04第四章 刚体的转动习题

合集下载

第四章_刚体的转动大学物理

第四章_刚体的转动大学物理

第四章 刚体的转动练习一一.填空题1. 刚体对轴的转动惯量与_____________有关。

2. 一圆盘饶过盘心且与盘面垂直的轴O 以角速度按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度将_____________3. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,如果在绳端挂一质量为m 的重物时,飞轮的角加速度为α1. 如果以拉力2mg 代替重物拉绳时, 飞轮的角加速度将_____________α1 (填<,>,=)4. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,角速度将_____________,角加速度将_____________。

(填增大,减小) 二.计算题1. 一轴承光滑的定滑轮,质量为M ,半径为R ,一根不能伸长的轻绳,一端缠绕在定滑轮上,另一端系有一质量为m 的物体,如图所示.已知定滑轮的转动惯量为J2,方向垂直纸面向里.求:(1) 定滑轮的角加速度; (2) 定滑轮的角速度变化到=0时,物体上升的高度;(3)当物体回到原来位置时,定滑轮的角速度.2 . 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:l O60°mg·O FFO A·MRm(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.3. 质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2/ 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.4 质量m = kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.5. 如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 参考答案 一.填空题1、 取决于刚体的质量,质量的空间分布和轴的位置.2、 必然增大.3、 >4、 角速度从小到大,角加速度从大到小. 二.计算题1. (1)定滑轮受绳的张力T 产生的力矩, 重物受绳的张力T 和重力mg .取初角速度 0的方向为坐标正向,对定滑轮和重物分别列方程,有TR =J = (MR 2/2) T mg=ma= mR得 =2mg/[(2m +M )R ]负号表示方向与初角速度的方向相反mrmm 2m2rm 1m ,rm 2mr(2)22=02=2=2/(2)=02(2m +M )R /(4mg )h=R =02(2m +M )R 2/(4mg )(3) 物从最大高度回到原位置定滑轮转角==02(2m +M )R /(4mg )2=2=()mgR M m R M m mg -42)(242+-⋅+ω=02所以当物体回到原位置时=0方向与初角速度的方向相反2解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律 M = J α 其中 4/30sin 21mgl mgl M == 于是 2rad/s 35.743===lg J M α 当棒转动到水平位置时, M =21mgl 那么 2rad/s 7.1423===l g J M α3. 解:受力分析如图. mg -T 2 = ma 2 T 1-mg = ma 1T 2 (2r )-T 1r = 9mr 2α / 22r α = a 2 r α=a 1解上述5个联立方程,得: rg192=α 4. 解:撤去外加力矩后受力分析如图所示. m 1g -T = m 1aTr =J α a =r αa = m 1gr / ( m 1r + J / r )J =221mr , a =mm gm 2111+v 0-at =0 ∴ t =v 0 / aT 2aT2PPαa 1m 1 m , r α0vPTa5. 解:作示力图.两重物加速度大小a 相同,方向如图 m 1g -T 1=m 1a T 2-m 2g =m 2a(T 1-T 2)r =J α a =r α ()()J r m m gr m m ++-=22121α开始时系统静止,故t 时刻滑轮的角速度. ()()Jr m m grt m m t++-==22121 αω练习二填空题1. 刚体角动量守恒的充分而必要的条件是 .2. 如图所示,一静止的均匀细棒,长为L 、质量为M , 可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动, 转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为 .3.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有L A L B ,E KA E kB (填>,<,=)4. 光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 .O v俯视图v /5. 质量为 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为 m .则物体的角速度=____________. 参考答案: 一.填空题1、 刚体所受合外力矩为零.2、3mv/(2ML ).3、L A =L B ,E KA >E KB4、L76v5、 12rad/s_练习三一.填空题1. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴旋转,初始状态为静止悬挂。

刚体转动习题课

刚体转动习题课

dθ 角速度 ω = dt dω 角加速度 α = dt
与线量的关系
v = rω ατ = rα 2 αn = rω
2、刚体定轴转动定律
v dω v dv v M = Jα = J ( F = ma = m ) dt dt
v v v 力矩 M = r × F v M = rF sinθ
方向:右手法则 转动惯量: 2 3、刚体转动的功能原理
t 0
m (dm1g)x = ∫0 µ 1 gxdx M = ∫ dM = ∫ µ 0 l 1 dx(dm ) M = m glµ o 1 2 x
l l
1
x
− ∫ M = Jω − Jω0 dt
m2v t=
m gµ 1
方法Ⅱ
l 1 2 mg ⋅ = Jω 2 2
方法Ⅲ
求出 ω
l 1 2 mg ⋅ = mvc 2 2 l 又 Qvc = ω 2
求出 vc 求出 ω
分别判断三种方法的正误
2、判断角动量是否守恒 (1)圆锥摆(对oo′ 轴) o′ 小球质量为 m √ (2)对定滑轮轴 o v v 的角动量 重物、人质量均为 m ,定滑轮质 量不计,人向上爬行 √
解:处理这类碰撞问题与过 去质点运动相似但又有区别, 将分阶段进行讨论 (1)杆自由下落到将和 m 碰撞 2 l 1 2 由机械能 m g = Jω 1 守恒得 2 2
m ,l 1
(2)杆和物体 m 碰撞过程 2 由角动量守恒(为什么?动量守恒吗?) 为什么?动量守恒吗?)
3g ω= l
m 2
′ + m2l 2ω′ Jω = Jω 1 2 3g 1 2 ml = ml ω′ + m2l 2ω′ 1 1 3 l 3

刚体的转动复习ppt课件

刚体的转动复习ppt课件
第四章 刚体的转动 习题课
刚体的转动复 习
第四章 刚体的转动 习题课
[例2] 一个质量为M、半径为R的定滑轮 (当作均匀圆盘)上面绕有细绳,绳的一端 固定在滑轮边上,另一端挂一质量为m的物 体而下垂。忽略轴处摩擦,求物体m由静止 下落高度h时的速度和此时滑轮的角速度。
1 2 解: 对 M : TR = J J = MR

m ( R r ) a g r A 2 2 m ( R r ) J
FT
FTA
r
R
m ( R r ) a g R B 2 2 m ( R r ) J

J mR ( 2 R r ) F m g T 2 2 A J mR ( r) J mr ( 2 R r ) F m g T 2 2 B J mR ( r)
F TB
G F a A T A'
mg
A
F TB'
aB
mg
8/37
B

求(1)定滑轮的角加速度; (2)定滑轮的角速度变化到 物体上升的高度;
0时,
m0

R
(3)当物体回到原来位置时,定滑轮的
角速度。
m
第四章 刚体的转动 习题课 解: 由题意,列出方程组如下
m0

R
(1)
mg T ma 1 2 TR m 0R 2
m
aR
81 . 7 rad s 解得: a 方向是垂直纸面向外。
物体上升的高度
m
2
h R 6 . 12 10 m
2
(3)当物体回到原来位置时,定滑轮的角速度:
2
2 10 . 0 red s

第四章_刚体的转动部分习题分析与解答

第四章_刚体的转动部分习题分析与解答

h 1 at2
(4)
2
联合式(1)、(2)、(3)、(4)可解得飞轮的转动惯量为
J mR 2 ( gt2 1) 2h
解2 设根据系统的机械能守恒定律,有
mgh 1 mv2 1 J2 0
(1' )
2
2
线速度和角速度的关系为
v R
(2' )
根据重物作匀加速运动时,有
v at
(3' )
v2 2ah
a1 a2
J1 J1
m1R m2r Jm2 1Rm1Rm22r m2r 2 J2 m1R 2 m2r 2
gR gr
FT1
J1 J1
J2 J2
m2r2 m2Rr m1R 2 m2r2
m1g
FT 2
J1 J2 m1r2 m1Rr J1 J2 m1R 2 m2r2
m2g
4-12 如图示装置,定滑轮半径为r,绕转轴的转动惯量为J,滑 轮两边分别悬挂质量为m1和m2的物体A、B。A置于倾角为θ斜 面上,它和斜面间的摩擦因数为μ。若B向下作加速运动时,求 (1)其下落加速度的大小;(2)滑轮两边绳子的张力。(设 绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑)
整个矩形板对该轴的转动惯量为
J
a/2
dJ
b / 2 (x 2 y2 )dxdy
a / 2 b / 2
1 ab(a 2 b2 ) 12
4-11 质量为m1和m2的两物体A、B分别悬挂在如图所示的组合 轮两端。设两轮的半径分别为R和r,两轮ab的(转a 2动惯b量2分) 别为J1 和J2,轮与轴承间、绳索与轮间的摩1擦2力均略去不计,绳的质 量也略去不计。试求两物体的加速度和强绳的张力。

第四章 刚体转动

第四章 刚体转动

第四章 刚体的转动 问题4-1 以恒定角速度转动的飞轮上有两个点,一个点在飞轮的边缘,另一个点在转轴与边缘之间的一半处。

试问:在t ∆时间内,哪一个点运动的路程较长?哪一个点转过的角度较大?哪一个点具有较大的线速度、角速度、线加速度和角加速度? 解 在一定时间内,处于边缘的点,运动的路程较长,线速度较大;它们转动的角度、角速度都相等;线加速度、角加速度都为零。

考虑飞轮上任一点P ,它随飞轮绕转轴转动,设角速度为ω,飞轮半径为r 。

在t ∆内,点P 运动的路程为P P l r t ω=∆,对于任意点的角速度ω恒定,所以离轴越远的点(P r 越大)运动的路程越长。

又因为点P 的线速度P P v r ω=,即离轴越远,线速度也越大。

同理,点P 转动的角度P t θω=∆,对于飞轮上任一个点绕轴转动的角速度ω都相等,即在相等的时间内,飞轮上的点转动的角度都相等。

又角速度ω恒定,即线加速度0P Pd a r dtω==,角加速度0P d dtωα==.4-2 如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?解 不一定。

如图(a )轻杆(杆长为l )在水平面内受力1F 与2F 大小相等方向相反,合力为零,但它们相对垂直平面内通过O 点的固定轴的力矩1M F l =不为零。

如图(b ),一小球在绳拉力作用下在水平面内绕固定轴作圆周运动,小球所受的合外力通过O 点,它所受的力矩为零。

4-3 有两个飞轮,一个是木制的,周围镶上铁制的轮缘,另一个是铁制的,周围镶上木制的轮缘,若这两个飞轮的半径相同,总质量相等,以相同的角速度绕通过飞轮中心的轴转动,哪一个飞轮的动能较大。

1F(a ) (b )解 两飞轮的半径、质量都相同,但木制飞轮的质量重心靠近轮缘,其转动惯量要大于铁制轮缘。

飞轮的动能212k E J ω=,ω相同,转动惯量J 越大,动能越大。

即木制飞轮动能较大。

4--刚体的转动习题课

4--刚体的转动习题课

EP mgh
力矩的功 转动动能 重力势能
W 2 Md 1
Ek
1 2
J2
EP mghC
动能定理
W
1 2
mv22
1 2
mv12
转 能
动 定
动 理
W
1 2
J2 2
1 2
J 1 2
机 械 能 W外 W非保内 0,机 械 能 W外 W非保内 0,
守恒定律 Ek EP C
守恒定律 Ek EP C
解:(1),角动量守恒: L L0 m
第四章 刚体的定轴转动
0
r0
L0 J00 mr020
L
J
1 4
mr02
40
(2),转动动能定理:
W Ek
F
Ek
1 2
J2
W
1 2
J2
1 2
J
2
00
3 2
mr0202
习题课
21/38
物理学
第五版
第四章补充例题
1,一飞轮半径为0.2 m、转速为150 r·min-1,因受制
o x dx
x
dM x(dmg)
M
xdmg
mg
l
L
0
xdx
1 2
mgL
习题课
第四章 刚体的转动
28/38
物理学
第五版
第四章补充例题
4,一转动惯量为 J 的圆盘绕一固定轴转动,起初
角速度为0,设它所受阻力矩为M=-k (k为常数),求圆 盘的角速度从0变为0/2 所需的时间.
解: M k J
J d k,
dt
d k dt J
120 d t k dt,

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动


v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F

04刚体的转动



T1 mg ma
解得
3 T mg 2
本题完
前页 后页 目录
2
2. 两个均质圆盘,一大一小,同轴地粘结在一起构 成一个组合轮。小圆盘的半径为r,质量为m;大圆盘 的半径为r=2r,质量为 m=2m。组合轮可绕通过其中 心且垂直于盘面的光滑水平固定轴 O转动,组合轮对 O轴的转动惯量J=(9/2)mr2。两盘边缘上分别绕有轻质 细绳,细绳下端各悬挂质量为m的物体A和B,如图所 示。这一系统从静止开始运动,绳与盘之间无相对滑 动,绳长度不变。已知r=10cm。求: (1)组合轮的角加速度; O (2)当物体上升h=40cm时,组合轮 的角速度。
前页 后页 目录
7
4. 如图所示,设两重物的质量分别为 m1 和 m2 ,且 m1>m2 ,定滑轮的半径为 r ,对转轴的转动惯量为 J , 轻绳与滑轮间无滑动,滑轮轴上摩擦不计。设开始时 系统静止,试求t时刻滑轮的角加速度。
解 : 用隔离体法分析两个物体和滑轮的 受力情况,画受力图。
r
m1 m2
T1 m1 a G1

T1 T2
T2 m2 a G2
前页 后页 目录
8
4
T1 m1 a G1
T2 m1 g T1 m1a m2 a T2 m2 g m2a G2 T1r T2 r J

T1 T2
解得
a R
g J r m1 m2 2 r m1 m2
本题完 9
2
本题完 5
前页 后页 目录
3. 一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量 为M/4,均匀分布在其边缘上,绳子的A端有一质量为 M 的人抓住了绳端,而在绳的另一端 B 系了一质量为 M/2 的重物,如图所示。设人从静止开始以相对绳匀 速向上爬时,绳与滑轮间无相对滑动,求 B端重物上 升的加速度? ( 已知滑轮对过滑轮中心且垂直于轮面 的轴的转动惯量为(1/4)MR2。) 解 : 用隔离体法分析物体、人和滑轮 的受力情况,画受力图。

刚体的运动思考题

第四章 刚体的转动一.思考题1.火车在拐弯时所作的运动是不是平动? 答:不是平动。

2.假定一次内部爆炸在地面上开出巨大的洞穴,它的表面被向外推出,这对地球绕自身轴转动和绕太阳的转动有何影响?答:绕自身轴转动角速度减小,而绕太阳转动可认为未受到影响。

3.对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体,只要0=外M ,就会转动。

因0=合F ,而外M 不一定为零,故刚体有可能运动。

4.如果刚体转动的角速度很大,那么(1)作用在它上面的力是否一定很大?(2)作用在它上面的力矩是否一定很大?答:(1)否。

(2)否。

因为F 、M 与ω没有因果关系,而对于刚体的转动变化与力无关,只取决于力矩的作用。

5.为什么在研究刚体转动时,要研究力矩的作用?力矩和哪些因素有关?答:因为力矩是改变刚体转动状态的原因。

力矩与力的大小、作用点及方向有关。

6.试证:匀质细棒在光滑平面上受到一对大小相等、方向相反的力作用时,不管力作用在哪些,它的质心加速度总是零。

证:由牛顿运动定律——质心运动定律可知,a m dtv d m F ϖϖϖ==。

由题可知,细棒受合力0=F ϖ.0=∴a ϖ。

与力作用的位置无关。

7.在计算物体的转动惯量时,能把物体的质量看作集中在质心处吗?答:不能。

因为转动惯量与质量分别有关。

若采用回转半径处理,在某些情况(转轴不过质心)可以。

8.一个转动着的飞轮,如不供给它能量,最终将停下来,试用转动定律解释这个现象。

答:由转动定律,dtd J M ω=转动着的轮子一般总会受到阻力矩的作用,若不外加力矩,克服阻力矩做功,轮子最终会停下来(受阻力矩作用,ω越来越小)。

9.将一个生鸡蛋和一个熟鸡蛋放在桌子上使它旋转,如何判定哪个是生的,哪个是熟的?为什么?答:转动时间短的是生鸡蛋,从转动动能来分析,设初始两者动能相同,因为生蛋内部是流体,各点的角速度不等,各层间有相对流动,越向内其速度越小,由于流动各层间有摩擦,要消耗能量。

《物理学基本教程》课后答案_第四章__刚体的转动

第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B

17-4 图

18-4 图OFF

2-4 图1T2Tmy

O

04 第四章 刚体力学 一、选择题: 1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o以角速度作逆时针转动。今将两大小相等、方向相反、但不在同一条直线上的力F和F沿盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A)必然减少 (B)必然增大 (C)不会变化 (D)如何变化,不能确定

2、如图4-17所示,一质量为m的匀质细杆AB,A端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成角,则A端对墙壁的压力大小为:[ ]

(A)cos41mg (B)mgtg21 (C)sinmg (D)不能唯一确定 3、某转轮直径md4.0,以角量表示的转动方程为ttt4323(SI),则:[ ] (A)从st2到st4这段时间内,其平均角加速度为2.6srad; (B)从st2到st4这段时间内,其平均角加速度为2.12srad; (C)在st2时,轮缘上一点的加速度大小等于2.42.3sm; (D)在st2时,轮缘上一点的加速度大小等于2.84.6sm。 4、如图4-2所示,一倔强系数为k的弹簧连接一轻绳,绳子跨过滑轮(转动惯量为J),下端连接一质量为m的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A)kymg (B)02Tmg

(C)myTmg1 (D)yRJJβRTT)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是 (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B)取决于刚体的质量和质量的空间分布,与轴的位置无关. (C)取决于刚体的质量、质量的空间分布和轴的位置. (D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 6、有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误. (D) (1) 、(2) 、(3) 、(4)都正确. [ ] 7、有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为JA和JB,则 (A) JA>JB. (B) JA<JB. 1-4 图ABFM

k

5-4 图m5.1m0.1

m4m3m2

m

SRQP

o

o19-4 图

(C) JA = JB. (D) 不能确定JA、JB哪个大. [ ] 8、一力NjiF)53(,其作用点的矢径为mjir)34(,则该力对坐标原点的力矩为:[ ] (A)mNk3 (B)mNk29 (C)mNk19 (D)mNk3 9、一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]

10、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. [ ] 11、如图4-19所示P、Q、R、S是附于刚性轻杆上的四个质点,且

lRSQRPQ,则系统对oo轴的转动惯量为:[ ]

(A)250ml (B)214ml (C)210ml (D)29ml

12、如图4-1所示,A、B为两个相同的绕着轻绳的定滑轮,A滑轮挂一质量为M的物体,B滑轮受拉力F,而且MgF。设A、B两滑

轮的角加速度分别为A、B,不计滑轮与轴的摩擦,则有:[ ] (A)BA (B)BA (C)BA (D)开始时BA,以后BA 13、一理想轻弹簧与一匀质细杆如图4-5连接。弹簧的倔强系数

140mNk,细杆质量kgm3。若当0时弹簧无伸长,那么细

杆在0的位置上至少具有多大的角速度才能转到水平位置? [ ] (A)197.2srad (B)118.6srad (C)141.8srad (D)101.10srad 14、关于力矩有以下几种说法: (1)对某个定轴而言,内力矩不会改变刚体的角动量;(2)作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。上述说法中[ ] (A) 只有(2)正确 (B)(1)、(2)是正确的 (C)(2)、(3)是正确的 (D)(1)、(2)、(3)都是正确的

15、两个匀质圆盘A和B的密度分别为A和B,若A>B,但两圆盘的质量与厚度相同,

O F F



OA 2m1

m

4-4 图

rR

2o1oA

B

l

l31

22-4 图

60

1 图

如两盘对通过盘心垂直于盘面轴的转动惯量各为JA和JB,则 (A) JA>JB. (B) JB>JA. (C) JA=JB. (D) JA、JB哪个大,不能确定. [ ] 16、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度将 (A) 不变. (B) 变小. (C) 变大. (D) 如何变化无法判断. [ ] 17、如图所示,一质量为m的匀质细杆AB,A端靠在光滑的竖直墙壁上,B端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A端对墙壁的压力大小

(A) 为41mgcos. (B) 为21mgtg (C) 为mgsin. (D) 不能唯一确定. [ ] 18、一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ ]

19、如图4-22所示,两根长度和质量都相等的细直杆,分别绕光滑的水平轴1o和2o转动,设它们自水平位置静止释放,当它们分别转过90时,端点A、B的速度分别为Av、Bv,则:[ ] (A)Av>Bv (B)Av=Bv (C)Av<Bv (D)不能确定 20、如图1所示,一均匀细杆可绕通过其一端的水平轴在竖直平面内自由转

动,杆长m35。今使杆与竖直方向成60角时由静止释放(g取210sm),则杆的最大角速度为:[ ] (A)13srad (B)1srad (C)13.0srad (D)132sm 21、一人站在旋转平台的中央,两臂侧平举,整个系统以2 rad/s的角速度旋转,转动惯量为 6.0 kg·m2.如果将双臂收回则系统的转动惯量变为2.0 kg·m2.此时系统的转动动能与原来的转动动能之比Ek / Ek0为 (A) 2. (B) 3. (C) 2. (D) 3. [ ]

22、如图4-4所示,一个组合轮是由两个匀质圆盘固结而成,内、外圆盘的半径分别为r和R。两圆盘的边缘上均绕有细绳,细绳的下端各系着质量为1m、

2m的物体,这一系统由静止开始运动。当物体1m下落h时,该系统的总动

能为:[ ]

A B

m2 m1

O (A)ghm1 (B)ghm2 (C)ghmm)(21 (D)ghmRrm21 23、图(a)为一绳长为l、质量为m的单摆.图(b)为一长度为l、质量为m能绕水平固定轴O自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以1、2表示.则:

(A) 2121. (B) 1 = 2.

(C) 2132. (D) 213/2. [ ] 24、一匀质砂轮半径为R,质量为M,绕固定轴转动的角速度为.若此时砂轮的动能等于一质量为M的自由落体从高度为h的位置落至地面时所具有的动能,那么h应等于

(A) 2221MR. (B) MR422.

(C) MgR2. (D) gR422. 25、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J,初始角速度为0,后来变为02

1.在上述过程中,阻力矩所作的功为:

(A) 2041J. (B) 2081J. (C) 2041J (D) 2083J. [ ] 26、一均匀细杆可绕垂直它而离其一端l / 4 (l为杆长)的水平固定轴O在竖直平面内转动.杆的质量为m,当杆自由悬挂时,给它一个起始角速度0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要 (A) 0≥lg7/34. (B) 0≥lg/4. (C) 0≥lg/3/4. (D) 0≥lg/12. [已知细杆绕轴O的转动惯量J=(7/48)ml2] [ ] 27、关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零. (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等. 在上述说法中, (A) 只有(2) 是正确的. (B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的. (D) (1) 、(2) 、(3)都是正确的. [ ]

28、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J,角速度为0,

O(a)(b)



O l/4

相关文档
最新文档