2020版新设计一轮复习数学(理)江苏专版讲义:第四章 第七节 正弦定理和余弦定理 含答案

合集下载

2020版高考数学新增分大一轮江苏专用讲义+习题:第四章 三角函数、解三角形 4.7 Word版含

2020版高考数学新增分大一轮江苏专用讲义+习题:第四章 三角函数、解三角形 4.7 Word版含

姓名,年级:时间:§4。

7 解三角形的实际应用考情考向分析以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性.题型主要为填空题或解答题,中档难度.测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ〈360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成二面角的度数叫坡度;坡面的垂直高度与水平长度之比叫坡比概念方法微思考在实际测量问题中有哪几种常见类型,解决这些问题的基本思想是什么?提示实际测量中有高度、距离、角度等问题,基本思想是根据已知条件,构造三角形(建模),利用正弦定理、余弦定理解决问题.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×")(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( ×)(2)俯角是铅垂线与视线所成的角,其范围为错误!.(×)(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √)(4)方位角大小的范围是[0,2π),方向角大小的范围一般是错误!.( √)题组二教材改编2.[P18例1]如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出A,C的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为________ m.答案502解析由正弦定理得错误!=错误!,又B=30°,∴AB=错误!=错误!=50错误!(m).3.[P21T3]如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=________米.答案错误!a解析由题图可得∠PAQ=α=30°,∠BAQ=β=15°,在△PAB中,∠PAB=α-β=15°,又∠PBC=γ=60°,∴∠BPA=错误!-错误!=γ-α=30°,∴在△PAB中,asin 30°=错误!,∴PB=错误!a,∴PQ=PC+CQ=PB·sinγ+a sin β=错误!a×sin60°+a sin 15°=错误!a.题组三易错自纠4.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为_____ m.答案40解析设电视塔的高度为x m,则BC=x,BD=错误!x.在△BCD中,由余弦定理得BD2=BC2+CD2-2BC·CD·cos∠BCD,3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=-20(舍去)或x=40。

2020版高考数学新增分大一轮江苏专用课件:第四章 三角函数、解三角形 §4.3

2020版高考数学新增分大一轮江苏专用课件:第四章 三角函数、解三角形 §4.3

递减区间 _2_k_π_+__π2_,__2_k_π_+__3_2π__ [_2_k_π_,__2_k_π_+__π_]

对称中心 对称轴方程
_(k_π_,__0_)_ _x_=__k_π_+__π2_
__kπ_+__π2_,__0__ _x_=__k_π_
k2π,0 无
(2)在余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),π2,0, _(π_,__-__1_)_,32π,0,(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x图象 Nhomakorabea定义域 值域
因为 f(x)≤f π3恒成立,所以 f(x)max=f π3,
即12×π3+φ=π2+2kπ(k∈Z),
又|φ|<π2,所以 φ=π3,故 f(x)=sin12x+π3.
令12x+π3=kπ(k∈Z),得 x=2kπ-23π(k∈Z),
1234567
题组二 教材改编 2.[P44T1]函数 f(x)=cos2x+π4的最小正周期是__π__.
1234567
3.[P45T4]y=3sin2x-π6在区间0,π2上的值域是_-__32_,__3__. 解析 当 x∈0,π2时,2x-π6∈-π6,56π, sin2x-π6∈-12,1, 故 3sin2x-π6∈-32,3, 即 y=3sin2x-π6的值域为-32,3.
1234567
4.[P33 例 4]函数 y=tanπ4-2x的定义域为_x__x_≠__-__2k_π_-__π8_,__k_∈__Z___.
1234567
题组三 易错自纠 5.函数 y=tan12x+π6的图象的对称中心是__k_π_-__π3_,_0__,__k_∈__Z__. 解析 由12x+π6=k2π,k∈Z,得 x=kπ-π3,k∈Z, 所以对称中心是kπ-π3,0,k∈Z.

2020版高考数学(江苏专用)新增分大一轮课件:第四章 三角函数、解三角形 §4.3

2020版高考数学(江苏专用)新增分大一轮课件:第四章 三角函数、解三角形 §4.3

x=kπ ______

【概念方法微思考】 1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距 离呢? 提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期; 相邻两个对称中心的距离也为半个周期.
2.思考函数f(x)=Asin(ωx+φ)(A≠0,ω≠0)是奇函数,偶函数的充要条件?
π 提示 (1)f(x)为偶函数的充要条件是φ= +kπ(k∈Z); 2
(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)y=sin x在第一、第四象限是增函数.( × )
(2)由
π 2π + sin =sin 6 3
π 所以对称中心是kπ- ,0 ,k∈Z. 3
1
2
3
4
5
6
7
6.函数 解析
π 5 π k π - , k π + π (k∈Z) 12 12 f(x)=4sin -2x的单调递减区间是________________________. 3
π , 1 x, x∈[ 0,2π] 的图象中, 五个关键点是: (0,0), 2 ,
π , 0 x, x∈[ 0,2π] 的图象中, 五个关键点是: (0,1), 2 ,
3π ________ (π,-1) , 2 ,0 ,(2π,1).
大一轮复习讲义
第四章
三角函数、解三角形
§4.3 三角函数的图象与性质
考情考向分析
KAOQINGKAOXIANGFENXI
以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象 的对称性、单调性、周期性、最值、零点.考查三角函数性质时,常与三角 恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有 填空题,又有解答题,中档难度.

届高考数学一轮复习讲义第四章正弦定理和余弦定理

届高考数学一轮复习讲义第四章正弦定理和余弦定理

的角为 x,试求 x 的取值范围及此时函数 f (x) 的值域.
解解解解::::((((1)111)))f (fffx(((xx)x)))12112212ssssiiiinnnn22223333xxxx2223332((3(111(1cccooosssc22233o3xxxs)))23x )
[14 分] [6 分]
[10 分] [14 分]
批阅笔记 (1)利用正弦、余弦定理判断三角形形状时,对所给的边角关系 式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关 系,再判断. (2)本题也可分析式子的结构特征,从式子看具有明显的对称 性,可判断图形为等腰或直角三角形. (3)易错分析:①方法一中由 sin 2A=sin 2B 直接得到 A=B,其 实学生忽略了 2A 与 2B 互补的情况,由于计算问题出错而结论 错误.方法二中由 c2(a2-b2)=(a2+b2)(a2-b2)不少同学直接得 到 c2=a2+b2,其实是学生忽略了 a2-b2=0 的情况,由于化简 不当致误.②结论表述不规范.正确结论是△ABC 为等腰三角 形或直角三角形,而不少学生回答为:等腰直角三角形.
已知两边及一边对角或已知两角及一边,可利用正弦定理解这 个三角形,但要注意解的判断. 解 由正弦定理得sina A=sinb B,sin3A=sin 425°, ∴sin A= 23. ∵a>b,∴A=60°或 A=120°.
当 A=60°时,C=180°-45°-60°=75°,c=bssiinnBC=
[难点正本 疑点清源]
解三角形时,三角形解的个数的判断
在△ABC 中,已知 a、b 和 A 时,解的情况如下:
A 为锐角
A 为钝角
或直角
图形
关系式 a=bsin A bsin A<a<b

(江苏专用)2020版高考数学复习第四章三角函数、解三角形4.1任意角、弧度制及任意角的三角函数教案

(江苏专用)2020版高考数学复习第四章三角函数、解三角形4.1任意角、弧度制及任意角的三角函数教案

第四章 三角函数、解三角形§4.1 任意角、弧度制及任意角的三角函数考情考向分析 以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识.题型以填空题为主,低档难度.1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③弧度与角度的换算:360°=2πrad ;180°=πrad ;1°=π180rad ;1rad =180π度.④弧长公式:l =|α|r .2.任意角的三角函数在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点的距离是r (r =x 2+y 2>0).则sin α=y r ,cos α=x r ,tan α=y x(x ≠0). 三个三角函数的性质如下表:3.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .MP 为正弦线;有向线段OM 为余弦线;有AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律. 提示 一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示 设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x(x ≠0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × )(4)若α为第一象限角,则sin α+cos α>1.( √ )题组二 教材改编2.[P10T6]角-225°=________弧度,这个角在第________象限. 答案 -5π4二3.[P14例1]若角α的终边经过点Q ⎝ ⎛⎭⎪⎫-22,22,则sin α=________,cos α=________. 答案22 -224.[P10T8]一条弦的长等于半径,这条弦所对的圆心角为________弧度. 答案 π3题组三 易错自纠5.在0到2π范围内,与角-4π3终边相同的角是________.答案2π3 解析 与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3(k ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.6.已知点P ⎝ ⎛⎭⎪⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为________.答案11π6解析 因为点P ⎝⎛⎭⎪⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1232=-33,又θ∈⎝⎛⎭⎪⎫3π2,2π,所以θ=11π6.7.函数y =2cos x -1的定义域为____________________________. 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示1.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为____________________.答案 ⎝⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ) 解析 ∵在[0,2π)内,终边落在阴影部分角的集合为⎝ ⎛⎭⎪⎫π4,56π,∴所求角的集合为⎝⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ).2.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2·180°+45°,k ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么集合M ,N 的关系是________. 答案 M ⊆N解析 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为______________________.答案 ⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π解析 如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y=3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π. 4.若角α是第二象限角,则α2是第________象限角.答案 一或三解析 ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角. (2)确定k α,αk(k ∈N *)的终边位置的方法先写出k α或αk 的范围,然后根据k 的可能取值确定k α或αk的终边所在位置.题型二 弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解 由已知得α=π3,R =10 cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积. 解 l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 2.若例题条件改为:“若扇形周长为20cm”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解 由已知得,l +2R =20,则l =20-2R (0<R <10). 所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5 cm 时,S 取得最大值25 cm 2,此时l =10 cm ,α=2 rad. 思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·连云港市灌南华侨高级中学月考)已知扇形的半径为10,面积为50π3,则扇形的圆心角为________. 答案π3解析 设扇形的圆心角为α(rad),半径为r ,则扇形的面积为S =12r 2α.∴503π=12×102×α,解得α=π3. (2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________. 答案518解析 设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α, 由扇形面积等于圆面积的527,可得12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,解得α=5π6. 所以扇形的弧长与圆周长之比为l C =5π6·2r32πr =518.题型三 三角函数的概念命题点1 三角函数定义的应用例2(1)已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α=________.答案 -32解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)(2018·江苏省常熟中学月考)在平面直角坐标系xOy 中,点P 在角2π3的终边上,且OP =2,则点P 的坐标为________. 答案 (-1,3)解析 由题意可知,点P 在角2π3的终边上,所以x P =2×cos 2π3=-1,y P =2×sin2π3=3, 则点P 的坐标为(-1,3).(3)设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角. 答案 二解析 由θ是第三象限角知,θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0, 综上可知,θ2为第二象限角.命题点2 三角函数线例3(1)满足cos α≤-12的角的集合是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 解析 作直线x =-12交单位圆于C ,D 两点,连结OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z . (2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是________.答案 sin α<cos α<tan α解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练2(1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是________. 答案 (-2,3]解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫π4,5π4解析 当x ∈⎣⎢⎡⎭⎪⎫π2,π时,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ∈⎝⎛⎦⎥⎤0,π4时,如图,OA 为x 的终边,此时sin x =MA ,cos x =OM ,sin x ≤cos x ;当x ∈⎝ ⎛⎭⎪⎫π4,π2时,如图,OB为x 的终边,此时sin x =NB ,cos x =ON ,sin x >cos x .同理当x ∈⎣⎢⎡⎭⎪⎫π,5π4时,sin x >cos x ;当x ∈⎣⎢⎡⎭⎪⎫5π4,2π时,sin x ≤cos x .1.角-870°的终边所在的象限是第________象限. 答案 三解析 由-870°=-1080°+210°,知-870°角和210°角的终边相同,在第三象限. 2.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.3.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是________. 答案 1或4解析 设扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.4.(2018·无锡期末)已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.答案 10解析 根据三角函数的定义,得tan α=-6x =-35,所以x =10.5.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为________.答案 12解析 由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12, 又cos α=-45<0,所以-8m <0,即m >0,所以m =12.6.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且OP =10,则m -n =________. 答案 2解析 由已知tan α=3,∴n =3m , 又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.7.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.答案 ⎝ ⎛⎭⎪⎫-12,32解析 点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos2π3=-12,y =sin 2π3=32. 8.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在第________象限. 答案 三解析 ∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.9.若α是第三象限角,则y =⎪⎪⎪⎪⎪⎪sin α2sinα2+⎪⎪⎪⎪⎪⎪cos α2cosα2=________.答案 0解析 由于α是第三象限角,所以α2是第二或第四象限角.当α2是第二象限角时,y =sin α2sin α2+-cosα2cosα2=1-1=0;当α2是第四象限角时,y =-sin α2sin α2+cosα2cosα2=-1+1=0. 综上可知,y =0.10.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为________.答案11π6解析 由题意知,点P ⎝⎛⎭⎪⎫32,-12,r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.11.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确的命题是________.(填序号) 答案 ③解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错. 综上可知,只有③正确. 12.函数y =sin x -32的定义域为________________. 答案 ⎣⎢⎡⎦⎥⎤2k π+π3,2k π+23π,k ∈Z 解析 利用三角函数线(如图),由sin x ≥32,可知 2k π+π3≤x ≤2k π+23π,k ∈Z .13.如图,单位圆(半径为1的圆)的圆心O 为坐标原点,单位圆与y 轴的正半轴交于点A ,与钝角α的终边OB 交于点B (x B ,y B ),设∠BAO =β,若sin β=45,则点B 的坐标为________.答案 ⎝ ⎛⎭⎪⎫-2425,725 解析 由sin α=y B r,r =1,得y B =sin α=sin ⎝⎛⎭⎪⎫3π2-2β=-cos2β=2sin 2β-1=2×⎝ ⎛⎭⎪⎫452-1=725.由α为钝角,知x B =cos α=-1-sin 2α=-2425.所以B ⎝ ⎛⎭⎪⎫-2425,725. 14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,且sin α·cos β<0,则cos α·sin β=________. 答案 ±34解析 由角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,得cos β=12,又由sin α·cos β<0,知sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点⎝ ⎛⎭⎪⎫12,m 在单位圆上,所以⎝ ⎛⎭⎪⎫122+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是________平方米.(结果保留整数,3≈1.73)答案 5解析 如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt△AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32, 由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×⎝ ⎛⎭⎪⎫33×32+94=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad/s 的角速度按逆时针方向在单位圆上运动,质点B 以2 rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间. 解 (1)经过1 s 后,质点A 运动1 rad ,质点B 运动2 rad , 此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9 s 后质点A ,B 在单位圆上第一次相遇.。

数学(理)一轮复习题库:第四章 第讲 正弦定理和余弦定理

数学(理)一轮复习题库:第四章 第讲 正弦定理和余弦定理

第6讲正弦定理和余弦定理一、选择题1.在△ABC中,C=60°,AB=错误!,BC=错误!,那么A等于().A.135° B.105° C.45° D.75°解析由正弦定理知错误!=错误!,即错误!=错误!,所以sin A=错误!,又由题知,BC<AB,∴A=45°。

答案C2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ).A.60° B.90° C.120° D.150°解析由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,∴c2=a2+b2+ab=a2+b2-2ab cos C,∴cos C=-错误!,∴C=120°。

答案C3.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=错误!,则S△ABC=( ).A。

错误! B.错误!C。

错误!D.2解析∵A,B,C成等差数列,∴A+C=2B,∴B=60°.又a=1,b=3,∴错误!=错误!,∴sin A=a sin Bb=错误!×错误!=错误!,∴A=30°,∴C=90°.∴S△ABC=错误!×1×错误!=错误!。

答案C4.在△ABC中,AC=错误!,BC=2,B=60°,则BC边上的高等于().A。

错误!B。

错误!C。

错误! D.错误!解析设AB=c,BC边上的高为h.由余弦定理,得AC2=c2+BC2-2BC·c cos 60°,即7=c2+4-4c cos 60°,即c2-2c-3=0,∴c=3(负值舍去).又h=c·sin 60°=3×错误!=错误!,故选B.答案B5.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=错误!λ(λ〉0),A=45°,则满足此条件的三角形个数是()A.0 B.1C.2 D.无数个解析直接根据正弦定理可得错误!=错误!,可得sin B=错误!=错误!=错误!〉1,没有意义,故满足条件的三角形的个数为0。

2020版高考数学(理)新增分大一轮人教通用版讲义:第四章 三角函数、解三角形 4.6 含解析

§4.6 正弦定理和余弦定理最新考纲考情考向分析掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容(1)a sin A =b sin B =c sin C=2R(2)a2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(3)a =2R sin A ,b =2R sin B ,c =2R sin C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(5)a ∶b ∶c =sin A ∶sin B ∶sin C ;(6)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A(7)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况A 为锐角 A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解3.三角形常用面积公式(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).概念方法微思考1.在△ABC 中,∠A >∠B 是否可推出sin A >sin B ? 提示 在△ABC 中,由∠A >∠B 可推出sin A >sin B .2.如图,在△ABC 中,有如下结论:b cos C +c cos B =a .试类比写出另外两个式子. 提示 a cos B +b cos A =c ; a cos C +c cos A =b .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × ) (3)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( √ )(4)在三角形中,已知两边和一角就能求三角形的面积.( √ ) 题组二 教材改编2.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为 . 答案 等腰三角形或直角三角形解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形.3.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为 . 答案 2 3解析 ∵23sin 60°=4sin B ,∴sin B =1,∴B =90°,∴AB =2,∴S △ABC =12×2×23=2 3.题组三 易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形答案 A解析 由已知及正弦定理得sin C <sin B cos A , ∴sin(A +B )<sin B cos A ,∴sin A cos B +cos A sin B <sin B cos A , 又sin A >0,∴cos B <0,∴B 为钝角, 故△ABC 为钝角三角形.5.(2018·大连质检)在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.6.(2018·包头模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则C = . 答案2π3解析 由3sin A =5sin B 及正弦定理,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c22ab=⎝⎛⎭⎫53b 2+b 2-⎝⎛⎭⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.题型一 利用正弦、余弦定理解三角形例1 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =b sin B,可得 b sin A =a sin B .又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6, 即sin B =cos ⎝⎛⎭⎫B -π6,所以tan B = 3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =217. 因为a <c ,所以cos A =277.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素;(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.跟踪训练1 (1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( ) A.3π4 B.π3 C.π4 D.π6 答案 C解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.(2)如图所示,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为 .答案66解析 设AB =a ,∵AB =AD ,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.题型二 和三角形面积有关的问题例2 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.跟踪训练2 (1)(2018·沈阳质检)若AB =2,AC =2BC ,则S △ABC 的最大值为( ) A .2 2 B.32 C.23D .3 2 答案 A解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-(x 2-12)216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 . 答案332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的应用命题点1 判断三角形的形状例3 (1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰三角形或直角三角形答案 C解析 方法一 由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c ,从而△ABC 为等腰三角形.方法二 由正弦定理可得sin A =2sin B cos C , 因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C , 于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形.(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.引申探究1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B , ∴sin(A -B )=0.又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)因为AD ∶AB =2∶3,所以可设AD =2k , AB =3k .又BD =7,∠DAB =π3,所以由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,所以AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =217, 所以sin ∠DBC =277,所以BD sin ∠BCD =CDsin ∠DBC,所以CD =7×27732=433.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练3 (1)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形答案 B解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2, ∴△ABC 为直角三角形.(2)(2018·铁岭统考)在△ABC 中,B =30°,AC =25,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC = . 答案 4解析 依题意得S △ACD =12CD ·AC ·sin ∠ACD =25·sin ∠ACD =4,sin ∠ACD =25.又∠ACD 是锐角,因此cos ∠ACD =1-sin 2 ∠ACD =15.在△ACD 中,AD =CD 2+AC 2-2CD ·AC ·cos ∠ACD =4,AD sin ∠ACD =CDsin A ,sin A =CD ·sin ∠ACD AD =15 .在△ABC 中,AC sin B =BC sin A ,BC =AC ·sin Asin B=4.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( ) A .1 B .2 C .4 D .6 答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =23,C =30°,则B 等于( ) A .30° B .60° C .30°或60° D .60°或120°答案 D解析 ∵c =2,b =23,C =30°,∴由正弦定理可得 sin B =b sin C c =23×122=32,由b >c ,可得30°<B <180°,∴B =60°或B =120°.3.(2018·丹东模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( ) A.12 B.14 C .1 D .2 答案 A解析 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B 2,p =⎝⎛⎭⎫c ,cos C2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 A解析 ∵向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B2共线, ∴a cos B 2=b cos A2.由正弦定理得sin A cos B 2=sin B cos A2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.5.(2018·本溪质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9π D .36π 答案 C解析 c =b cos A +a cos B =2,由cos C =223,得sin C =13,再由正弦定理可得2R =csin C =6,R =3,所以△ABC 的外接圆面积为πR 2=9π,故选C.6.(2018·乌海模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .3 3 答案 C解析 ∵a cos B +b cos Ac =2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,解得⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C.7.(2018·通辽模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,又0<B <π,∴B =π3或2π3. 8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b = .答案 1解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即332=b 12, 解得b =1.9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为 .答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝⎛⎭⎫π6+π4=7π12, ∴sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3 =6+24. 则S △ABC =12bc sin A =12×2×22×6+24=3+1.10.(2018·锦州质检)若E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF = . 答案 34解析 如图,设AB =6,则AE =EF =FB =2.因为△ABC 为等腰直角三角形, 所以AC =BC =3 2.在△ACE 中,A =π4,AE =2,AC =32,由余弦定理可得CE =10. 同理,在△BCF 中可得CF =10. 在△CEF 中,由余弦定理得 cos ∠ECF =10+10-42×10×10=45,sin ∠ECF =1-cos 2∠ECF =35,所以tan ∠ECF =34.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A -π6的值. 解 (1)在△ABC 中,由b sin B =csin C 及sin B =6sin C ,可得b =6c , 又由a -c =66b ,得a =2c ,所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64, 可得sin A =104. 于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6 =cos 2A cos π6+sin 2A sin π6=⎝⎛⎭⎫-14×32+154×12 =15-38. 12.(2018·北京)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2,所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.13.在△ABC 中,a 2+b 2+c 2=23ab sin C ,则△ABC 的形状是( ) A .不等腰的直角三角形 B .等腰直角三角形C .钝角三角形D .正三角形 答案 D解析 易知a 2+b 2+c 2=a 2+b 2+a 2+b 2-2ab cos C =23ab sin C ,即a 2+b 2=2ab sin ⎝⎛⎭⎫C +π6,由于a 2+b 2≥2ab ,当且仅当a =b 时取等号,所以2ab sin ⎝⎛⎭⎫C +π6≥2ab ,sin ⎝⎛⎭⎫C +π6≥1,故只能a =b 且C +π6=π2,所以△ABC 为正三角形.14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,a =3,则△ABC 的周长的最大值为( ) A .2 3 B .6 C. 3 D .9 答案 D解析 ∵a 2=b 2+c 2-bc ,∴bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵A ∈(0,π),∴A =π3.∵a=3,∴由正弦定理得a sin A =b sin B =c sin C =332=23,∴b =2 3 sin B ,c =2 3 sin C ,则a +b +c=3+23sin B +2 3 sin C =3+23sin B +23sin ⎝⎛⎭⎫2π3-B =3+33sin B +3cos B =3+6sin ⎝⎛⎭⎫B +π6,∵B ∈⎝⎛⎭⎫0,2π3,∴当B =π3时周长取得最大值9.15.在△ABC 中,C =60°,且a sin A =2,则△ABC 面积S 的最大值为 .答案334解析 由C =60°及c sin C =a sin A=2,可得c = 3. 由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号), ∴S =12ab sin C ≤12×3×32=334,∴△ABC 的面积S 的最大值为334.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a 2-(b -c )2=(2-3)bc ,且sin B =1+cos C ,BC 边上的中线AM 的长为7. (1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc ,得a 2-b 2-c 2=-3bc ,即b 2+c 2-a 2=3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.又sin B =1+cos C,0<sin B <1, ∴cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6,则sin ⎝⎛⎭⎫5π6-C =1+cos C ,化简得cos ⎝⎛⎭⎫C +π3=-1, 解得C =2π3,∴B =π6.(2)由(1)知,a =b ,sin C =32,cos C =-12, 在△ACM 中,由余弦定理得 AM 2=b 2+⎝⎛⎭⎫a 22-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。

专题24 正弦定理和余弦定理-2020年领军高考数学一轮复习(文理通用)(解析版)

2020年领军高考数学一轮复习(文理通用)专题24正弦定理和余弦定理最新考纲掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.基础知识融会贯通1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.在△ABC 中,已知a ,b 和A 时,解的情况3.三角形常用面积公式(1)S =12a ·h a (h a表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】 1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .重点难点突破【题型一】利用正、余弦定理解三角形【典型例题】已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,△ABC 的面积为S ,且.(1)若C =60°且b =1,求a 边的值;(2)当时,求∠A 的大小.【解答】解:(1)由,,∴a =2b •sin C ,∵C =60°且b =1,∴a ;(2)当时,,∵b2+c2﹣2bc•cos A,∴,即,∴,得sin(A)=1.∵A∈(0,π),∴A∈(),则A,得A.【再练一题】在△ABC中,AB=6,.(1)若,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.【解答】(本小题满分12分)解:(1)由正弦定理得:,所以sin C=1,,所以,所以.(2)设DC=x,则BD=2x,由余弦定理可得解得:所以.思维升华(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【题型二】和三角形面积有关的问题【典型例题】△ABC的内角A,B,C所对的边分别为a,b,c,已知.(1)求角A;(2)若a=2,求△ABC面积的最大值.【解答】解:(1)由及正弦定理得:,因为sin B≠0,所以,即.因为0<A<π,所以.……………………………………(2)因为a=2,所以,所以,因为,所以当且仅当时S△ABC最大,所以S△ABC最大值为.………………【再练一题】如图所示,在平面四边形ABCD中,若AD=2,CD=4,△ABC为正三角形,则△BCD面积的最大值为.【解答】解:设∠ADC =α,∠ACD =β,由余弦定理得:AC 2=42+22﹣2×4×2cos α=20﹣16cos α,∴cos β,又由正弦定理可得,则sin β,∴S △BCD BC •CD •sin (β)=2BC (sin βcos β)=2BC •(••)=4sin (α)+4,故△BCD 面积的最大值为4+4,故答案为:4+4思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【题型三】正弦定理、余弦定理的简单应用命题点1 判断三角形的形状 【典型例题】已知a .b .c 分别是△ABC 的内角A 、B 、C 的对边,若c <b cos A ,则△ABC 的形状为( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【解答】解:∵c <b cos A ,∴利用正弦定理化简得:sin C =sin (A +B )=sin A cos B +cos A sin B <sin B cos A , 整理得:sin A cos B <0, ∵sin A ≠0, ∴cos B <0. ∵B ∈(0,π),∴B 为钝角,三角形ABC 为钝角三角形. 故选:A .【再练一题】在△ABC中,若22,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【解答】解:∵22,∴c2﹣a2=bc cos A,∴c2﹣a2=bc•,化简可得:c2=a2+b2,∴△ABC是直角三角形.故选:B.命题点2求解几何计算问题【典型例题】在△ABC中,A,B,C的对边分别是a,b,c,且b=2,B=60°,△ABC的面积为,则a+c=()A.4 B.C.2 D.【解答】解:△ABC中,b=2,B=60°,所以△ABC的面积为S ac sin B ac•,解得ac=4;又b2=a2+c2﹣2ac cos B,即4=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,所以(a+c)2=16,解得a+c=4.故选:A.【再练一题】如图,D是直角△ABC斜边BC上一点,∠BAC=90°,.(1)设∠DAC=30°,求角B的大小;(2)设BD=2DC=2x,且,求x的值.【解答】解:(1)在△ABC中,根据正弦定理,有.∵AC DC,∴sin∠ADC sin∠DAC.又∠ADC=∠B+∠BAD=∠B,∴∠ADC,∴∠C=π,∴∠B;(2)设DC=x,则BD=2x,BC=3x,AC x,∴sin B,cos B,AB x.在△ABD中,AD2=AB2+BD2﹣2AB•BD•cos B,即:(2)2=6x2+4x2﹣2x×2x2x2,得:x=2.故DC=2.思维升华(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A+B+C=π这个结论.(2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.基础知识训练1.【贵州省贵阳市2019届高三2月适应性考试(一)】平行四边形ABCD 中,AB=2,AD=3,AC=4,则BD=( ) A .4 BCD【答案】B 【解析】 如图所示:平行四边形ABCD 中,AB=2,AD=3,AC=4, 则:在△ABC 中,AB=2,BC=3,AC=4,利用余弦定理:22249161cos 22234AB BC AC ABC AB BC +−+−∠===−⋅⋅⋅,故:1cos cos 4DAB ABC ∠=−∠=, 则:2222?•DAB BD AD AB AD AB cos ∠=+−, 解得:. 故选:B .2.【辽宁省丹东市2019届高三总复习质量测试】在ABC ∆中,1cos 3A =,2AB =,3BC =,则ABC ∆的面积为( ) A .1 B .2C .12x xD.【答案】C由余弦定理可知2222cos BC AB AC AB AC A =+−⋅⋅ 234150AC AC ⇒−−=3AC ⇒=,因为1cos 3A =,所以sin A ==因此1sin 2ABC S AB AC A ∆=⋅⋅= C. 3.【山东省烟台市2019届高三3月诊断性测试(一模)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,若1a =cos )cos 0A C C b A ++=,则角A =( )A .23πB .3πC .6πD .56π 【答案】D 【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A +=−,)cos A C B b A +==−,sin cos B b A =−,sin sin cos A B B A =−, ∵sin 0B >,cos A A =−,即:tan 3A =−, ∵(0,)A π∈, ∴56A π=. 故选:D .4.【山东省淄博市2019届部分学校高三阶段性诊断考试试题】在ABC ∆中,角,,A B C 对边分别是,,a b c ,满足22()6,3c a b C π=−+=,则ABC ∆的面积为( )A .B .2C .2D .32【答案】B,∴22226c a ab b =−++,又,由余弦定理可得: 222222cos c a b ab C a b ab =+−=+−∴ 222226a ab b a b ab −++=+−,解得:6ab =,由三角形面积公式可得1sin 22ABC S ab C ∆==故答案选B 。

2020版高考数学一轮复习第4章三角函数、解三角形8第8讲正弦定理和余弦定理的应用举例教案理

第8讲正弦定理和余弦定理的应用举例1.实际测量中的常见问题求AB 图形需要测量的元素解法求竖直高度底部可达∠ACB=αBC=a解直角三角形AB=a tan α底部不可达∠ACB=α∠ADB=βCD=a解两个直角三角形AB=a tan αtan βtan β-tan α求水平距离山两侧∠ACB=αAC=bBC=a用余弦定理AB=a2+b2-2ab cos α河两岸∠ACB=α∠ABC=βCB=a用正弦定理AB=a sin αsin(α+β)河对岸∠ADC=α∠BDC=β∠BCD=δ∠ACD=γCD=a在△ADC中,AC=a sin αsin(α+γ)在△BDC中,BC=a sin βsin(β+δ)在△ABC中,应用余弦定理求AB 术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫做方位角.方位角α的范围是0°≤α<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度判断正误(正确的打“√”,错误的打“×”)(1)东北方向就是北偏东45°的方向.( )(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )(3)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )(5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( )答案:(1)√(2)×(3)×(4)√(5)√若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B.如图所示,∠ACB =90°,又AC =BC ,所以∠CBA =45°,而β=30°,所以α=90°-45°-30°=15°. 所以点A 在点B 的北偏西15°.(教材习题改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h. 解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点间的距离为________.解析:由正弦定理得AB =AC ·sin ∠ACB sin B=50×2212=502(m).答案:50 2 m如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析:因为∠D =30°,∠ACB =60°, 则∠CAD =30°,所以CA =CD =a , 所以AB =a sin 60°=32a . 答案:32a测量距离[典例引领]如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B 点出发到达C 点)【解】 在△ABD 中,由题意知,∠ADB =∠BAD =30°,所以AB =BD =1,因为∠ABD =120°,由正弦定理得AB sin ∠ADB =ADsin ∠ABD ,解得AD =3,在△ACD 中,由AC 2=AD 2+CD 2-2AD ·CD ·cos 150°, 得9=3+CD 2+23×32CD , 即CD 2+3CD -6=0,解得CD =33-32, BC =BD +CD =33-12, 2个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在2个小时内徒步登上山峰.若本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,则这条索道AC 长为________.解析:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD,所以200sin 30°=ADsin 120°.所以AD =200×sin 120°sin 30°=200 3(m).在△ADC 中,DC =300 m ,∠ADC =150°, 所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC=(200 3)2+3002-2×2003×300×cos 150° =390 000,所以AC =10039. 故这条索道AC 长为10039 m. 答案:10039 m距离问题的类型及解法(1)测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距 3 km 的C ,D两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°, 所以AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. 所以BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,所以AB = 5 km , 所以A ,B 之间的距离为 5 km.测量高度[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 1006求解高度问题的注意事项(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.(2018·湖北省七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.解析:由题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,所以由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h3·⎝ ⎛⎭⎪⎫-12,解得h =1039,故塔的高度为1039 m. 答案:1039测量角度[典例引领]一艘海轮从A 出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B ,然后从B 出发,沿北偏东15°的方向航行4 n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,求∠CAB 的大小. 【解】 (1)由题意,在△ABC 中,∠ABC =180°-75°+15°=120°,AB =23-2,BC =4, 根据余弦定理得AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC=(23-2)2+42+(23-2)×4=24, 所以AC =2 6.(2)根据正弦定理得,sin ∠BAC =4×3226=22,所以∠CAB =45°.解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.[通关练习]1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进.解析:设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且AC BC=3, 由正弦定理得AC BC =sin 120°sin ∠BAC=3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进. 答案:30°2.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=ACsin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型; (2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义. 易错防范(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D.由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 km D .60 2 km解析:选B.如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, 所以∠MAB =30°,∠AMB =45°. 在△AMB 中,由正弦定理,得60sin 45°=BMsin 30°,解得BM =302,故选B.3.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B.设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2. 4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°解析:选B.依题意可得AD =2010(m),AC =305(m),又CD =50(m), 所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=6 0006 0002=22, 又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .5 km B .10 km C.5 3 kmD .5 2 km解析:选C.作出示意图(如图),点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15, 由正弦定理,得15sin 120°=BCsin 30°,即BC =15×1232=53,即这时船与灯塔的距离是5 3 km.6.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile. 解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =45°, 由正弦定理,得AB sin C =BCsin A, 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile).答案:5 67.如图,为了测量河的宽度,在一岸边选定两点A 、B 望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为________.解析:如图,在△ABC 中,过C 作CD ⊥AB 于D 点, 则CD 为所求河的宽度.在△ABC中,因为∠CAB=30°,∠CBA=75°,所以∠ACB=75°,所以AC=AB=120 m.在Rt△ACD中,CD=AC sin∠CAD=120sin 30°=60(m),因此这条河的宽度为60 m.答案:60 m8.(2018·福州市综合质量检测)在距离塔底分别为80 m,160 m,240 m的同一水平面上的A,B,C处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________.解析:设塔高为h m.依题意得,tan α=h80,tan β=h160,tan γ=h240.因为α+β+γ=90°,所以tan(α+β)tan γ=tan(90°-γ)tan γ=sin(90°-γ)sin γcos(90°-γ)cos γ=cos γsin γsin γcos γ=1,所以tan α+tan β1-tan αtan β·tan γ=1,所以h80+h1601-h80·h160·h240=1,解得h=80,所以塔高为80 m.答案:80 m9.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°,从C点测得∠MCA=60°.已知山高BC=100 m,求山高MN.解:根据图示,AC=100 2 m.在△MAC中,∠CMA=180°-75°-60°=45°.由正弦定理得ACsin 45°=AMsin 60°⇒AM=100 3 m.在△AMN中,MNAM=sin 60°,所以MN =1003×32=150(m). 10.如图,在一条海防警戒线上的点A 、B 、C 处各有一个水声监测点,B 、C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A 、C 同时接到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.解:(1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12. 在△PAB 中,AB =20, cos ∠PAB=PA 2+AB 2-PB 22PA ·AB=x 2+202-(x -12)22x ·20=3x +325x,同理,在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x.因为cos ∠PAB =cos ∠PAC , 所以3x +325x =25x ,解得x =31.(2)作PD ⊥AC 于点D (图略),在△ADP 中, 由cos ∠PAD =2531,得sin ∠PAD =1-cos 2∠PAD =42131,所以PD =PA sin ∠PAD =31×42131=421. 故静止目标P 到海防警戒线AC 的距离为421千米.)1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km):AB =5,BC =8,CD =3,DA =5,且∠B 与∠D 互补,则AC 的长为( )A .7kmB .8 kmC .9 kmD .6 km解析:选A.在△ABC 及△ACD 中,由余弦定理得82+52-2×8×5×cos(π-∠D )=AC 2=32+52-2×3×5×cos ∠D ,解得cos ∠D =-12,所以AC =49=7.2.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD . 已知某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径的长度为( )A .50 5米B .50 7米C .5011米D .50 19米解析:选B.设该扇形的半径为r 米,连接CO .由题意,得CD =150(米),OD =100(米),∠CDO =60°, 在△CDO 中,CD 2+OD 2-2CD ·OD ·cos 60°=OC 2, 即1502+1002-2×150×100×12=r 2,解得r =50 7.3.(2018·惠州市第三次调研考试)如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ=________.解析:由∠DAC =15°,∠DBC =45°可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin 30°=DBsin 15°,即DB =100sin 15°=100×sin(45°-30°)=252(3-1),又25sin 45°=252(3-1)sin (90°+θ),即25sin 45°=252(3-1)cos θ,得到cos θ=3-1.答案:3-14.(2018·山西省第二次四校联考)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时,角B 的值为________.解析:由a cos B -b cos A =12c 及正弦定理,得sin A cos B -sin B cos A =12sin C =12sin(A +B )=12(sin A cos B +cos A sin B ),整理得sinA cosB =3cos A sin B ,即tan A =3tan B ,易得tan A >0,tan B >0,所以tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =21tan B+3tan B ≤223=33,当且仅当1tan B =3tan B ,即tan B =33时,tan(A -B )取得最大值,所以B =π6. 答案:π65.某港湾的平面示意图如图所示,O ,A ,B 分别是海岸线l 1,l 2上的三个集镇,A 位于O 的正南方向6 km 处,B 位于O 的北偏东60°方向10 km 处.(1)求集镇A ,B 间的距离;(2)随着经济的发展,为缓解集镇O 的交通压力,拟在海岸线l 1,l 2上分别修建码头M ,N ,开辟水上航线.勘测时发现:以O 为圆心,3 km 为半径的扇形区域为浅水区,不适宜船只航行.请确定码头M ,N 的位置,使得M ,N 之间的直线航线最短. 解:(1)在△ABO 中,OA =6,OB =10,∠AOB =120°, 根据余弦定理得AB 2=OA 2+OB 2-2·OA ·OB ·cos 120°=62+102-2×6×10×⎝ ⎛⎭⎪⎫-12=196,所以AB =14.故集镇A ,B 间的距离为14 km. (2)依题意得,直线MN 必与圆O 相切.设切点为C ,连接OC (图略),则OC ⊥MN . 设OM =x ,ON =y ,MN =c ,在△OMN 中,由12MN ·OC =12OM ·ON ·sin 120°,得12×3c =12xy sin 120°,即xy =23c , 由余弦定理,得c 2=x 2+y 2-2xy cos 120°=x 2+y 2+xy ≥3xy ,所以c 2≥63c ,解得c ≥63,当且仅当x =y =6时,c 取得最小值6 3.所以码头M ,N 与集镇O 的距离均为6 km 时,M ,N 之间的直线航线最短,最短距离为 6 3 km.6.在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.(1)若AD =2,S △DAC =23,求DC 的长; (2)若AB =AD ,试求△ADC 的周长的最大值. 解:(1)因为S △DAC =23,所以12·AD ·AC ·sin ∠DAC =23,所以sin ∠DAC =12.因为∠DAC <∠BAC <π-π3=2π3,所以∠DAC =π6.在△ADC 中,由余弦定理,得DC 2=AD 2+AC 2-2AD ·AC cos π6,所以DC 2=4+48-2×2×43×32=28,所以DC =27. (2)因为AB =AD ,B =π3,所以△ABD 为正三角形, 在△ADC 中,根据正弦定理,可得 ADsin C =43sin 2π3=DC sin ⎝ ⎛⎭⎪⎫π3-C , 所以AD =8sin C ,DC =8sin ⎝ ⎛⎭⎪⎫π3-C , 所以△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝ ⎛⎭⎪⎫π3-C +4 3=8⎝ ⎛⎭⎪⎫sin C +32cos C -12sin C +4 3=8⎝ ⎛⎭⎪⎫12sin C +32cos C +43=8sin ⎝ ⎛⎭⎪⎫C +π3+4 3.因为∠ADC =2π3,所以0<C <π3,所以π3<C +π3<2π3,所以当C +π3=π2,即C =π6时,△ADC 的周长的最大值为8+4 3.。

(江苏专版)高考数学一轮复习第四章三角函数、解三角形第六节正弦定理和余弦定理实用课件文


第十三页,共48页。
利用正、余弦定理解三角形
[例 3] 设△ABC 的内角 A,B,C 所对边的长分别是 a, b,c,且 b=3,c=1,A=2B.
(1)求 a 的值; (2)求 sinA+π4的值. [解] (1)因为 A=2B,所以 sin A=sin 2B=2sin Bcos B. 由正、余弦定理,得 a=2b·a2+2ca2c-b2. 因为 b=3,c=1,所以 a2=12,a=2 3.
第十六页,共48页。
能力练通 抓应用体验的“得”与“失”
1.[考点一]在锐角△ABC 中,角 A,B,C 的对边分别为 a,b,c, 若 b=2asin B,则 A=________. 解析:因为在锐角△ABC 中,b=2asin B,由正弦定理得, sin B=2sin Asin B,所以 sin A=12,又 0°<A<90°, 所以 A=30°. 答案:30°
第十一页,共48页。
利用余弦定理解三角形 利用余弦定理可以解决的两类问题 (1)已知两边及夹角,先求第三边,再求其余两个角. (2)已知三边,求三个内角. [例 2] (1)在△ABC 中,已知 a-b=4,a+c=2b,且最 大角为 120°,则这个三角形的最大边等于________. (2)设△ABC 的内角 A,B,C 的对边分别为 a,b,c,且 acos C+ 23c=b,则 A=________.
第十二页,共48页。
[解析] (1)因为 a-b=4,所以 b=a-4 且 a>b.又 a+c=
2b,所以 c=a-8,所以 a 大于 c,则 A=120°.
由余弦定理得 a2=b2+c2-2bccos A=(a-4)2+(a-8)2-
2(a-4)·(a-8)·-12,所以 a2-18a+56=0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节正弦定理和余弦定理 1.正弦定理和余弦定理 定理 正弦定理 余弦定理

内容 asin A=bsin B=csin C=2R(R为△ABC外接圆半径) a2=b2+c2-2bccos A; b2=c2+a2-2cacos B; c2=a2+b2-2abcos_C

变形形式(边角转化) a=2Rsin A,b=2Rsin B,c=2Rsin C;sin A=a2R,sin B=b2R,sin C=c2R; a∶b∶c=sin_A∶sin_B∶sin_C

cos A=b2+c2-a22bc; cos B=c2+a2-b22ca; cos C=a2+b2-c22ab

2.三角形中常用的面积公式 (1)S=12ah(h表示边a上的高);

(2)S=12bcsin A=12acsin B=12absin C; (3)S=12r(a+b+c)(r为三角形的内切圆半径). [小题体验] 1.(2019·启东中学检测)在△ABC中,A=30°,AC=23,BC=2,则AB=________. 答案:2或4 2.在△ABC中,A=45°,C=30°,c=6,则a=________. 答案:62 3.(2019·淮安调研)在△ABC中,若A=60°,AC=22,BC=23,则△ABC的面积为________. 解析:在△ABC中,A=60°,AC=22,BC=23,

由余弦定理,得cos A=AB2+AC2-BC22AB·AC=12, 代入数据化简得AB2-22AB-4=0, 解得AB=6+2(负值舍去).

故△ABC的面积S=12AB·AC·sin A=3+3. 答案:3+3 1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断. 2.在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解. 3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制. [小题纠偏]

1.在△ABC中,若a=18,b=24,A=45°,则此三角形解的情况为________. 解析:因为asin A=bsin B,

所以sin B=basin A=2418sin 45°=223. 又因为a<b,所以B有两个解, 即此三角形有两解. 答案:两解

2.设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________. 解析:在△ABC中, 因为sin B=12,0<B<π,

所以B=π6或B=5π6. 又因为B+C<π,C=π6,所以B=π6, 所以A=2π3. 因为asin A=bsin B,所以b=asin Bsin A=1. 答案:1

考点一 利用正、余弦定理解三角形 重点保分型考点——师生共研 [典例引领]

(2018·南京高三年级学情调研)在△ABC中,内角A,B,C所对的边分别为a,b,c,cos B=45. (1)若c=2a,求sin Bsin C的值; (2)若C-B=π4,求sin A的值. 解:(1)法一:在△ABC中, 由余弦定理得cos B=a2+c2-b22ac=45. 因为c=2a,所以c22+c2-b22c×c2=45, 即b2c2=920, 所以bc=3510. 又由正弦定理得sin Bsin C=bc, 所以sin Bsin C=3510. 法二:因为cos B=45,B∈(0,π), 所以sin B=1-cos2B=35. 因为c=2a,由正弦定理得sin C=2sin A, 所以sin C=2sin(B+C)=65cos C+85sin C, 即-sin C=2cos C. 又因为sin2C+cos2C=1,sin C>0,解得sin C=255, 所以sin Bsin C=3510. (2)因为cos B=45,所以cos 2B=2cos2B-1=725. 又0<B<π, 所以sin B=1-cos2B=35,

所以sin 2B=2sin Bcos B=2×35×45=2425. 因为C-B=π4,即C=B+π4, 所以A=π-(B+C)=3π4-2B, 所以sin A=sin3π4-2B=sin 3π4cos 2B-cos 3π4sin 2B=22×725--22×2425=31250. [由题悟法] 1.正、余弦定理适用类型 解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可 能用到. 2.判断三角形解的个数的注意点 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. [即时应用]

1.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=223,a=3, S△ABC=22,则b的值为________. 解析:因为S△ABC=12bcsin A=22,

所以bc=6,又因为sin A=223,所以cos A=13, 又a=3,由余弦定理得9=b2+c2-2bccos A=b2+c2-4,b2+c2=13, 可得b=2或b=3. 答案:2或3 2.(2018·苏州高三期中调研)在△ABC中,角A,B,C所对的边分别是a,b,c,已知sin B+sin C=msin A(m∈R),且a2-4bc=0.

(1)当a=2,m=54时,求b,c的值; (2)若角A为锐角,求m的取值范围. 解:由题意得b+c=ma,a2-4bc=0.

(1)当a=2,m=54时,b+c=52,bc=1,

解得 b=2,c=12或 b=12,c=2. (2)cos A=b2+c2-a22bc=b+c2-2bc-a22bc =ma2-a22-a2a22=2m2-3, 因为A为锐角,所以cos A=2m2-3∈(0,1), 所以32<m2<2, 又由b+c=ma,可得m>0, 所以62<m<2,即m的取值范围为62,2. 考点二 利用正、余弦定理判定三角形的形状 重点保分型考点——师生共研 [典例引领] 在△ABC中,内角A,B,C所对边分别是a,b,c,若sin2 B2=c-a2c,则△ABC的形状一定是________. 解析:由题意,得1-cos B2=c-a2c,即cos B=ac,又由余弦定理,得ac=a2+c2-b22ac,整理得a2+b2=c2,所以△ABC为直角三角形. 答案:直角三角形 [类题通法]

判定三角形形状的2种常用途径

[提醒] 在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响. [即时应用]

1.(2019·宿迁期中)在△ABC中,角A,B,C所对的边分别是a,b,c,若c=2acos B,则△ABC的形状为______________. 解析:∵c=2acos B, ∴由正弦定理,得sin C=sin(A+B)=2sin Acos B, 即sin Acos B+cos Asin B=2sin Acos B, ∴sin Acos B=cos Asin B,可得tan A=tan B, 又0<A<π,0<B<π,∴A=B, 故△ABC的形状为等腰三角形. 答案:等腰三角形

2.在△ABC中,角A,B,C的对边分别为a,b,c,若sin Asin B=ac,(b+c+a)(b+c-a)=3bc,则△ABC的形状为________. 解析:因为sin Asin B=ac,所以ab=ac,所以b=c. 又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc, 所以cos A=b2+c2-a22bc=bc2bc=12. 因为A∈(0,π),所以A=π3,所以△ABC是等边三角形. 答案:等边三角形 考点三 与三角形面积有关的问题 重点保分型考点——师生共研 [典例引领] (2018·徐州高三年级期中考试)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a+2c=2bcos A. (1)求角B的大小; (2)若b=23,a+c=4,求△ABC的面积. 解:(1)因为a+2c=2bcos A, 由正弦定理,得sin A+2sin C=2sin Bcos A. 因为C=π-(A+B), 所以sin A+2sin(A+B)=2sin Bcos A. 即sin A+2sin Acos B+2cos Asin B=2sin Bcos A, 所以sin A(1+2cos B)=0.

因为sin A≠0,所以cos B=-12.

又因为0<B<π,所以B=2π3. (2)由余弦定理a2+c2-2accos B=b2及b=23, 得a2+c2+ac=12,即(a+c)2-ac=12. 又因为a+c=4,所以ac=4,

所以S△ABC=12acsin B=12×4×32=3. [由题悟法] 三角形面积公式的应用原则 (1)对于面积公式S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [即时应用]

(2018·镇江高三期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若bcos A+acos B=-2ccos C. (1)求C的大小; (2)若b=2a,且△ABC的面积为23,求c的值.

解:(1)由正弦定理asin A=bsin B=csin C及bcos A+acos B=-2ccos C, 得sin Bcos A+sin Acos B=-2sin Ccos C, 所以sin(B+A)=-2sin Ccos C, 所以sin C=-2sin Ccos C. 因为C∈(0,π),所以sin C>0,

所以cos C=-12,

相关文档
最新文档