Siluria开发甲烷直接转化制乙烯新型催化剂

Siluria开发甲烷直接转化制乙烯新型催化剂

甲烷氧化偶联制乙烯工艺研究进展

甲烷氧化偶联制乙烯工艺研究进展 李燕 诸林 (西南石油学院化学化工学院,四川成都610500) 摘要 甲烷氧化偶联(OC M )途径是通过一步法获取乙烯,是现有乙烯生产中最为简捷的工艺。本文综述了该工艺催化剂系统、反应机理、工艺开发研究的新进展,并探讨了OC M 过程面临的关键问题有催化剂的选择、反应器和反应流程的设计和反应温度的控制。关键词 甲烷氧化偶联 乙烯 催化剂 收稿日期:2004-11-23 作者简介:李燕(1982~),女,硕士生,诸林(1965~),男,教授,从事天然气加工的教学和科研工作。 Development on T echnology of the Oxidative Coupling of Methane to E thylene Li Y an Zhu Lin (Department of Chemistry and Chemical Engineering of S outhwest Petroleum Institute ,Sichuan Chengdu ,610500)Abstract The approach of OC M gains ethylene through one step ,which is sim plest and directest in producing ethylene nowadays.The new researches on catalytic system ,reaction mechanism and technological development were reviewed.The key problems during the industralization of OC M process such as choose of ctalyzer ,the design of reactor and technical pro 2cess ,control of the tem perature were discussed. K ey w ords oxidative coupling of methane ethylene catalyst 现代工业三大能源:煤、石油、天然气中,天然气 占有十分重要的地位。CH 4是天然气中的主要成分,含量90%以上,CH 4好的化学稳定性使天然气的开发和加工大受限制,活化CH 4使之转化为化工原料已成为C 1化学研究领域[1]的重要课题。 CH 4的利用途径主要有直接选择氧化制合成气、部分氧化制甲醇和甲醛、氧化偶联(OC M )制C 2烃以及甲烷无氧芳构化。自K eller 和Bhasin [2]1982年首次研究OC M 以来,由于石油价格上涨和乙烯在石油化工工业上的重要性使该领域的研究不断深入,开发表征了一些高活性、高C 2选择性的催化剂体系并对O 2的活化及CH 4转化机理进行了广泛的研究[3],取 得了可喜的进展。 1催化剂 1.1 催化剂研究的方向 众所周知,从化学组分而言,催化剂的研制包括 主组分、助催化剂及载体的选择。与此同时,催化剂的物理化学及物理参数(如晶态、表面状态、孔隙结构及表面积等)对其性能也有不容低估的影响。1.1.1 碱金属与碱土金属氧化物 未改性的碱土金属本身具有活性,而加入碱金属后,可能引起晶格畸变,增加了活性中心,并减少了表面积,防止甲烷的深度氧化,从而提高了催化剂的活性和选择性。碱土金属氧化物催化剂(MgO 、CaO 、SrO 、BaO )的OC M 活性的高低在于它们的碱性强弱,碱性越强,活性越高。将两种(以上)碱土金属氧化物(盐)复配使用,OC M 反应活性与C 2选择性明显提高,以S O 422、C O 32-、NO -3取代氧构成的含盐催化剂稳定性更好[4],以碱金属促进的碱土金属氧化物因碱性位数目的增多和对非选择性氧化物的抑制剂[5]使甲烷的转化率(X CH 4)和C 2的选择性(S C 2)大大提高,选 — 45—第19卷第4期2005年4月 化工时刊Chemical Industry T ime s Vol.19,No.4 Apr.4.2005

聚乙烯淤浆催化剂流程

淤浆催化剂系统 齐格勒-纳塔催化剂生产的树脂使用淤浆催化剂,淤浆催化剂由原浆催化剂和还原剂混合制得。原浆催化剂淤浆存贮在可再利用的钢瓶中,在卸料前,要滚动原浆催化剂输送钢瓶,以确保固体完全悬浮在矿物油中,设置滚瓶机来实现此目的。滚动后的钢瓶快速从贮存区传送至催化剂供应区,用氮气将原浆浆液从钢瓶中压至浆液进料罐。浆液进料罐搅拌器连续搅拌,以保证固体很好地分散,并保持在悬浮状态。 还原原浆浆液需要加入还原剂T3和添加剂DC,这些还原剂稀释于矿物油中,在钢瓶中贮存。 氮气将还原剂T3和添加剂DC从钢瓶中压出,送入各自的进料罐中。进料罐起缓冲作用,使得在更换钢瓶时系统仍能连续操作。 浆液进料罐中的原浆浆液由变速电机驱动的浆液进料泵送入反应器,原浆浆液流量由质量流量计测量。 DC 进料泵、T3进料泵和它们共用的备用泵T3、DC进料泵都是由变速电机驱动的,用于将添加剂T3和添加剂DC连续不断地从各自的进料罐,送入浆液进料泵下游的原浆浆液线。DC和T3的流量由质量流量计测量,其流量根据原浆浆液的质量流量来控制。 添加剂T3和添加剂DC从不同的注入点注入原浆浆液线,添加剂T3在紧靠浆液进料泵下游处注入原浆浆液线。T3和原浆的混合物流入带搅拌器的T3活化罐,并在那里进行反应。添加剂DC注入从T3活化罐出来的T3和原浆的混合液管线中,在带搅拌器的DC活化罐中连续反应,被还原的催化剂送入反应器,作为输送气的高压精制氮气可协助浆液进入反应器。 生产双峰树脂使用的是双峰淤浆催化剂BMC-200,双峰淤浆催化剂贮存在可再利用的输送钢瓶内。卸料之前,要滚动输送钢瓶,来保证固体完全悬浮在矿物油中,使用滚瓶机来实现这一目的。 滚动后的钢瓶要快速从存贮区运送到淤浆催化剂供应区,用氮气将双峰淤浆催化剂从输送钢瓶中压至BMC进料罐,使用钢瓶秤判断催化剂是否已全部加入到BMC进料罐中。BMC进料罐中的搅拌器持续不断

聚乙烯催化剂

聚乙烯是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)以及一些具有特殊性能的产品,其特点是价格便宜,性能较好,可广泛地应用于工业、农业、包装及日常工业中,在塑料工业中占有举足轻重的地位。 烯烃聚合催化剂是聚烯烃聚合技术的核心,从烯烃聚合催化剂的发展来看,概括起来主要有两个方面:(1)开发能够制备特殊性能或更优异性能的聚烯烃树脂催化剂,如茂金属催化剂及非茂后过渡金属催化剂等;(2)对于通用聚烯烃树脂的生产而言,在进一步改善催化剂性能的基础上,简化催化剂制备工艺,降低催化剂成本开发对环境友好的技术,以提高效益,增强竞争力。20世纪80年代以前,聚乙烯催化剂研究的重点是追求催化剂效率,经过近30年的努力,聚乙烯催化剂的催化效率呈数量级提高,从而简化了聚烯烃的生产工艺,降低了能耗和物耗。目前研究开发的聚乙烯催化剂主要有铬基催化剂、齐格勒-纳塔催化剂、茂金属催化剂、非茂金属催化剂、双功能催化剂以及双峰或宽峰分子量分布聚烯烃复合催化剂等。 1 铬基催化剂 铬基催化剂是由硅胶或硅铝胶载体浸渍含铬的化合物生产的,包括氧化铬催化剂和有机铬催化剂,最初由Phillips公司开发,主要用于Phillips公司和Univation公司的聚乙烯生产工艺,可用于生产线型结构的HDPE,改进后也可用于乙烯和α-烯烃的共聚反应。用这种催化剂生产的乙烯和α-烯烃的共聚物有非常宽的分子量分布(MWD),Mw/Mn为12-25。近期,Basell公司已经工业化生产一种被称为Advent C的新型铬催化剂,用于生产HDPE。该催化剂由基于二氧化硅的专有载体负载,用铬化合物浸渍后在氧化条件下高温焙烧活化制得,铬以Cr3+盐的形式存在,含量低于10ppm,安全可靠,而且生产成本较低。该催化剂可替代钛基催化剂用于气相法和淤浆法HDEP工艺。 2 齐格勒-纳塔催化剂 齐格勒-纳塔催化剂(简称Z-N)是用化学键结合在含镁载体上的钛等过渡金属化合物。由于其催化效率高,生产的聚合物综合性能好,成本低,因此在聚乙烯的生产中占有重要的地位。近年来,聚乙烯生产公司正在通过各种方式研究开发新型Z-N催化剂。诺瓦(Nova)化学公司开发出先进的用于气相法工艺的Sclairtech Z-N 催化剂,并将其用于位于加拿大阿尔伯达焦弗雷的Unipol气相法聚乙烯装置上。与BP公司和催化剂生产公司Grace Davison达成协议,生产供应先进的Novacat T Z-N催化剂。使用该催化剂可以改进共聚单体的并入方式,形成“不发粘”的树脂,从而提供性能更好的树脂。此外,该催化剂还有更好的抗杂质性能以及更高的生产效率。 Univation公司开发的工业化UCAT-J Z-N催化剂,具有催化剂残渣少,制得的薄膜只需要较少的添加剂,薄膜的透明性提高,凝胶粒子明显减少等优点,我国扬子石化公司的20万吨/年全密度聚乙烯装置就采用了这种催化剂。 住友化学公司开发的LLDPE生产用新型SN4催化剂,可在一定程度上控制产物分子量并阻止低分子量聚合物的形成。Equistar化学公司使用Unipol气相反应器和新一代Z-N催化剂推出高性能乙烯系LLDPE吹塑薄膜用树脂,加工性能和耐撕裂强度优于mLLDPE,熔体强度和落锤冲击强度较己烯系LLDPE好得多,可替代辛烯系LLDPE和mLLDPE产品。Huntsman公司采用DSM公司的溶液过程和新一代Z-N催化剂,生产出一种增强型辛烯LLDPE薄膜树脂-Rexell;Quantum公司开发的双中心 Z-N催化剂,可在单一反应器中生产双峰HDPE;BP公司推出了高活性的LynxZ-N催化剂。 2000年,北京化工研究院和上海化工研究院分别开发出BCG和SCG-1气相法PE催化剂,

甲烷乙烯苯知识点总结

专题复习16--甲烷乙烯苯知识点总结 核心知识图 1.烃的分类、通式和主要化学性质 氧化:燃烧 饱和烃:烷烃C n H2n+2(n≥1) 甲烷取代结构:链状、碳碳单键裂解 链烃氧化:燃烧、使KMnO4(H+)褪色 (脂肪烃) 烯烃C n H2n(n≥2) 乙烯加成:H2、X2、HX 、H2O等 结构:链状、碳碳双键加聚 氧化:燃烧、使KMnO4(H+)褪色 炔烃C n H2n-2(n≥2) 乙炔加成 不饱和烃结构:链状、碳碳叁键加聚 氧化:燃烧、使KMnO4(H+)褪色 烃二烯烃C n H2n-2 (n≥3) 1,3—丁二烯加成:1,2加成、1,4加成 结构:链状、两个碳碳双键加聚 饱和环烃:环烷烃C n H2n (n≥3) 结构:环状、碳碳单键氧化:燃烧、不能使KMnO4(H+)褪色,不能因反应使反应使溴水褪色 苯加成 环烃取代:卤代、硝化、磺化 苯及其同系物C n H2n-6 (n≥6) 结构:环状、大 键 不饱和环烃:芳香烃氧化:燃烧、使KMnO4(H+)褪色 稠环芳烃:萘、蒽甲苯取代 加成 甲烷的化学性质 通常情况较稳定,与强酸、强碱、KMnO4等均不反应。 (1)氧化反应甲烷燃烧的热化学方程式为: (2)取代反应 ①定义:有机物分子里的某些被其他 所替代的反应。 ②甲烷与Cl2反应 乙烯烯烃知识点总结 一、乙烯的组成和结构 乙烯分子的结构简式:CH2〓 CH2 乙烯分子的结构: 键角约120°,分子中所有原子在同一平面,属平面四边形分子。 二、乙烯的制法 工业上所用的大量乙烯主要是从石油炼制厂和石油化工厂所生产的气体中分离出来的。

实验室制备原理及装置 三、乙烯的性质 1.物理性质:无色、稍有气味、难溶于水、密度小于空气的密度。 2.化学性质 (1)氧化反应 a.燃烧 CH 2=CH 2+3O 2??→?点燃 2CO 2+2H 2O (火焰明亮,并伴有黑烟) b.使酸性KMnO 4溶液褪色 (2)加成反应:有机物分子中双键(或叁键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。 (溴的四氯化碳溶液的红棕色褪去) 乙烯除了与溴之外还可以与H 2O 、H 2、卤化氢、Cl 2等在一定条件下发生加成反应,如工业制酒精的原理就是利用乙烯与H 2O 的加成反应而生成乙醇. 3)聚合反应 n CH 2==CH 2???→?催化剂[— CH 2—CH 2 ]— n ( 聚乙烯) 其中 CH 2=CH 2 为单体 —CH 2—CH 2— 为链节 n 为聚合度 四、乙烯的用途 作植物生长的调节剂,还可以作催熟剂;可用于制酒精、塑料、合成纤维、有机溶剂等, 五、烯烃 1.烯烃的概念:分子里含有碳碳双键的一类链烃 2.烯烃的通式:C n H 2n (n ≥2) 最简式:CH 2 可见,烯烃中碳和氢的质量分数别为85.7%和14.3%,恒定不变 环烷烃的通式与烯烃的通式相同,故通式为C n H 2n 的烃不一定是烯烃,如右图中其分子符合C n H 2n ,但不是烯烃而是环烷烃。 (环丁烷) 一般,我们所说的烯烃都是指分子中只含一个碳碳双键的不饱和烃,所以也叫单烯烃,也还有二烯烃:CH 2=CH - CH=CH 2 苯及其同系物知识点 苯 分子结构 分子式:C 6H 6 最简式:CH 结构式: 结构简式:或 比例模型: 球棍模型: 空间构型: 1、具有平面正六边形结构,所有原子共平面 2、键角都是120°。 3、不存在单双键交替排列,6个碳碳键完全相同,是一种介于单键和双键之间的独特的化学键。

甲烷(CH4)的直接转化利用技术

2010年第09期甲烷(CH4)的直接转化利用技术 苗蓓蓓 大庆炼化公司档案管理中心 黑龙江大庆 163411 摘 要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。 关键词:甲烷 直接转化 利用技术 一、甲烷直接制备甲醇 (1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。 (2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。 二、甲烷制备低碳烯烃 (1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能。在680℃,甲烷转化率为27.3%,C2选择性为65.2%,C2收率为17.8%的结果;在700℃,C2收率达到21.8%。王凡,郑丹星通过平衡常数法研究了500-1000℃、0.1-3.0MPa,以及进料组成中甲烷与氧的摩尔比(即n0,CH4/n0,O2)为1-10下的甲烷转化率及其他各组分收率和选择性的变化情况,在对甲烷氧化偶联制烯烃体系的热力学平衡进行分析后发现,在甲烷氧化偶联制烯烃体系中,H2、CO 的生成相对容易,C2产物(C2H6、C2H4)不容易生成。实验为甲烷氧化偶联反应器和催化剂的开发研究提供热力学依据。由于甲烷氧化偶联制乙烯反应本身受动力学控制,C2烃单程收率低,产物分离困难。目前同时能使甲烷转化率、C2选择性之和达到或接近100%的催化剂为数不多,催化剂筛选成为其实现工业化的重要阻碍。 (2)等离子体催化甲烷合成烯烃。除了传统的催化剂活化甲烷合成乙烯外,电催化、等离子催化、激光表面催化也被用于甲烷氧化偶联的催化研究中。陈韩飞等综述了等离子体活化及等离子体与催化剂协同活化甲烷转化的国内外研究进展。同时对其反应机理进行了讨论,分析了当前利用等离子体活化甲烷所存在的问题,并提出了今后的研究方向。 (3)氯甲烷路线。1988年,TaylorC.E.等人提出了甲烷经氯甲烷合成汽油产品的循环利用途径。氯甲烷转化为低碳烯烃作为天然气利用的一个全新途径,已经引起了甲烷转化研究领域的关注。甲烷首先在催化剂的作用下发生氧氯化反应得到氯甲烷,氯甲烷干燥后在催化剂上转化为汽油产品,而过程中产生的HCl可以通过循环继续参与第一步的反应形成循环过程。使用分子筛催化剂可以将氯甲烷转化为烃类产品,但产物大多数以芳烃和烷烃为主,使用镁和磷镁修饰的催化剂可以提高产物中烯烃的选择性。张大治等经过研究认为镁的修饰对催化剂酸性的影响导致了产物中低碳烯烃的增加。 (4)天然气部分氧化制乙炔。天然气部分氧化制乙炔主要采用气相氧化法,主要有德国的BASF工艺、比利时的SBA工艺和意大利的Motecatini工艺。其中,以BASF工艺为主,约占80%。BASF 工艺原料中的O2,与CH4的摩尔比为0.6,在反应炉进行复杂的气相反应,主要反应通过部分甲烷进行部分氧化提供热量,剩余甲烷被加热到1500℃后裂解缩合为乙炔。 三、甲烷制备芳烃 (1)甲烷部分氧化制备芳烃。上个世纪80年代,Shepelev等对甲烷催化氧化制芳烃技术进行了研究,结果表明,在氧化条件下,甲烷合成芳烃的反应很难控制,甲烷的转化率很低,芳烃选择性和收率也很低,在经济上不具备开发前景。舒玉瑛等发现,不同方法制备的Mo/H-ZSM-5催化剂上甲烷的芳构化反应,对甲烷制备芳烃反应有较大的影响。 (2)甲烷无氧脱氢制备芳烃。从热力学角度来讲,甲烷直接转化为芳烃要比直接转化为乙烷和乙烯更为有利。而且,在无氧条件下也不生成CO和CO2。自1993年大连化学物理研究所首先报道了在无氧和连续流动的反应条件下,甲烷在Mo/HZSM-5催化剂上直接转化为芳烃以来,甲烷无氧芳构化已经成为甲烷直接催化转化研究中的一个重要分支,是目前甲烷直接转化的主要研究内容。魏飞等综述了利用甲烷直接脱氢制备芳烃的催化剂方面的研究情况,此外,郑海涛等人还研究了甲烷和丙烷混合气体在不同催化剂上的无

高一化学必修2《甲烷、乙烯》练习题[001]

高一化学必修2《甲烷、乙烯》练习题 班级姓名 一、选择题 1.在人类已知的化合物中,品种最多的是() A. 过渡元素的化合物 B. 第二主族元素的化合物 C. 第三主族元素的化合物 D. 第四主族元素的化合物 2. 下列物质中,属于有机物但不属于烃的是() A. CO2 B. CH3COOH C. Na2CO3 D. CH4 3.以下关于甲烷的说法中错误的是() A. 甲烷分子是由极性键构成的分子 B. 甲烷分子具有正四面体结构 C. 甲烷分子中四个C-H键是完全等价的键 D. 甲烷分子中具有非极性键 4.衡量石油化工发展水平的标志是() A. 乙烯产量 B. 丙烯产量 C. 汽油产量 D. 丁二烯产量 5.不可以用于区别乙烯和乙烷的气体是() A. 苯 B. 溴水 C. 酸性高锰酸钾溶液 D. 溴的四氯化碳溶液 6.甲烷中混有乙烯,欲除去乙烯得到纯净的甲烷,最好依次通过盛有()试剂的洗气瓶 A. 澄清石灰水,浓H2SO4 B. 酸性高锰酸钾溶液,浓H2SO4 C. 溴水,浓H2SO4 D. 浓H2SO4,酸性高锰酸钾溶液 7. 1mol CH4完全和Cl2发生取代反应,并生成等物质的量的四种氯代物,则需要氯气的物质的量为() A. 4 mol B. 3 mol C. mol D. mol

8.制取一氯乙烷最好的方法是() A. 乙烷与Cl2反应 B. 乙烯与Cl2反应 C. 乙烯与HCl反应 D. 乙烯与H2, Cl2反应 9. 关于烷烃性质的叙述中,不正确的是() A. 烷烃同系物随相对分子质量增大,熔沸点逐渐升高,常温下的状态由气态递变到液态,相对分子质量大的则为固态 B. 烷烃同系物的密度随相对分子质量增大逐渐增大 C. 烷烃跟卤素单质在光照条件下能发生取代反应 D. 烷烃同系物都能使溴水、高锰酸钾溶液褪色 10.下列物质沸点最低的是() A. 庚烷 B. 2-甲基丁烷 C. 正戊烷 D. 新戊烷 11.在标准状况下,取等物质的量的下列各烃,分别在足量氧气中燃烧,消耗氧气最多的是() A. CH4 B. C2H6 C. C2H4 D. C3H6 12.某气态烃在密闭容器中与足量的氧气混合,用电火花点燃,完全燃烧后,容器内保持压强不变(120℃),则该烃是() A. CH4 B. C2H6 C. C2H4 D. C3H6 13.在一个密闭容器中,盛有N2和H2,它们的起始浓度分别是L和L,在一定条件下发生N2+ 3H2= 2NH3 ,10min后测得N2的浓度是L,则在这10min内N2的平均反应速率是() A. 0.2mol/(L·min) B. mol/(L·min) C. mol/(L·min) D. mol/(L·min) 14.两种气态烃共,完全燃烧后得(标准状况)二氧化碳和一定量的水,下列说

聚乙烯淤浆催化剂流程(精)

淤浆催化剂系统 齐格勒 -纳塔催化剂生产的树脂使用淤浆催化剂 , 淤浆催化剂由原浆催化剂和还原剂混合制得。原浆催化剂淤浆存贮在可再利用的钢瓶中 ,在卸料前 ,要滚动原浆催化剂输送钢瓶 ,以确保固体完全悬浮在矿物油中 ,设置滚瓶机来实现此目的。滚动后的钢瓶快速从贮存区传送至催化剂供应区 , 用氮气将原浆浆液从钢瓶中压至浆液进料罐。浆液进料罐搅拌器连续搅拌 ,以保证固体很好地分散 ,并保持在悬浮状态。 还原原浆浆液需要加入还原剂 T3和添加剂 DC , 这些还原剂稀释于矿物油中 , 在钢瓶中贮存。 氮气将还原剂 T3和添加剂 DC 从钢瓶中压出 , 送入各自的进料罐中。进料罐起缓冲作用 , 使得在更换钢瓶时系统仍能连续操作。浆液进料罐中的原浆浆液由变速电机驱动的浆液进料泵送入反应器 , 原浆浆液流量由质量流量计测量。 DC 进料泵、 T3进料泵和它们共用的备用泵 T3、 DC 进料泵都是由变速电机驱动的 , 用于将添加剂 T3和添加剂 DC 连续不断地从各自的进料罐 ,送入浆液进料泵下游的原浆浆液线。 DC 和 T3的流量由质量流量计测量 , 其流量根据原浆浆液的质量流量来控制。 添加剂 T3和添加剂 DC 从不同的注入点注入原浆浆液线 , 添加剂T3在紧靠浆液进料泵下游处注入原浆浆液线。 T3和原浆的混合物 流入带搅拌器的 T3活化罐 ,并在那里进行反应。添加剂 DC 注入从 T3活化罐出来的 T3和原浆的混合液管线中 , 在带搅拌器的 DC 活化罐中连续反应 , 被还原的催化剂送入反应器 , 作为输送气的高压精制氮气可协助浆液进入反应器。

生产双峰树脂使用的是双峰淤浆催化剂 BMC-200, 双峰淤浆催化剂贮存在可再利用的输送钢瓶内。卸料之前 ,要滚动输送钢瓶 ,来保证固体完全悬浮在矿物油中 , 使用滚瓶机来实现这一目的。 滚动后的钢瓶要快速从存贮区运送到淤浆催化剂供应区 , 用氮气将双峰淤浆催化剂从输送钢瓶中压至 BMC 进料罐 , 使用钢瓶秤判断催化剂是否已全部加入到 BMC 进料罐中。 BMC 进料罐中的搅拌器持续不断 搅拌双峰淤浆催化剂 , 使固体在进料罐中分散良好 , 维持悬浮状态。在双峰淤浆催化剂进入反应器之前向其中注入调整液 (XCAT TRIM 。贮存在钢瓶中的调整液由氮气压送至调整液进料罐。调整液进料罐设计有一个小的缓冲空间 , 这可以保证更换钢瓶时进料罐仍能连续操作。 BMC 进料罐中的双峰淤浆催化剂通过 BMC 进料泵进入反应器 , 双峰淤浆催化剂的流量由质量流量计测量。 调整液 XCAT TRIM 注入反应器之前 ,用调整液进料泵持续不断地送入双峰淤浆催化剂管线。调整液流量由质量流量计测量 ,根据双峰淤浆催化剂的质量流量来控制。 在生产双峰管材树脂的过程中 , 要将添加剂 D3加入到反应器 中。添加剂 D3被贮存在可再利用的钢瓶中 ,在卸料前要滚动钢瓶 ,以保证固体完全悬浮在矿物油中 , 滚动后的钢瓶应快速从存贮区送到双峰催化剂供应区。用氮气把添加剂 D3从输送钢瓶中压至 D3进料 罐 ,添加剂 D3由 D3浆液进料罐搅拌器连续地搅拌 , 以确保固体在其中分散良好且能维持悬浮。来自 D3进料罐的添加剂 D3被 D3进料泵送入反应器 ,添加剂 D3的流量由质量流量计测量。

甲烷一步法制乙烯技术进展

甲烷一步法制乙烯技术进展 甲烷一步法制乙烯技术进展2017-01-16 长兴岛石 化市场长兴岛石化市场微信号changxingdao01 功能介绍注册成品油贸易公司,执照经营范围给予汽柴油城镇燃气危险品等经营范围,可开具发票,注册成品油公司,文杰很专业 作为基础工业原料,乙烯在石化工业中占有重要地位,乙烯产量是衡量一个国家石油化工发展水平的重要标志之一。除北美和中东,世界上包括我国在内的大部分国家和地区以石脑油为原料,采用蒸汽裂解法制乙烯。该方法不仅耗能高、排放温室气体多、成本高,而且由于原料来自于石油,还需要挤占宝贵的石油资源。乙烯是一个非常大的市场,每年约3300亿英磅,相当于每年2000多亿美元的市场,是有价值的商品化二碳化学品,它可齐聚成为运输燃料。乙烯可进行二个、四个、六个、八个分子齐聚,或者一百万个分子可成为聚乙烯,50万个分子就变成芳纶等等。今天,乙烯分子来自于油,是通过称之为蒸汽裂解的过程制取的。这是化工行业大的能源消费用户和大的CO2产生源,因为其是吸热反应。为了从石脑油制取乙烯,要与800摄氏度的过热蒸汽相混合,并基本上采用物理力量来打断碳-碳键。这是一种强固的技术,必须以石油消耗为代价,要由燃烧才能得到大量热

量,以有利于吸热化学的进行,有关其能源足迹,生产1Kg 的聚乙烯要产生2Kg的CO2。天然气(主要成分是甲烷)制乙烯的路线分直接法和间接法两种。相比间接法冗长繁琐的过程,直接法只需一步即可将甲烷转化成乙烯,具有很高的经济价值,非常具有吸引力。经化学化工界30多年的努力终于变成现实—储量丰富、价格低廉的天然气可直接转化为世界上大宗的化工基础原料乙烯。甲烷是丰富的,因为它是天然气的主要成份,世界上许多地方都有大量的天然气储藏。然而,将甲烷偶联制取乙烯的工艺仍然需要革新,采用现在催化剂技术的乙烯产率还不足以使该工艺能合理地商业化 推行。甲烷直接制化学品转化工艺要达到经济上合理,将还需要推进催化剂、工艺过程和分离的进步。为减少石油依赖,各国开展以主要成分为甲烷的天然气制烯烃的研究。天然气制乙烯的路线分直接法和间接法两种。相比间接法冗长烦琐的过程,直接法只需一步即可将甲烷转化成乙烯,具有很高的经济价值,非常具有吸引力。但由于甲烷的选择活化和定向转化是世界级难题,被誉为整个化学界的“圣杯”,因而从上世纪80年代至本世纪初,学界始终没能开发出工业可行的甲烷直接制乙烯工艺。陶氏化学公司的启动计划涵盖了几种替代原料制化学品路线,包括合成气路线。从合成气生产烯烃业已开发出来,但投资密集。避开合成气,从甲烷直接转化为烯烃作为工业目标提出已有几年时间。人们正在进一

聚乙烯催化剂

天津科技大学本科生 毕业设计(论文)外文资料翻译 学院:材料科学与化学工程学院 系(专业):化学工程与工艺 姓名:杜波 学号: 06033403

以MeCl2为载体的TiCl4催化剂的发现及进 展 NORIO KASHIWA R & D Center, Mitsui Chemicals, Incorporation, 580-32 Nagaura, Sodegaura, Chiba 299-0265, Japan Received 20 August 2003; accepted 22 August 2003 摘要:聚乙烯(PE)和聚丙烯(PP)作为聚烯烃的代表物,是我们日常生活必不可少的原料。TiCl3催化剂是由Ziegler和Natta在20世纪50年代确定的,由此诞生出了聚烯烃工业。然而,由于催化剂的活性和立体选择性很低,导致在PE和PP 工业生产中需要清除催化剂残渣和无规产物。我们发现以MgCl2为载体的TiCl4催化剂,活性提高了100多倍,并且具有更高的立体选择性,这样我们不需要清除残渣,是一次工艺革新。此外,缩小了PE和PP的分子量分布,可精确控制聚合物结构,生产低密度聚乙烯,在低温下生产热封膜。产品革新的一个典型例子就是现在可以用这种高立体定向性、窄分子量分布的高性能抗冲聚合物代替金属做汽车保险杠。这些工艺与产品的革新奠定了聚烯烃工业。最新的以MgCl2 为载体的TiCl4催化剂能很完美的控制PP等规度,而且有望做进一步的改进和完善。 关键词:MgCl2作载体TiCl4催化剂;聚烯烃;立体定向性聚合物;共聚物;聚乙烯(PE);聚丙烯(PP) Norio Kashiwa博士是三井化学公司的高 级研究人员,是公司专门为他安排的职位。 1964年毕业于日本Osaka大学,于1966年获 得该校工程硕士学位。同年,他进入了 Mitsui石油化学公司。1968年他发现了以 MgCl2作为载体的TiCl4催化剂。这种催化 剂的引入掀起了聚烯烃领域内产品和工艺 的革新,现在这类催化剂成为全球聚烯烃 产品的主要制剂。从此之后,他一直从事 催化剂研究的前沿工作,除了MgCl2载体型催化剂,还有单活性中心茂金属催化剂和后过渡金属催化剂的研究。1985年在Kyoto大学获得博士学位。1993年成为三井石化工业的董事,1995年成为公司常务董事,一直到1997年就任现值。他也是前日本化学会会长。他在以MgCl2作为载体的TiCl4催化剂方面的研究成果,使得他在1985年获得日本化工协会授予的技术开发奖,1986年获得日本化学工程师奖,在2003年因其关于茂金属催化剂方

甲烷(CH4)的直接转化利用技术

甲烷(CH4)的直接转化利用技术 摘要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。 关键词:甲烷直接转化利用技术 一、甲烷直接制备甲醇 (1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。 (2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。 二、甲烷制备低碳烯烃 (1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性

聚乙烯生产技术及其催化剂的研究进展

聚乙烯生产技术及其催化剂的研究进展 文章对目前聚乙烯(PE)催化剂,其中包括的主要内容有铬系、钛系、非茂金属等综合催化剂的发展,这些都直接带动了PE的生产过程以及技术的发展,PE的不断研究以及发展,使得PE的性能得到了更快的发展。新的生产技术主要为以下几点:双峰PE 生产技术、冷凝态和超冷凝态技术等。文章将目前PE 生产技术的发展方向以及催化剂的研发情况进行了分析,指出目前发展还存在着一些不足,对今后PE工业的发展做出了简单的规划。 标签:聚乙烯;催化剂;工艺;超冷凝态;进展 聚乙烯(PE)是目前合成树脂中应用比较广泛的一种,在这样的条件下,烯烃催化剂的技术进步对于聚乙烯技术的发展将会起到极为关键的作用。PE的价格往往比其他材料要低,所以目前在工业以及农业等行业中,得到了较好的运用,在塑料行业中所处的地位尤其是关键的,在上世纪八十年代之前,聚乙烯的相关研究主要集中在催化剂的效率问题上,通过几十年人们不断的,所以当前的催化效率等级不断提升,聚合物性能的把握方向也不断加强,优化了生产的工艺,降低了能源与资源的消耗,对于产业结构也带来了很大的改善。 1 聚乙烯生产技术动向 高压法生产LDPE是目前生产聚乙烯的常用方式,同时在此基础之上,釜式法和管式法都已经取得了比较好的成效,目前这两种技术是同时在发展的。在一些科技比较先进的国家,一般会采用管式法生产工艺。而且,国外的一些企业往往会用低温高活性引发聚合体系,从而在控制反应温度的情况下保障结构完成。高压法生产LDPE未来发展的方向就是大型规模化;低压法生产HDPE 和LLDPE,一般使用的催化剂是钛系的,在日韩等国家一般会使用齐格勒型钛系催化剂,在欧美等国家,使用铬系催化剂是比较普遍的。 1.1 双峰PE的发展 双峰PE得工艺在海外产生的比较早,所以发展的也比较成熟。国外多数的企业已经初步具备了双峰P E 的生产技术,其中分为两大类,有双峰HDPE和双峰LLDPE。 双峰技术于在三十年前,就已经开拓了HDPE薄膜市场,目前在管道技术中取得了较好的成效。双峰PE是指相对分子质量分布曲线呈现2个峰值的P E 树脂,对于常规的P E 相对分子质量分布,一般只存在一个峰。普通P E 树脂的再可加工性以及化学的性质等方面是存在一定的差异的,高相对分子质量一般就意味着较好的力学性能,与此同时往往会降低熔体流动速率低,使得后期的加工存在问题。而双峰PE的出现可以较好的解决这一问题,在保障较好的力学性能的前提之下,使得产品利于加工,在目前的工业塑料以及电线电缆等行业和领域,均取得了较好的成效的地位。双峰PE目前最新研发出了PE10.0,相比较于

甲烷乙烯苯知识点总结复习课程

甲烷乙烯苯知识点总 结

专题复习16--甲烷乙烯苯知识点总结核心知识图 1.烃的分类、通式和主要化学性质 氧化:燃烧 饱和烃:烷烃 C n H2n+2(n≥1) 甲烷取代 结构:链状、碳碳单键裂解 链烃氧化:燃烧、使KMnO4(H+)褪色 (脂肪烃) 烯烃 C n H2n(n≥2) 乙烯加成:H2、 X2、 HX 、H2O等 结构:链状、碳碳双键加聚 氧化:燃烧、使KMnO4(H+)褪色 炔烃 C n H2n-2(n≥2) 乙炔加成 不饱和烃结构:链状、碳碳叁键加聚 氧化:燃烧、使KMnO4(H+)褪色 烃二烯烃 C n H2n-2 (n≥3) 1,3—丁二烯加成:1,2加成、1,4加成 结构:链状、两个碳碳双键加聚 饱和环烃:环烷烃C n H2n (n≥3) 结构:环状、碳碳单键氧化:燃烧、不能使KMnO4(H+)褪色,不能因反应使反应使溴水褪色 苯加成 环烃取代:卤代、硝化、磺化 苯及其同系物C n H2n-6 (n≥6) 结构:环状、大 键 不饱和环烃:芳香烃氧化:燃烧、使KMnO4(H+)褪色 稠环芳烃:萘、蒽甲苯取代 加成 甲烷的化学性质 通常情况较稳定,与强酸、强碱、KMnO4等均不反应。 (1)氧化反应甲烷燃烧的热化学方程式为: (2)取代反应 ①定义:有机物分子里的某些被其他 所替代的反应。 ②甲烷与Cl2反应

乙烯 烯烃知识点总结 一、乙烯的组成和结构 乙烯分子的结构简式:CH 2 〓 CH 2 乙烯分子的结构: 键角约120°,分子中所有原子在同一平面,属平面四边形分子。 二、乙烯的制法 工业上所用的大量乙烯主要是从石油炼制厂和石油化工厂所生产的气体中分离出来的。 实验室制备原理及装置 三、乙烯的性质 1.物理性质:无色、稍有气味、难溶于水、密度小于空气的密度。 2.化学性质 (1)氧化反应 a.燃烧 CH 2=CH 2+3O 2??→?点燃 2CO 2+2H 2O (火焰明亮,并伴有黑烟) b.使酸性KMnO 4溶液褪色 (2)加成反应:有机物分子中双键(或叁键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。 (溴的四氯化碳溶液的红棕色褪去) 乙烯除了与溴之外还可以与H 2O 、H 2、卤化氢、Cl 2等在一定条件下发生加成反应,如工业制酒精的原理就是利用乙烯与H 2O 的加成反应而生成乙醇. 3)聚合反应 n CH 2==CH 2???→?催化剂[— CH 2—CH 2 ]— n ( 聚乙烯) 其中 CH 2=CH 2 为单体 —CH 2—CH 2— 为链节 n 为聚合度 四、乙烯的用途 作植物生长的调节剂,还可以作催熟剂;可用于制酒精、塑料、合成纤维、有机溶剂等, 五、烯烃 1.烯烃的概念:分子里含有碳碳双键的一类链烃 2.烯烃的通式:C n H 2n (n ≥2) 最简式:CH 2 可见,烯烃中碳和氢的质量分数别为85.7%和14.3%,恒定不变 环烷烃的通式与烯烃的通式相同,故通式为C n H 2n 的烃不一定是烯烃,如右图中其分子符合C n H 2n ,但不是烯烃而是环烷烃。 (环丁烷)

甲烷氧化偶联制乙烯技术

甲烷氧化偶联制乙烯技术 宁春利王清勋李学福张春雷 (大庆油田天然气分公司天然气利用研究所) 摘要甲烷催化氧化偶联反应(OCM)的提出为由资源丰富且相对廉价 的天然气替代石油路线制取乙烯提供了新 的可能途径,并且该途径是通过一步法获 取乙烯,在现有乙烯生产工艺中最为简捷。 经过近二十年的研究,在OCM的催化剂、 反应工艺以及工程开发等方面已取得了较 大进展。 主题词甲烷天然气氧化偶联乙烯催化剂 11OCM催化剂的研究进展 OCM技术的核心是催化剂的研究与开发。在所研制的催化剂中,显示出较佳性能的催化剂大体可以分为三类:碱金属与碱土金属氧化物;稀土金属氧化物和过渡金属复合氧化物。 (1)碱金属与碱土金属氧化物。未改性的碱土金属本身具有活性,而加入碱金属后,可能引起晶格畸变,增加了活性中心,并减少了表面积,防止甲烷的深度氧化,从而提高了催化剂的活性和选择性。目前,活性较高的催化剂中多半含有碱金属。在碱土金属中以Mg、Ca较为合适,碱金属则以Li、Na等研究的较多,另外加入稀土元素对提高催化剂的活性、选择性和稳定性也有良好的作用。但这类催化剂存在着高温下碱金属流失,使催化剂失活的问题,有待进一步的研究解决。 (2)稀土金属氧化物。稀土金属氧化物有较高的活性和选择性,如Sm2O3、La2O3、Pr2O3及Ce)Yb等都已证明具有OCM活性。稀土经碱金属或碱土金属改性后显示出很好的活性和选择性,受到研究者的普遍注意。其中以Sm2O3系催化剂的活性较好,尤其是LiCl改性后,活性得到进一步的改进。 (3)过渡金属复合氧化物。OCM反应中使用的过渡金属复合氧化物催化剂中,活性比较好的有Mn、Pb、Zn、Ti、Cr、Fe、Co、Ni等。过渡金属氧化物对OCM虽具有活性,但选择性不高,所以一般用碱金属、碱土金属氧化物或卤化物等改性,可以大大提高其对OCM反应的活性。其中以中科院兰州化物所开发的Na-W-Mn/SiO2系列催化剂的性能最为优异,该体系不仅具有高的甲烷转化率和C2烃选择性,通过流化床和寿命试验证明具有很好的流化床长期操作稳定性,同时还适合011 ~111MPa的加压反应,可以提高OCM反应中乙烯的含量。 国内外对上述三类催化剂进行了大量的研究。但结果表明,采用常规的连续流动反应装置,由于大量气相氧的存在,很难控制产物的深度氧化,产物的选择性不高,C2烃单程收率很难突破25%。一般认为,要使此过程具有经济竞争力,甲烷转化率要超过35%,C2烃收率要在30%以上。因此,在继续开发高活性催化剂的同时,另一个研究重点是放在新型膜催化反应器以及循环反应工艺的开发上。通过使用多孔或厚催化陶瓷膜,使氧气和甲烷分别通过膜的两侧,氧气通过解离和体相扩散透过膜在另一侧表面上与甲烷反应。通过控制氧气的透过量,使其与OCM反应速度相一致,可以大大减少气相氧浓度,从而提高产物的选择性。但由于在膜反应器的制备以及适当的膜催化材料的选择上还存在很多问题,迄今研究者们所采用的膜催化反应器中,C2烃的收率还不高。最近国外开发的几种循环工艺,使乙烯的收率得到很大提高,取得了较大进展。 21OCM的工艺开发进展 在OCM的研究中,研究者大多采用两种反应方式。一种是甲烷与氧交替进入催化剂床层(Re2 dox Mode),当甲烷单独通入催化剂时利用催化剂的晶格氧进行氧化反应,此时催化剂被还原,然后再单独通入氧化剂,把还原态的催化剂又氧化成氧 21 油气田地面工程第21卷第6期(2002111)***防腐化工

相关文档
最新文档