送产生时钟信号和终止发送的器件从机被主机寻址的器件多主机同时有多于一个主机尝试控制总线但不破坏报文仲裁是一个在有多个主机同时尝试控制总线但只允许其中一个控制总线并使报文不被破坏的过程同步两个或多个器件同步时钟信号的过程I2C总线是一个多主机的总线这就是说可以连接多于一个能控制总线的器件到总线由于主机通常是微控制器让我们考虑以下数据在两个连接到I2C总线的微控制器之间传输的情况见图2这突出了I2C总线的主机从机和接收器发送器的关系应当注意的是这些关系不是持久的只由当时数据传输的方向决定传输数据的过程如下1假设微控制器A要发送信息到微控制器B• 微控制器A主机寻址微控制器B从机• 微控制器A主机发送器发送数据到微控制器B从机接收器• 微控制器A终止传输2如果微控制器A想从微控制器B接收信息• 微控制器A主机寻址微控制器B从机• 微控制器A 主机接收器从微控制器B 从机发送器接收数据 •微控制器A 终止传输甚至在这种情况下主机微控制器A 也产生定时而且终止传输连接多于一个微控制器到I 2C 总线的可能性意味着超过一个主机可以同时尝试初始化传输数据为了避免由此产生混乱发展出一个仲裁过程它依靠线与连接所有I 2C 总线接口到I 2C 总线如果两个或多个主机尝试发送信息到总线在其他主机都产生的情况下首先产生一个1的主机将丢失仲裁仲裁时的时钟信号是用线与连接到SCL 线的主机产生的时钟的同步结合关于仲裁的更详细信息请参考第8章图2 使用两个微控制器的I 2C 总线配置举例在I 2C 总线上产生时钟信号通常是主机器件的责任当在总线上传输数据时每个主机产生自己的时钟信号主机发出的总线时钟信号只有在以下的情况才能被改变慢速的从机器件控制时钟线并延长时钟信号或者在发生仲裁时被另一个主机改变5总体特征SDA 和SCL 都是双向线路都通过一个电流源或上拉电阻连接到正的电源电压见图3当总线空闲时这两条线路都是高电平连接到总线的器件输出级必须是漏极开路或集电极开路才能执行线与的功能I 2C 总线上数据的传输速率在标准模式下可达100kbit/s 在快速模式下可达400kbit/s 在高速模式下可达3.4Mbit/s 连接到总线的接口数量只由总线电容是400pF 的限制决定关于高速模式主机器件的信息请参考第13章6位传输由于连接到I 2C 总线的器件有不同种类的工艺CMOS NMOS 双极性逻辑0低和1高的电平不是固定的它由V DD 的相关电平决定见第15章的电气规范每传输一个数据位就产生一个时钟脉冲6.1 数据的有效性SDA 线上的数据必须在时钟的高电平周期保持稳定数据线的高或低电平状态只有在SCL 线的时钟信号是低电平时才能改变见图4DEVICE 1DEVICE 2图3 标准模式器件和快速模式器件连接到I 2C 总线data line stable;data validchange of data allowedSDASCL图4 I 2C 总线的位传输6.2 起始和停止条件 在I 2C 总线中唯一出现的是被定义为起始S 和停止P 条件见图5的情况其中一种情况是在SCL 线是高电平时SDA 线从高电平向低电平切换这个情况表示起始条件当SCL 是高电平时SDA 线由低电平向高电平切换表示停止条件起始和停止条件一般由主机产生总线在起始条件后被认为处于忙的状态在停止条件的某段时间后总线被认为再次处于空闲状态总线的空闲状态将在第15章详细说明如果产生重复起始Sr条件而不产生停止条件总线会一直处于忙的状态此时的起始条件S和重复起始Sr条件在功能上是一样的见图10因此在本文档的剩余部分符号S 将作为一个通用的术语既表示起始条件又表示重复起始条件除非有特别声明的Sr如果连接到总线的器件合并了必要的接口硬件那么用它们检测起始和停止条件十分简便但是没有这种接口的微控制器在每个时钟周期至少要采样SDA 线两次来判别有没有发生电平切换SDASCLPSTOP conditionSDASCLSSTART condition图5 起始和停止条件7传输数据7.1 字节格式发送到SDA线上的每个字节必须为8位每次传输可以发送的字节数量不受限制每个字节后必须跟一个响应位首先传输的是数据的最高位MSB见图6如果从机要完成一些其他功能后例如一个内部中断服务程序才能接收或发送下一个完整的数据字节可以使时钟线SCL保持低电平迫使主机进入等待状态当从机准备好接收下一个数据字节并释放时钟线SCL后数据传输继续在一些情况下可以用与I2C总线格式不一样的格式例如兼容CBUS的器件甚至在传输一个字节时用这样的地址起始的报文可以通过产生停止条件来终止此时不会产生响应见10.1.3节7.2 响应数据传输必须带响应相关的响应时钟脉冲由主机产生在响应的时钟脉冲期间发送器释放SDA线高在响应的时钟脉冲期间接收器必须将SDA线拉低使它在这个时钟脉冲的高电平期间保持稳定的低电平见图7当然必须考虑建立和保持时间在第15章详细说明通常被寻址的接收器在接收到的每个字节后除了用CBUS地址开头的报文必须产生一个响应见10.1.3节当从机不能响应从机地址时例如它正在执行一些实时函数不能接收或发送从机必须使数据线保持高电平主机然后产生一个停止条件终止传输或者产生重复起始条件开始新的传输如果从机接收器响应了从机地址但是在传输了一段时间后不能接收更多数据字节主机必须再一次终止传输这个情况用从机在第一个字节后没有产生响应来表示从机使数据线保持高电平主机产生一个停止或重复起始条件如果传输中有主机接收器它必须通过在从机不产生时钟的最后一个字节不产生一个响应向从机发送器通知数据结束从机发送器必须释放数据线允许主机产生一个停止或重复起始条件图6 I2C总线的数据传输图7 I 2C 总线的响应8仲裁和时钟发生8.1 同步所有主机在SCL 线上产生它们自己的时钟来传输I 2C 总线上的报文数据只在时钟的高电平周期有效因此需要一个确定的时钟进行逐位仲裁时钟同步通过线与连接I 2C 接口到SCL 线来执行这就是说SCL 线的高到低切换会使器件开始数它们的低电平周期而且一旦器件的时钟变低电平它会使SCL 线保持这种状态直到到达时钟的高电平见图8但是如果另一个时钟仍处于低电平周期这个时钟的低到高切换不会改变SCL 线的状态因此SCL 线被有最长低电平周期的器件保持低电平此时低电平周期短的器件会进入高电平的等待状态C LK 1CLK 2SCLstart counting图8 仲裁过程中的时钟同步当所有有关的器件数完了它们的低电平周期后时钟线被释放并变成高电平之后器件时钟和SCL 线的状态没有差别而且所有器件会开始数它们的高电平周期首先完成高电平周期的器件会再次将SCL 线拉低这样产生的同步SCL 时钟的低电平周期由低电平时钟周期最长的器件决定而高电平周期由高电平时钟周期最短的器件决定8.2 仲裁主机只能在总线空闲的时侯启动传输两个或多个主机可能在起始条件的最小持续时间t HD;STA内产生一个起始条件结果在总线上产生一个规定的起始条件当SCL 线是高电平时仲裁在SDA 线发生这样在其他主机发送低电平时发送高电平的主机将断开它的数据输出级因为总线上的电平与它自己的电平不相同仲裁可以持续多位它的第一个阶段是比较地址位有关的寻址信息请参考第10章和第14章如果每个主机都尝试寻址相同的器件仲裁会继续比较数据位如果是主机发送器或者比较响应位如果是主机接收器因为I 2C 总线的地址和数据信息由赢得仲裁的主机决定在仲裁过程中不会丢失信息丢失仲裁的主机可以产生时钟脉冲直到丢失仲裁的该字节末尾由于Hs 模式的主机有一个唯一的8位主机码因此一般在第一个字节就可以结束仲裁见第13章 如果主机也结合了从机功能而且在寻址阶段丢失仲裁它很可能就是赢得仲裁的主机在寻址的器件因此丢失仲裁的主机必须立即切换到它的从机模式图9显示了两个主机的仲裁过程当然可能包含更多的内容由连接到总线的主机数量决定此时产生DATA1的主机的内部数据电平与SDA 线的实际电平有一些差别如果关断数据输出这就意味着总线连接了一个高输出电平这不会影响由赢得仲裁的主机初始化的数据传输DATA 1DATA 2SDASCL图9 两个主机的仲裁过程由于I 2C 总线的控制只由地址或主机码以及竞争主机发送的数据决定没有中央主机总线也没有任何定制的优先权必须特别注意的是在串行传输时当重复起始条件或停止条件发送到I 2C 总线的时侯仲裁过程仍在进行如果可能产生这样的情况有关的主机必须在帧格式相同位置发送这个重复起始条件或停止条件也就是说仲裁在不能下面情况之间进行• 重复起始条件和数据位 • 停止条件和数据位 • 重复起始条件和停止条件从机不被卷入仲裁过程8.3 用时钟同步机制作为握手 时钟同步机制除了在仲裁过程中使用外还可以用于使能接收器处理字节级或位级的快速数据传输在字节级的快速传输中器件可以快速接收数据字节但需要更多时间保存接收到的字节或准备另一个要发送的字节然后从机以一种握手过程见图6在接收和响应一个字节后使SCL 线保持低电平迫使主机进入等待状态直到从机准备好下一个要传输的字节在位级的快速传输中器件例如对I 2C 总线有或没有限制的微控制器可以通过延长每个时钟的低电平周期减慢总线时钟从而任何主机的速度都可以适配这个器件的内部操作速率在Hs 模式中握手的功能只能在字节级使用见第13章97位的地址格式数据的传输遵循图10所示的格式在起始条件S后发送了一个从机地址这个地址共有7位紧接着的第8位是数据方向位R/W0表示发送写1表示请求数据读数据传输一般由主机产生的停止位P终止但是如果主机仍希望在总线上通讯它可以产生重复起始条件Sr和寻址另一个从机而不是首先产生一个停止条件在这种传输中可能有不同的读写格式结合图10 完整的数据传输可能的数据传输格式有• 主机发送器发送到从机接收器传输的方向不会改变见图11• 在第一个字节后主机立即读从机见图12在第一次响应时主机发送器变成主机接收器从机接收器变成从机发送器第一次响应仍由从机产生之前发送了一个不响应信号A的主机产生停止条件• 复合格式见图13传输改变方向的时侯起始条件和从机地址都会被重复但R/W位取反如果主机接收器发送一个重复起始条件它之前应该发送了一个不响应信号A注意1复合格式可以用于例如控制一个串行存储器在第一个数据字节期间要写内部存储器的位置在重复起始条件和从机地址后数据可被传输2自动增加或减少之前访问的存储器位置等所有决定都由器件的设计者决定3每个字节都跟着一个响应位在序列中用A或A模块表示4兼容I2C总线的器件在接收到起始或重复起始条件时必须复位它们的总线逻辑甚至在这些起始条件没有根据正确的格式放置它们也都期望发送从机地址5起始条件后面立即跟着一个停止条件报文为空是一个不合法的格式图11 主机发送器用7位地址寻址从机接收器传输方向不变图12 在第一个字节后主机立即读从机图13 复合格式107位寻址I2C总线的寻址过程是通常在起始条件后的第一个字节决定了主机选择哪一个从机例外的情况是可以寻址所有器件的广播呼叫地址使用这个地址时理论上所有器件都会发出一个响应但是也可以使器件忽略这个地址广播呼叫地址的第二个字节定义了要采取的行动这个过程将在10.1.1节详细介绍有关10位寻址的信息请参考第14章10.1 第一个字节的位定义第一个字节的头7位组成了从机地址见图14最低位LSB是第8位它决定了报文的方向第一个字节的最低位是0表示主机会写信息到被选中的从机1表示主机会向从机读信息当发送了一个地址后系统中的每个器件都在起始条件后将头7位与它自己的地址比较如果一样器件会任务它被主机寻址至于是从机接收器还是从机发送器都由R/W位决定图14 起始条件后的第一个字节从机地址由一个固定和一个可编程的部分构成由于很可能在一个系统中有几个同样的器件从机地址的可编程部分使最大数量的这些器件可以连接到I2C总线上器件可编程地址位的数量由它可使用的管脚决定例如如果器件有4个固定的和3个可编程的地址位那么相同的总线上共可以连接8个相同的器件I2C总线委员会协调I2C地址的分配进一步的信息可以从最后列出的Philips代理商处获得保留的两组8位地址0000XXX和1111XXX的用途见表2从机地址的11110XX位组合保留给10位寻址见第14章。
TP I2C总线介绍

I2C总线接口一、 I2C总线协议I2C总线是一种串行数据传输总线,连接master(主机)和slave(从机),在两者间进行数据传输。
I2C总线有两根传输线,一根是时钟线SCL,一根是数据线SDA。
其中时钟线由主机控制,数据线是双向工作总线,传输数据,数据传输格式为每传输一个字节后传输一位应答位(应答位低电平有效);两者均通过上拉电阻与电源连接,保持高电平。
+VccSCLSDAI2C总线连接I2C总线在主机和从机之间传输数据时可以分为主机向从机写入数据和从机由主机读取数据两种工作模式。
1、主机向从机写入数据在这种工作模式下主机作为发送器,发送数据;从机作为接收机,接收数据。
2、主机由从机读取数据在这种工作模式下从机作为发送器,发送数据;主机作为接收机,接收数据。
I2C 总线的工作原理:I2C 总线在传输数据时首先要判断其是否启动,启动后对从机进行寻址和读写判断,随后根据是否应答来传输数据,最后再判断总线是否停止。
I2C 总线启动判断:当SCL 处于高电平时,SDA 由高电平变为低电平,标志着总线启动。
I2C 总线停止判断:当SCL 处于高电平时,SDA 由低电平变为高电平,标志着总线停止。
当I2C 总线启动后且未停止时,SDA 在SCL 的低电平发生跳变,在SCL 高电平时保持稳定,保证数据能够被采集。
主机首先发送一个字节的数据对从机进行寻址和读写判断;其中数据的传输先发送最高位,第一个发送字节的高7位是从机地址,最低位是数据读写判断位。
当从机接收到地址后判断是否为其地址,然后对主机应答或非应答。
当主机接收到应答以后开始向从机写入数据或由从机读取数据。
主机向从机写入数据时,每完成一个字节,从机都向主机应答;主机由从机读取数据时,每完成一个字节,主机都对从机应答,当主机读完最后一个字节时主机对从机应答取反。
二、 模块数据流I2C总线接口模块设计图i2c_ctrl 模块:从机读写状态机模块i2c_shift模块:从机控制信号、应答等产生模块i2c_intf_ctrl模块:写串并转换、读数据存储模块主机向从机写入数据:主机首先向从机发送地址和写标志,当从机判断主机发送的地址为其地址时对主机应答,然后主机开始发送数据。
常用显示接口简介:I2C、SPI、8080、6800、RGB、MIPI-SDI

除了RGB接口数据线外, RGB接口连接方式还需要 MCK,HSYNC和VSYNC三根时钟线来保证, RGB接口数据 按照正确的时序由CPU向LCD传输,其中MCK为系统时钟 ,提供稳定的方波时钟, HSYNC为行同步信号, VSYNC 为场同步信号。
18
RGB接口工作特点
用RGB接口的MCU一般更强大,有专门的接口电路,RGB 接口的driver IC去掉了一个接口电路(即CPU接口中处理 Command/data的IO电路),就需要MCU提供RGB接口相 对与系统接口而言是一种高速口,它需要外部提供时钟以 及行、帧同步信号,也是将数据转换为相应的电压输送到 panel上。H/V两个场同步信号。
spi从机从主机获得时钟和片选信号因此cs和sclk都是输spi接口在内部硬件实际上是个简单的移位寄存器传输的数据为8位在主器件产生的从器件使能信号和移位脉冲下7spi总线spi总线如果一个spi从机没有被选中他的数据输出端sdo将处于高阻状态从而与当前处于激活状态的隔离开
常用显示接口简介: I2C、SPI、8080、6800、RGB、 MIPI-SDI
2
I2C串行总线概述
I2C总线通过上拉电阻接正电源。当总线空闲时,两根 线均为高电平。连到总线上的任一器件输出的低电平,都将 使总线的信号变低,即各器件的SDA及SCL都是线“与”关 系。
3
I2C串行总线概述
每个接到I2C总线上的器件都有唯一的地址。主机与其它 器件间的数据传送可以是由主机发送数据到其它器件,这时 主机即为发送器。由总线上接收数据的器件则为接收器。 主机:初始化发送、产生时钟信号和终止发送的器件, 它可以是发送器或接收器。主机通常是微处理器。 从机:被主机寻址的器件,它可以是发送器或接收器, 在多主机系统中,可能同时有几个主机企图启动总线传送数 据。为了避免混乱, I2C总线要通过总线仲裁,以决定由哪一 台主机控制总线。 在80C51单片机应用系统的串行总线扩展中,我们经常遇 到的是以80C51单片机为主机,其它接口器件为从机的单主机 情况。
I2C_24C02总线通信协议实例详解(附详细示波器实测波形图)

I2C详解I2C总线是PHLIPS公司推出的一种串行总线,是具备多主机系统所需的包括总线裁决和高低速器件同步功能的高性能串行总线。
I2C总线只有两根双向信号线:一根是数据线SDA,另一根是时钟线SCL。
I2C总线通过上拉电阻接正电源。
当总线空闲时,两根线均为高电平。
连到总线上的任一器件输出的低电平都将使总线的信号变低,即各器件的SDA及SCL都是线“与”关系。
在有些情况下,可能没接上拉电阻I2C也能正常通信,但是建议读者最好接上拉电阻。
本文最后将给出有接上拉电阻和没接两种情况下的I2C通信波形,可以明显的看出来,接了上拉电阻波形更漂亮,通信也更稳定。
本文将以24C02来详细讲解I2C 协议。
因为本文的重点是讲解I2C,所以这里只简单的介绍24C02,有关24C02的更为详细的资料,读者可以查阅其数据手册,在这里就其必需的部分进行简单的讲解。
一、 AT24C02简介AT24C02是美国ATMEL公司的低功耗CMOS串行EEPROM,它是内含256×8位(2K)存储空间,具有工作电压宽(2.5~5.5V)、擦写次数多(大于10000次)、写入速度快(小于10ms)等特点。
它的典型应用电路如图1:图1 AT24C02典型应用电路图1中AT24C02的1、2、3脚是三条地址线,用于确定芯片的硬件地址。
在本文都将其接地,表示其地址为000。
第5脚SDA为串行数据输入/输出,数据通过这条双向I2C总线串行传送,第6脚SCL为串行时钟输入线。
当用单片机I/O 口模拟I2C通信时,这两个引脚可以接任意的I/O口。
SDA和SCL都需要接一个上拉电阻,其阻值一般为4.7K~10K。
第7脚是写保护引脚,可以接IO口也可以直接接地,接地就不再具有保护功能。
这里将其直接接地。
二、 I2C总线的构成及信号类型I2C总线是由数据线SDA和时钟线SCL构成的串行总线,可发送和接收数据。
I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。
i2c占空比
i2c占空比摘要:1.I2C 总线概述2.I2C 占空比的概念3.I2C 占空比的计算方法4.I2C 占空比的作用和影响5.I2C 占空比的应用实例正文:一、I2C 总线概述I2C(Inter-Integrated Circuit)总线是一种串行通信总线,它是由Philips 公司(现在的NXP 半导体公司)于1980 年代开发的。
I2C 总线主要用于低速度、短距离的双向通信,特别适合于连接微处理器和外围设备,如存储器、传感器、LCD 驱动器等。
二、I2C 占空比的概念I2C 占空比(Duty Cycle)是指I2C 总线上的设备在某一段时间内实际发送数据所占的比例。
通常用百分比表示,计算公式为:I2C 占空比= (发送时钟周期数/ 总时钟周期数)× 100%。
三、I2C 占空比的计算方法在I2C 总线上,设备通过串行通信发送数据。
发送过程中,设备需要发送起始信号、数据位、结束信号等。
其中,发送数据位所占的时间与总时钟周期数的比值即为I2C 占空比。
例如,如果设备发送了10 个时钟周期的数据,而总时钟周期数为20,那么I2C 占空比为(10 / 20)× 100% = 50%。
四、I2C 占空比的作用和影响I2C 占空比对于I2C 总线上的设备通信具有重要意义。
合理的I2C 占空比设置可以避免设备之间的通信冲突,保证数据传输的稳定性。
如果I2C 占空比设置过高,可能导致总线上的设备通信负载过重,降低通信效率;反之,如果I2C 占空比设置过低,可能导致设备之间的通信冲突,影响数据传输的准确性。
五、I2C 占空比的应用实例在实际应用中,I2C 占空比的设置需要根据具体的硬件设备和通信需求进行调整。
例如,对于具有多个I2C 设备的系统,需要合理分配I2C 占空比,确保各个设备之间的通信顺畅。
此外,在I2C 总线上添加扩充设备时,也需要考虑I2C 占空比的变化,以保证系统性能不受影响。
I2C总结
从网上找的几个资料进行了整理I2C(Inter-Integrated Circuit)总线是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。
是微电子通信控制领域广泛采用的一种总线标准。
它是同步通信的一种特殊形式,具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。
I2C总线特征1、只要求两条总线线路:一条串行数据线SDA(双向),一条串行时钟线SCL;2、每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机/从机关系软件设定地址,主机可以作为主机发送器或主机接收器;3、它是一个真正的多主机总线,如果两个或更多主机同时初始化,数据传输可以通过冲突检测和仲裁防止数据被破坏;4、串行的8 位双向数据传输位速率在标准模式下可达100kbit/s,快速模式下可达400kbit/s,高速模式下可达3.4Mbit/s;5、连接到相同总线的IC 数量只受到总线的最大电容400pF 限制。
I2C总线术语发送器:发送数据到总线的器件;接收器:从总线接收数据的器件;主机:初始化发送产生时钟信号和终止发送的器件;从机:被主机寻址的器件;多主机:同时有多于一个主机尝试控制总线但不破坏传输;仲裁:是一个在有多个主机同时尝试控制总线但只允许其中一个控制总线并使传输不被破坏的过程;同步:两个或多个器件同步时钟信号的过程。
I2C总线位传输由于连接到I2C 总线的器件有不同种类的工艺(CMOS、NMOS、双极性),逻辑0(低)和逻辑1(高)的电平不是固定的,它由电源VCC的相关电平决定,每传输一个数据位就产生一个时钟脉冲。
为了避免总线信号的混乱,要求各设备连接到总线的输出端必须是开漏输出或集电极开路输出的结构。
I2C总线结构图如上图所示,I2C是OC或OD输出结构,使用时必须在芯片外部进行上拉,上拉电阻R的取值根据I2C总线上所挂器件数量及I2C总线的速率有关,一般是标准模式下R 选择10kohm,快速模式下R选取1kohm,I2C总线上挂的I2C器件越多,就要求I2C的驱动能力越强,R的取值就要越小,实际设计中,一般是先选取4.7kohm上拉电阻,然后在调试的时候根据实测的I2C波形再调整R的值。
I2C总线协议及工作原理
I2C总线协议及工作原理一、概述1、I2C总线只有两根双向信号线。
一根是数据线SDA,另一根是时钟线SCL。
SCL:上升沿将数据输入到每个EEPROM器件中;下降沿驱动EEPROM器件输出数据.(边沿触发)SDA:双向数据线,为OD门,与其它任意数量的OD与OC门成”线与"关系。
I2C总线通过上拉电阻接正电源。
当总线空闲时,两根线均为高电平(SDL=1;SCL=1)。
连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线“与”关系。
2、主设备与从设备系统中的所有外围器件都具有一个7位的”从器件专用地址码”,其中高4位为器件类型,由生产厂家制定,低3位为器件引脚定义地址,由使用者定义。
主控器件通过地址码建立多机通信的机制,因此I2C总线省去了外围器件的片选线,这样无论总线上挂接多少个器件,其系统仍然为简约的二线结构。
终端挂载在总线上,有主端和从端之分,主端必须是带有CPU的逻辑模块,在同一总线上同一时刻使能有一个主端,可以有多个从端,从端的数量受地址空间和总线的最大电容400pF的限制。
主端主要用来驱动SCL line;从设备对主设备产生响应;二者都可以传输数据,但是从设备不能发起传输,且传输是受到主设备控制的.二、协议1.空闲状态I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。
此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。
2。
起始位与停止位的定义:起始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平信号.停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号.起始和终止信号都是由主机发出的,在起始信号产生后,总线就处于被占用的状态;在终止信号产生后,总线就处于空闲状态。
接收器件收到一个完整的数据字节后,有可能需要完成一些其它工作,如处理内部中断服务等,可能无法立刻接收下一个字节,这时接收器件可以将SCL线拉成低电平,从而使主机处于等待状态。
SPI、I2C、I2S、UART、CAN、SDIO、GPIO的介绍
SPI、I2C、I2S、UART、GPIO、SDIO、CAN的介绍,各自的特点是什么?SPI:SPI(Serial Peripheral Interface)是MOTOROLA公司提出的同步串行总线方式。
高速同步串行口。
3~4线接口,收发独立、可同步进行.因其硬件功能强大而被广泛应用。
在单片机组成的智能仪器和测控系统中。
如果对速度要求不高,采用SPI总线模式是个不错的选择。
它可以节省I/O端口,提高外设的数目和系统的性能。
标准SPI总线由四根线组成:串行时钟线(SCK)、主机输入/从机输出线(MISO)。
主机输出/从机输入线(MOSI)和片选信号(CS)。
有的SPI接口芯片带有中断信号线或没有MOSI。
SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。
如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
I2C:(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备.I2C总线用两条线(SDA和SCL)在总线和装置之间传递信息,在微控制器和外部设备之间进行串行通讯或在主设备和从设备之间的双向数据传送。
I2C是OD输出的,大部分I2C 都是2线的(时钟和数据),一般用来传输控制信号。
I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。
总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I2C总线详细介绍
I2C是一种串行总线的外设接口,它采用同步方式串行接收或发送信息,两个设备在同一个时钟下工作。
I2C总线只用两根线:串行数据SDA(Serial Data)、串行时钟SCL(Serial Clock)。
由于I2C只有一根数据线,因此其发送信息和接收信息不能同时进行。
信息的发送和接收只能分时进行。
I2C串行总线工作时传输速率最高可达400K bit/s。
I2C总线上的所有器件的SDA线并接在一起,所有器件的SCL线并接在一起,且SDA线和
SCL线必须通过上拉电阻连接到正电源。
I2C总线的数据传输协议要比SPI总线复杂一些,因为I2C总线器件没有片选控制线,所以I2C总线数据传输的开始必须由主器件产生通信的开始条件(SCL高电平时,SDA产生负跳变);
通信结束时,由主器件产生通信的结束条件(SCL高电平时,SDA产生正跳变)。
SDA线上的数据在SCL高电平期间必须保持稳定,否则会被误认为开始条件或结束条件,只有在SCL低电平期间才能改变SDA线上的数据。
I2C总线的数据传输波形图如下图所示。
I2C应用实例
AT24C系列为美国ATMEL公司推出的串行COMS型E2PROM,具有功耗小,宽电压范围等优点。
下图为AT24C系列E2PROM的引脚图。
图中A0、A1、A2为器件地址引脚,Vss为地,Vcc 为正电源,WP为写保护,SCL为串行时钟线,SDA为串行数据线。
AT24C系列E2PROM采用I2C总线,I2C总线上可挂接多个接口器件,在I2C总线上的每个器件应有唯一的器件地址,按I2C总线规则,器件地址为7位二进制数,它与一位数据方向位构成一个器件寻址字节。
器件寻址字节的最低位(D0)为方向位(读/写),最高4位(D7~D4)为器件型号地址(不同的I2C 总线接口器件的型号地址由厂家给定,AT24C系列E2PROM的型号地址都为1010);其余3位(D3~D1)与器件引脚地址A2A1A0相对应。
器件地址格式:
1010 A2A1A0。
对于E2PROM的片内地址,AT24C01和AT24C02由于芯片容量可用一个字节表示,故读写某个单元前,先向E2PROM写入一个字节的器件地址,再写入一个字节的片内地址。
而AT24C04、AT24C08、AT24C16分别需要9位、10位和11位片内地址,所以AT24C04把器件地址中的A0作为片内地址的最高位,AT24C08把器件地址中的A1A0作为片内地址的最高两位,AT24C16把器件地址中的A2A1A0作为片内地址的最高三位。
凡在系统中把器件的引脚地址用作片内地址后,该引脚在电路中不得使用,做悬空处理。
AT24C32、AT24C64、AT24C128、AT24C256
和AT24C512的片内地址采用两个字节。
AT24C系列E2PROM的读写操作原理
下列读写操作中SDA线上数据传送状态标记注释如下:
Start为启动信号(SCL为高电平,SDA产生负跳变),由主机发送。
Stop为结束信号(SCL为高电平,SDA产生正跳变),由主机发送。
AddressByte、AddreeeByte H、AddreeeByte L为地址字节,指定片内某单元地址,由主机发送。
data为数据字节,由数据发送方发送。
0 为肯定应答信号,由数据接收方发送。
1 为否定应答信号,由数据接收方发送。
主机控制数据线SDA时,在SCL高电平期间必须保持SDA线上的数据稳定,否则会被误认为对从机的起始条件或结束条件。
主机只能在SCL低电平期间改变SDA线上的数据。
主机写操作期间,用SCL的上升沿写入数据;主机读操作期间,用SCL的下降沿读出数据。
从AT24C系列AT24C01~AT24C16中读n个字节的数据格式:
从AT24C系列AT24C32~AT24C512中读n个字节的数据格式:
向AT24C系列AT24C01~AT24C16中写n个字节的数据格式(n<=页长,且n个字节不能跨页):
向AT24C系列AT24C32~A T24C512中写n个字节的数据格式(n<=页长,且n个字节不能
跨页):
应答信号
I2C总线数据传送时,每成功地传送一个字节数据后,接收器都必须产生一个应答信号。
应答的器件在第9个时钟周期时将SDA线拉低,表示其已经收到一个8位数据。
I2C器件在接收到起始信号和从器件地址之后响应一个应答信号,如果器件已选择了写操作,则
在每接收一个8位字节之后响应一个应答信号。
I2C器件工作在读模式时,在发送一个8位数据后释放SDA线(SDA置为高电平)并监视一个应答信号,一旦接收到主器件的应答信号,I2C器件则继续发送数据,如果主器件没有发送应答信号(发送非应答信号,即SDA为高电平),器件停止传送数据且等待一个停止信号。