I2C总线接口详解

合集下载

I2C总线接口详解

I2C总线接口详解

应用领域拓展
智能家居
i2c总线接口在智能家居领域的应用不断拓展,如智能照明、智 能安防等。
工业控制
i2c总线接口在工业控制领域的应用也越来越广泛,如传感器数 据采集、电机控制等。
医疗设备
随着医疗技术的进步,i2c总线接口在医疗设备领域的应用也在 逐步增加,如医疗监测设备、医疗机器人等。
未来展望
标准化
i2c总线接口详解
• i2c总线接口概述 • i2c总线接口工作原理 • i2c总线接口硬件设计 • i2c总线接口软件编程 • i2c总线接口常见问题及解决方案 • i2c总线接口发展趋势与展望
01
i2c总线接口概述
i2c总线接口定义
I2C总线是一种串行总线,用于连接微控制器和各种外围设 备。它由两条线组成:一条是数据线(SDA),另一条是 时钟线(SCL)。
I2C总线允许多个主设备 同时工作,提高了系统
的灵活性。
I2C总线具有强大的寻址 能力,可以连接多个外
围设备。
i2c总线接口应用场景
传感器接口
I2C总线可以方便地连接各种传 感器,如温度传感器、光传感 器等。
存储器接口
I2C总线可以连接各种类型的存 储器,如EEPROM、RAM等。
实时时钟
I2C总线的实时时钟(RTC)外 围设备可以用于提供系统时间。
根据设备地址的寻址方式,选择合适的寻址模式, 以实现正确的设备寻址。
寻址操作
发送设备地址
在开始数据传输之前,主设备需要发送目标设备的地址,以标识 要与之通信的设备。
接收应答信号
主设备发送地址后,等待从设备返回的应答信号,以确认从设备已 准备好进行数据传输。
发送操作指令
主设备根据需要发送相应的操作指令,如读或写,以指示接下来的 数据传输方向。

TP I2C总线介绍

TP I2C总线介绍

I2C总线接口一、 I2C总线协议I2C总线是一种串行数据传输总线,连接master(主机)和slave(从机),在两者间进行数据传输。

I2C总线有两根传输线,一根是时钟线SCL,一根是数据线SDA。

其中时钟线由主机控制,数据线是双向工作总线,传输数据,数据传输格式为每传输一个字节后传输一位应答位(应答位低电平有效);两者均通过上拉电阻与电源连接,保持高电平。

+VccSCLSDAI2C总线连接I2C总线在主机和从机之间传输数据时可以分为主机向从机写入数据和从机由主机读取数据两种工作模式。

1、主机向从机写入数据在这种工作模式下主机作为发送器,发送数据;从机作为接收机,接收数据。

2、主机由从机读取数据在这种工作模式下从机作为发送器,发送数据;主机作为接收机,接收数据。

I2C 总线的工作原理:I2C 总线在传输数据时首先要判断其是否启动,启动后对从机进行寻址和读写判断,随后根据是否应答来传输数据,最后再判断总线是否停止。

I2C 总线启动判断:当SCL 处于高电平时,SDA 由高电平变为低电平,标志着总线启动。

I2C 总线停止判断:当SCL 处于高电平时,SDA 由低电平变为高电平,标志着总线停止。

当I2C 总线启动后且未停止时,SDA 在SCL 的低电平发生跳变,在SCL 高电平时保持稳定,保证数据能够被采集。

主机首先发送一个字节的数据对从机进行寻址和读写判断;其中数据的传输先发送最高位,第一个发送字节的高7位是从机地址,最低位是数据读写判断位。

当从机接收到地址后判断是否为其地址,然后对主机应答或非应答。

当主机接收到应答以后开始向从机写入数据或由从机读取数据。

主机向从机写入数据时,每完成一个字节,从机都向主机应答;主机由从机读取数据时,每完成一个字节,主机都对从机应答,当主机读完最后一个字节时主机对从机应答取反。

二、 模块数据流I2C总线接口模块设计图i2c_ctrl 模块:从机读写状态机模块i2c_shift模块:从机控制信号、应答等产生模块i2c_intf_ctrl模块:写串并转换、读数据存储模块主机向从机写入数据:主机首先向从机发送地址和写标志,当从机判断主机发送的地址为其地址时对主机应答,然后主机开始发送数据。

I2C总线简介(很经典)

I2C总线简介(很经典)

I2C总线简介1.概述:I²C是Inter-Integrated Circuit的缩写,发音为"eye-squared cee" or"eye-two-cee", 它是一种两线接口。

I²C 只是用两条双向的线,一条 Serial Data Line (SDA) ,另一条Serial Clock (SCL)。

SCL:上升沿将数据输入到每个EEPROM器件中;下降沿驱动EEPROM器件输出数据。

(边沿触发)SDA:双向数据线,为OD门,与其它任意数量的OD与OC门成"线与"关系。

2.输出级每一个I2C总线器件内部的SDA、SCL引脚电路结构都是一样的,引脚的输出驱动与输入缓冲连在一起。

其中输出为漏极开路的场效应管,输入缓冲为一只高输入阻抗的同相器,这种电路具有两个特点:1)由于SDA、SCL为漏极开路结构(OD),因此它们必须接有上拉电阻,阻值的大小常为1k8, 4k7 and 10k ,但1k8 时性能最好;当总线空闲时,两根线均为高电平。

连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线"与"关系。

2)引脚在输出信号的同时还将引脚上的电平进行检测,检测是否与刚才输出一致,为"时钟同步"和"总线仲裁"提供了硬件基础。

3.主设备与从设备系统中的所有外围器件都具有一个7位的"从器件专用地址码",其中高4位为器件类型,由生产厂家制定,低3位为器件引脚定义地址,由使用者定义。

主控器件通过地址码建立多机通信的机制,因此I2C总线省去了外围器件的片选线,这样无论总线上挂接多少个器件,其系统仍然为简约的二线结构。

终端挂载在总线上,有主端和从端之分,主端必须是带有CPU的逻辑模块,在同一总线上同一时刻使能有一个主端,可以有多个从端,从端的数量受地址空间和总线的最大电容 400pF的限制。

I2C总线中文讲解,详尽通俗

I2C总线中文讲解,详尽通俗

一. I2C总线简介I2C管理总线:(Intel-Integrated Circuit bus)I2C总线是一种由飞利浦Philip公司开发的串行总线,产生于80年代,最初为音频和视频设备开发,现主要在服务器管理中使用。

是两条串行的总线,它由一根数据线(SDA)和一根时钟线(SDL)组成。

◆I2C总线的数据传输过程基本过程为:●主机发出开始信号。

●主机接着送出1字节的从机地址信息,其中最低位为读写控制码(1为读、0为写),高7位为从机器件地址代码。

●从机发出认可信号。

●主机开始发送信息,每发完一字节后,从机发出认可信号给主机。

●主机发出停止信号。

I2C数据传输图◆I2C总线上各信号的具体说明:●开始信号:在时钟线(SCL)为高电平其间,数据线(SDA)由高变低,将产生一个开始信号。

●停止信号:在时钟线(SCL)为高电平其间,数据线(SDA)由低变高,将产生一个停止信号。

●应答信号:既认可信号,主机写从机时每写完一字节,如果正确从机将在下一个时钟周期将数据线(SDA)拉低,以告诉主机操作有效。

在主机读从机时正确读完一字节后,主机在下一个时钟周期同样也要将数据线(S DA)拉低,发出认可信号,告诉从机所发数据已经收妥。

(注:读从机时主机在最后1字节数据接收完以后不发应答,直接发停止信号)。

注意:在I2C通信过程中,所有的数据改变都必须在时钟线SCL为低电平时改变,在时钟线SCL为高电平时必须保持数据SDA信号的稳定,任何在时钟线为高电平时数据线上的电平改变都被认为是起始或停止信号。

◆I2C总线数据格式:I2C数据格式图I2C支持两种数据格式:_ 7-bit/10-bit 寻址数据格式_ 7-bit/10-bit 寻址和重复开始信号的数据格式✧S ―I2C 开始标识✧Slava address ―从设备地址。

有两种从地址类型:1)固定的从地址,I2C总线只能接一个同类型的固定的从地址设备。

2)半固定的从地址,前半部分地址是固定的,后半部分地址是可编程的,I2C总线只能接多个同类型的半固定的从地址设备。

I2C总线

I2C总线
I2C(Inter-Integrated Circuit)总线 是由PHILIPS公司开发的两线式串行总线, 用于连接微处理器及其外围设备,实现全 双工同步数据处理。是微电子通信控制领 域广泛采用的一种总线标准。它是同步通 信的一种特殊形式,具有接口线少,控制 方式简单,器件封装形式小,通信速率较 高等优点。
地址唯一
I2C总线上所有的外围器件都需要 唯一的地址由器件地址和引脚地址两部 分构成。
地址唯一
器件地址是I2C器件固有的地 址编码,器件出厂时就已经给定, 不可更改。
地址唯一
引脚地址由I2C总线外围器件的地 址引脚(A2,A1,AO)决定,根据其 在电路中接电源正极,接地或悬空的 不同,形成不同的地址代码。引脚地 址数决定了同一种器件可接入总线的 最大数目。
地址唯一
R/W ̄是方向位,R/W ̄=0表示主器 件向从器件发送数据,R/W ̄=1表示主器 件读取从器件数据。
地址唯一
位序 D7 定义 D6 D5 D4 D3 D2 D1 D0 方向 位 _ R/W
器件地址
引脚地址
DA3
I2C规程运用主/从双向通讯。I2C总线的运 行(数据传输)由主机控制。所谓主机即启动数 据的传送时(发出启动信号)发出时钟信号,传 送结束时发出停止信号的设备,通常主机是微处 理器。被主机寻访的设备都称为从机。主机和从 机的数据传送,可以由主机发送数据到从机,凡 是发送数据到总线的设备称为发送器,也可以是 从机发到主机。从总线上接收数据的设备被称为 接受器。
什么是I2C总线?
I2C是一种串行总线的外设接口,它采 用同步方式串行接收或发送信息,两个设备 在同一个时钟下工作。 信息的发送和接收只能分时进行。 传输速率最高可达400Kbit/s

串口和I2c总线简介

串口和I2c总线简介

串口和I2c总线简介串口和2I C总线1.串口串口是串行接口(Serial Interface)的简称,是指数据一位一位地顺序传送,其特点是通信线路简单,只要一对传输线就可以实现双向通信(可以直接利用电话线作为传输线),从而大大降低了成本,特别适用于远距离通信,但传送速度较慢。

一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。

串行通讯的特点是:数据位的传送,按位顺序进行,最少只需一根传输线即可完成;成本低但传送速度慢。

串行通讯的距离可以从几米到几千米;根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。

串口通信的两种最基本的方式:同步串行通信方式和异步串行通信方式。

同步串行是指SPI(Serial Peripheral interface)的缩写,顾名思义就是串行外围设备接口。

SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息,TRM450是SPI接口。

异步串行是指UART(Universal Asynchronous Receiver/Transmitter),通用异步接收/发送。

UART是一个并行输入成为串行输出的芯片,通常集成在主板上。

UART包含TTL电平的串口和RS232电平的串口。

TTL电平是3.3V的,而RS232是负逻辑电平,它定义+5~+12V为低电平,而-12~-5V为高电平,MDS2710、MDS SD4、EL805等是RS232接口,EL806有TTL接口。

串行接口按电气标准及协议来分包括RS-232-C、RS-422、RS485等。

RS-232-C、RS-422与RS-485标准只对接口的电气特性做出规定,不涉及接插件、电缆或协议。

2. 2I C总线2I C(Inter-Integrated Circuit)总线是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。

是微电子通信控制领域广泛采用的一种总线标准。

I2C总线接口

I2C总线接口

I2C总线接口S3C44B0X I2C总线概述I2C是一种双向两线制的串行数据传输标准总线。

S3C44B0X RISC微处理器支持多主I2C串行接口。

专用串行数据线SDA和串行时钟线SCL在总线控制器和外围设备之间传送信息,它们都连在I2C总线上。

SDA和SCL线都是双向的。

在多主I2C模式下,多个S3C44B0X RISC微处理器可以从设备接收数据或传送数据到设备。

启动数据传送给I2C总线的主设备也负责终止数据的传送。

S3C44B0X中的I2C总线使用了标准的优先级仲裁过程。

为了控制多主I2C操作,必须为以下寄存器赋值:多主I2C控制寄存器(IICCON)、多主I2C控制/状态寄存器(IICSTAT)、多主I2C Tx/Rx数据移位寄存器(IICDS)和多主I2C 地址寄存器(IICADD)。

当I2C空闲时,SDA和SCL线都处于高电平。

SDA由高电平到低电平的转变能够产生启动条件;当SCL在高电平保持稳定时,SDA由低电平到高电平的转变能够产生停止条件。

启动和停止条件一般由主设备产生。

启动条件产生后,被放到总线上的第一个数据字节的7位地址值能够决定总线主设备所选择的从设备,第8位决定了传送的方向(读或写)。

放到SDA线上的每一个数据字节都是8位。

在总线传送操作中被发送或接收的字节数是无限的,数据总是从最高位MSB开始发送,并且每个数据之后应紧跟着一个应答位ACK。

图7.35所示为I2C总线框图。

数据线图7.35 I2C总线框图需要注意下面几点:●I2C数据保持时间tSDAH最短为0ns。

●检查FC设备的保持时间(FC规格v2.1中,在标准/快速总线模式下,FC数据保持时间最短为0ns)。

●I2C控制器只支持I2C总线设备(标准/快速总线模式),不支持C总线设备。

S3C44B0X I2C总线接口操作S3C44B0X I2C总线接口有4种操作模式:主传送模式、主接收模式、从传送模式和从接收模式。

I2C详解

I2C详解

I2C详解1 I2C接口简介I2C全称:Inter-Integrated Circuit,是一种同步、半双工的通信总线。

同步:发送接收端要严格同步,一般有同步时钟线。

半双工:I2C只有一条数据线,所以master发数据与收数据不能同时进行。

I2C通信速率:模式速率标准模式100 kbps快速模式400 kbps高速模式3.4 MbpsI2C诞生的背景:最初的嵌入系统是使用内存映射(memory-mapped I/O)的方式来互连微控制器和外围设备的。

要实现内存映射,设备必须并行连入微控制器的数据线和地址线,也就意味着:如果要连接一款新的外围设备,需在设计芯片时候确定好。

所以很不灵活并且成本高。

1982年,Philips实验室开发了I2C,方便CPU与外设之间通信。

1.1 I2C原理简介我理解的是:I2C设计时的理念是:信号线尽量少并且速率要尽量高。

信号线少,可以减少引脚占用,这对早期的芯片(引脚很少)的很重要。

当然,如果单纯说减少信号线,1-wire总线只使用1根线通信(比如DS18B20、DHT11等都是使用这种协议),但是1-wire总线是异步通信,所以1-wire总线速率不可能太高(1-wire总线传输速率一般为16.3Kbit/s,最大可达142 Kbit/s,通常情况下采用100Kbit/s 以下的速率传输数据)。

标准的I2C需要两根信号线:SCL(Serial Clock):时钟线,时钟都是有master提供的SDA(Serial Data):双向数据线,发数据或者收数据(收发不能同时)I2C多master多slave示意图:图中是2个master+2个slave的示意,同一时刻只有一个master 与一个slave通信。

若想实现这个效果:1 多个master-slave 时钟、数据线连在一起,需要实现信号的“线与”逻辑(所以SDA、SCL 被设计为漏极开路结构,外加上拉电阻实现“线与”)2 需要实现“时钟同步”和“总线仲裁”,引脚在输出信号的同时还能对引脚上的电平进行检测,检测是否与刚才输出一致,为“时钟同步”和“总线仲裁”提供硬件基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前两个寄存器(内存地址00H,01H)用于控制寄存器和状态寄存器, 内存地址02H~08H 用于时钟计数器(秒~年计数器),地址09H~0CH 用 于报警寄存器(定义报警条件),地址0DH 控制CLKOUT 管脚的输出频率, 地址0EH 和0FH 分别用于定时器控制寄存器和定时器寄存器。 秒、分钟、小时、日、月、年、分钟报警、小时报警、日报警寄存 器,编码格式为BCD,星期和星期报警寄存器不以BCD 格式编码。当一 个RTC 寄存器被读时,所有计数器的内容被锁存,因此,在传送条件下, 可以禁止对时钟/日历芯片的错读。
2C总线接口 I
一、 I2C总线介绍
I2C总线是一种简单、双向同步串行总线,只需 要两根线(数据线SDA和时钟线SCL)即可在连接于 总线上的器件之间传送信息。系统结构图如下:
1、I2C 总线示意图
SDA
SCL
PCF8563
PCF8566
PCF8574
PCF8576
CSI24C01
I2C总线器件连接示意图
VCC
D1 414 8
C6 0.1F/6V
地 0xA2 址:
VCC
U5 1 2 3 4 A0 A1 NC VSS AT2 4C256 VDD WP SCL SDA 8 7 6 5 SCL SDA
地 0xA0 址:
3、三种工作模式
写模式
写字地址;读数据
读模式
二、I2C应用举例
三、PCF8563实时日历时钟
PCF8563 是低功耗的CMOS 实时时钟/日历芯片,它提供一 个可编程时钟输出,一个中断输出和掉电检测器,所有的地址
和数据通过I2C 总线接口串行传递。最大总线速度为400Kbits/s,
每次读写数据后,内嵌的字地址寄存器会自动产生增量。
8563性能
• • • • • • • • • • • • 低工作电流:典型值为0.25μA(VDD=3.0V,25℃时)。 世纪标志 大工作电压范围:1.0~5.5 低休眠电流:典型值为0.25μA(VDD=3.0V,Tamb=25℃) 400KHz 的I2C 总线接口(VDD=1.8~5.5V 时)。 可编程时钟输出频率为:32.768KHz,1024Hz,32Hz,1Hz。 报警和定时器。 掉电检测器。 内部集成的振荡器电容。 片内电源复位功能。 I2C 总线从地址:读,0A3H;写,0A2H。 开漏中断引脚。
ARM LM3S1138
主器件
2C总线的特点 2、I
总线只有两根线:串行时钟线和串行数据线。
每个连到总线上的器件都可由软件以唯一的地址寻址,并建立简 单的主从关系,主器件既可以作为发送器,也可以作为接收器。 它是一个真正的多主总线,带有竞争检测和仲裁电路,可使多个 主机任意发送数据而不破坏总线上的数据信息。 同步时钟允许器件通过总线以不同的波特率进行通信。 同步时钟可以作为停止和重新启动串行口发送的握手方式。 连接到总线上的集成电路器件只受400pF的最大总线电容的限制。
四.24C02 串行E2PROM
256B*8位 芯片地址: 写:0A0H 读:0A1H
24C02时序
24C256时序
应用
X1 327 68Hz C7 1 12P 2 3 4 U4 OSC I OSC O /INT VSS PCF8563 VDD CLKOUT SCL SDA 8 7 6 5 SCL SDA
8563寄存器结构
8563寄存器结构(BC(2)
寄存器详细说明(3)
寄存器详细说明(4)
寄存器详细说明(4)
寄存器详细说明(5)
I2C协议
启动和停止操作
I2C协议
日历时钟的读/写操作
I2C协议
日历时钟的读/写操作
I2C协议
日历时钟的读/写操作
2、I2C总线的总线规约
I2C总线可以构成多主数据传送系统,但只有带CPU的 器件可以成为主器件。主器件发送时钟、启动位、数 据工作方式,从器件则接收时钟及数据工作方式。接 收或发送则根据数据的传送方向而定。 I2C总线的启动和停止条件
位传送
标志位
在启动条件和停止条件之间传送器传送给接收器的数据个数没 有限制,每个8位字节后加一个标志位。主传送器产生高电平的 标志位,由接收器将该位拉低,称为应答信号(ACK);主器件为 接收器时,在接受了最后一个字节后不发应答信号,称为非应 答信号(NO ACK)。 从接收器必须在接收到每个字节后产生一个标志位,主接收器 也必须在接收从传送器传送的每个字节后产生一个标志位。
8563内部结构
8563内部寄存器
PCF8563 有16 个8位寄存器:一个可自动增量的地址寄存器,一个内 置32.768KHz 的振荡器(带有一个内部集成的电容),一个分频器(用于 给实时时钟RTC 提供源时钟),一个可编程时钟输出,一个定时器,一 个报警器,一个掉电检测器和一个400KHz I2C所有16 个寄存器设计成可寻 址的8 位并行寄存器,但不是所有位都有用。
相关文档
最新文档