甲烷一步法制乙烯技术进展

甲烷一步法制乙烯技术进展
甲烷一步法制乙烯技术进展

甲烷一步法制乙烯技术进展

甲烷一步法制乙烯技术进展2017-01-16 长兴岛石

化市场长兴岛石化市场微信号changxingdao01 功能介绍注册成品油贸易公司,执照经营范围给予汽柴油城镇燃气危险品等经营范围,可开具发票,注册成品油公司,文杰很专业

作为基础工业原料,乙烯在石化工业中占有重要地位,乙烯产量是衡量一个国家石油化工发展水平的重要标志之一。除北美和中东,世界上包括我国在内的大部分国家和地区以石脑油为原料,采用蒸汽裂解法制乙烯。该方法不仅耗能高、排放温室气体多、成本高,而且由于原料来自于石油,还需要挤占宝贵的石油资源。乙烯是一个非常大的市场,每年约3300亿英磅,相当于每年2000多亿美元的市场,是有价值的商品化二碳化学品,它可齐聚成为运输燃料。乙烯可进行二个、四个、六个、八个分子齐聚,或者一百万个分子可成为聚乙烯,50万个分子就变成芳纶等等。今天,乙烯分子来自于油,是通过称之为蒸汽裂解的过程制取的。这是化工行业大的能源消费用户和大的CO2产生源,因为其是吸热反应。为了从石脑油制取乙烯,要与800摄氏度的过热蒸汽相混合,并基本上采用物理力量来打断碳-碳键。这是一种强固的技术,必须以石油消耗为代价,要由燃烧才能得到大量热

量,以有利于吸热化学的进行,有关其能源足迹,生产1Kg 的聚乙烯要产生2Kg的CO2。天然气(主要成分是甲烷)制乙烯的路线分直接法和间接法两种。相比间接法冗长繁琐的过程,直接法只需一步即可将甲烷转化成乙烯,具有很高的经济价值,非常具有吸引力。经化学化工界30多年的努力终于变成现实—储量丰富、价格低廉的天然气可直接转化为世界上大宗的化工基础原料乙烯。甲烷是丰富的,因为它是天然气的主要成份,世界上许多地方都有大量的天然气储藏。然而,将甲烷偶联制取乙烯的工艺仍然需要革新,采用现在催化剂技术的乙烯产率还不足以使该工艺能合理地商业化

推行。甲烷直接制化学品转化工艺要达到经济上合理,将还需要推进催化剂、工艺过程和分离的进步。为减少石油依赖,各国开展以主要成分为甲烷的天然气制烯烃的研究。天然气制乙烯的路线分直接法和间接法两种。相比间接法冗长烦琐的过程,直接法只需一步即可将甲烷转化成乙烯,具有很高的经济价值,非常具有吸引力。但由于甲烷的选择活化和定向转化是世界级难题,被誉为整个化学界的“圣杯”,因而从上世纪80年代至本世纪初,学界始终没能开发出工业可行的甲烷直接制乙烯工艺。陶氏化学公司的启动计划涵盖了几种替代原料制化学品路线,包括合成气路线。从合成气生产烯烃业已开发出来,但投资密集。避开合成气,从甲烷直接转化为烯烃作为工业目标提出已有几年时间。人们正在进一

步开发以使其在技术上可行,通过可行的工艺过程使甲烷偶联以制取乙烯,对开发偏远天然气资源将具有重大优点。陶氏化学公司期望在今后10年内开发出甲烷转化制取乙烯工艺。被称之为甲烷氧化耦合(OCM)的反应是石化工业一直试图在开发已达30余年的路线,但传统的催化剂技术的缺陷使其不可能达到经济上的可行性。工业上可行的OCM方法探索了好几十年,但过去的努力均未成功,这是由于使甲烷活化需要的高温降低了反应的选择性。采用以前研究过的许多催化剂,甲基自由基团在转化为所需的乙烯产品之前,就滞留在催化剂表面,通常是非选择性地氧化为CO2。而采用多相和均相催化剂用于甲烷氧化耦合(OCM)已取得了一些成功,但没有实现商业化,这是因为热动力学、选择性的反应性及产率还不够高,以致于尚不经济。据锡卢里亚公司估计,该公司开发的这一技术可望使石化行业在原材料及操作成本上节省数百亿美元/年。天然气资源在继续增长,而世界上可获得的石油供应正在变得越来越昂贵。虽然天然气中的甲烷将继续扮演一个重要的角色,作为清洁燃烧替代煤炭用于发电,其丰度(为天然气中的乙烷?10倍以上)和价格(为乙烷价格的一半左右)带动了宽范围应用的努力,以直接利用甲烷作为原料生产乙烯和其他化学品,而不是使它作为燃料燃烧。如果成功的话,可能使乙烯直接从甲烷生产在商业上成为可行的方式,这可望成为化学工业和石油工业的一个

分水岭。不少公司都在进行使甲烷制乙烯技术走向商业化的研发,包括雪佛龙、埃克森美孚、壳牌和BP都持有甲烷制乙烯技术广泛的专利组合,几个大型化工企业也在这方面有一些知识产权(巴斯夫公司,路博润公司,沙特基础工业公司,GE公司,霍尼韦尔公司等)。对甲烷氧化偶联(OCM)感兴趣的还有波兰国家研究实验室化肥研究所。突破的关键在催化剂。2010年,锡卢里亚公司创造性地使用生物模板精确合成纳米线催化剂,使用高通量技术从大量备选催化剂中筛选出合适的元素组成,开发出工业可行的甲烷直接制成乙烯催化剂。该催化剂可在低于传统蒸汽裂解法操作温度200℃~300℃的情况下,在5~10个大气压下,高效催化甲烷转化成乙烯,活性是传统催化剂的100倍以上。锡卢里亚公司设计的反应器分为两部分,一部分用于将甲烷转化成乙烯和乙烷,另一部分用于将副产物乙烷裂解成乙烯,裂解反应所需的热量来自甲烷转化反应放出的热量。这种设计使反应器的给料既可以是天然气也可能是乙烷,同时大化地节约了能源。研究指出,基于纳米技术的途径合成的催化剂将天然气转化为乙烯,可望成为原油蒸汽裂解的替代方案。美国锡卢里亚技术(SiluriaTechnologies)公司于2010年12月10日宣布,开发出一种合成方法,该方法可调整催化剂表面的形态学,从而可在低温下使甲烷氧化耦联(OCM)反应具有高的性能。采用工业化学范畴的合成分子生物学,锡卢

里亚公司的催化剂合成过程,系在遗传改性的噬菌体(细菌引发的病毒)表面使用蛋白质,作为催化剂材料不断增长的纳米线晶核形成的活性中心,通过在工程化生物学模板上使催化剂纳米线增长,锡卢里亚公司可得到特定的结晶体结构和表面形态学,而不会形成该材料的常规结晶。继而,新的结晶结构可使具有独特性质的催化剂活性中心增多,这种独特性质对经济可行的OCM过程所需的选择性和产率是至关重要的。这种催化剂材料是专有的含有过渡金属的金属氧化物,它的设计应用可与现有的石化工业基础设施相匹配。锡卢里亚公司已开发出有宽范围结晶结构的化合物库,并且试验了它们在催化OCM反应中的表现。锡卢里亚公司开发的天然气直接制乙烯工艺(新路线)的技术优势,主要体现在五个方面:与传统的石脑油裂解制乙烯相比,成本低、温室气体排放少、节能、经济价值高;乙烯可进一步转化为液体燃料,进一步提高了整条路线的经济价值;原料要求不苛刻,甲烷可来自天然气也可来自生物质,氧源可以是纯氧也可以是富氧空气、压缩空气等;能利用已有的乙烯生产装置和回收设备,改造成本低;对于天然气资源丰富国家,具有重要战略价值。除了对烯烃工业的影响,新路线还将影响包括汽油、柴油和航空燃油在内的液体燃料生产。锡卢里亚公司同时开发了乙烯制液体燃料技术,这意味着多了一条从天然气出发制液体燃料的路线,与前基于费托合成法的路线相比,

锡卢里亚公司的这条路线不需要经过高耗能的费托合成,仅投资成本便可节省25%~30%。目开发天然气直接制乙烯已初获成果的公司还有:美国西北大学和弗吉尼亚大学的天然气制乙烯研究、合成燃料公司将天然气转化为乙炔再转化成乙烯的研究、美国霍尼韦尔国际公司开发从天然气甲烷生产乙烯技术以及我国大连化物所甲烷高效转化研究。天然气直接制乙烯新路线的开发成功或将给传统以石油为原料的乙

烯行业带来重大变革。建议我国借鉴“十二五”规划甲醇制烯

烃发展的成功经验,将天然气直接制乙烯研究列入国家“十三五”有关发展规划中。组织研究机构与石化企业开展研发合作,推动基础研究成果尽快转化为工业化生产,破解乙烯行业当前的原料来源瓶颈,并降低生产成本,增强我国乙烯行业及下游产业的竞争力。

关注该公众号

聚乙烯醇新型工艺技术的研究进展

聚乙烯醇新型工艺技术的研究进展 摘要: 综述了聚乙烯醇的发展历程和国内外的研究现状。介绍了聚乙烯醇的生产原料、合成高聚合度聚乙烯醇的聚合方法和引发方式,以及合成低聚合度聚乙烯醇方法的研究进展。同时从醇解过程着手简述了聚乙烯醇解工艺和醇解设备的研究和应用状况,并对中国聚乙烯醇行业的 发展提出建设性的意见。 关键词:聚乙烯醇; 新型工艺技术;研究 聚乙烯醇( PV A) 是1924 年德国的化学家赫尔曼和汉奈将NaOH 加入聚醋酸乙烯酯( PV Ac)中首次完成实验室合成的,1926 年实现工业化生产之后在全球范围内推广。PV A 可以根据不同的合成方法制备出性能各异的高分子聚合物,性能介于塑料和橡胶之间。其粘结性、耐油性、胶体 保护性、阻隔性、可降解性等特殊优异的性能大幅拓宽了它的应用领域。PV A 的研究及生产随着应用领域的不断扩大而不断深入。20 世纪80 年代中后期,国内逐步开始PV A 多用途的研究。PV A 新产品的研究与开发已成为国内外研究的热点课题. 1 目前国内外聚乙烯醇的工艺技术及产品 中国从1963 年首次引进PV A 生产工艺以来,迄今已有13 家生产企业,产量跃居全球第一。目前已有的生产工艺有乙烯法和乙炔法,分别以乙烯和乙炔为原料制备PV Ac 。再经过醇解得到PV A。根据用碱量的不同分为高碱醇解和低碱醇解两种。国内目前PV A 的聚合度主要为中等聚合度, 醇解度的范围主要有78 %、88 %、98 %和完全醇解的98 %~100 %。大宗产品PV A1799 , 主要用于纱浆料和纺织助剂。PV A2099 在盐水的催化作用下与甲醛缩合而产生具有耐水性的聚乙烯醇缩甲醛高分子化合物,广泛应用于建筑物和内外墙壁涂料。国外利用不同聚合度和醇解度具有不同的性能的特点,已生产出各种高低聚合度和醇解度的聚乙烯醇产品,高聚合度有的高达2 500~4 500 ,甚至到10 000 ;低聚合度产品的聚合度低于100 、醇解度小于50 %的聚乙烯醇产品也已问世。目前,国外已能生产出不同聚合度、醇解度的聚乙烯醇产品品种在50 种以上。特别是日本可乐丽公司生产的KH220 和LL207 ,作为PVC 聚合的悬浮剂,基本上垄断了中国的市场。中国还在加大对PV A 多品种、多用途的开发,缩短与发达国家的差距。 2 PV A 新型工艺技术的研究概况 当前PV A 新型工艺技术开发的热点主要是两个极端产品, 主要从生产的原料, 高聚合度PV A 和低聚合度PV A 的合成方法,以及在醇解过程中醇解工艺和醇解设备方面进行研究。下面分别从几个方面简述聚乙烯醇新型工艺技术的研究概况。 2. 1 生产原料 中国的13 家企业都是以天然气和电石为原料生产PV A ,技术相当成熟。最近美国哈尔康研究所开发了以甲醇和合成气制取醋酸乙烯工艺。由于中国石油、天然气资源并不丰富,要实现乙炔路线向乙烯、天然气路线的转换成本很高,而煤炭资源相对丰富,由煤生产甲醇和合成气制取醋酸乙烯是美国哈尔康研究和发展公司开发的新技术,据报道此工艺路线生产成本将比乙烯法或天然 气乙炔法低21 %。而在乙烯气相法工艺中,采用Leap 流化床工艺建厂或改扩建,在一定的生产规模下,投资费用降低30 %。利用丰富的煤炭资源,实现PV A 大规模工业化生产一定会有广阔的市场前景。目前, Halcon 公司正在开发以醋酸甲酯为原料的合成气路线,其主要的步骤是醋酸甲酯

甲烷乙烯苯知识点总结

专题复习16--甲烷乙烯苯知识点总结 核心知识图 1.烃的分类、通式和主要化学性质 氧化:燃烧 饱和烃:烷烃C n H2n+2(n≥1) 甲烷取代结构:链状、碳碳单键裂解 链烃氧化:燃烧、使KMnO4(H+)褪色 (脂肪烃) 烯烃C n H2n(n≥2) 乙烯加成:H2、X2、HX 、H2O等 结构:链状、碳碳双键加聚 氧化:燃烧、使KMnO4(H+)褪色 炔烃C n H2n-2(n≥2) 乙炔加成 不饱和烃结构:链状、碳碳叁键加聚 氧化:燃烧、使KMnO4(H+)褪色 烃二烯烃C n H2n-2 (n≥3) 1,3—丁二烯加成:1,2加成、1,4加成 结构:链状、两个碳碳双键加聚 饱和环烃:环烷烃C n H2n (n≥3) 结构:环状、碳碳单键氧化:燃烧、不能使KMnO4(H+)褪色,不能因反应使反应使溴水褪色 苯加成 环烃取代:卤代、硝化、磺化 苯及其同系物C n H2n-6 (n≥6) 结构:环状、大 键 不饱和环烃:芳香烃氧化:燃烧、使KMnO4(H+)褪色 稠环芳烃:萘、蒽甲苯取代 加成 甲烷的化学性质 通常情况较稳定,与强酸、强碱、KMnO4等均不反应。 (1)氧化反应甲烷燃烧的热化学方程式为: (2)取代反应 ①定义:有机物分子里的某些被其他 所替代的反应。 ②甲烷与Cl2反应 乙烯烯烃知识点总结 一、乙烯的组成和结构 乙烯分子的结构简式:CH2〓 CH2 乙烯分子的结构: 键角约120°,分子中所有原子在同一平面,属平面四边形分子。 二、乙烯的制法 工业上所用的大量乙烯主要是从石油炼制厂和石油化工厂所生产的气体中分离出来的。

实验室制备原理及装置 三、乙烯的性质 1.物理性质:无色、稍有气味、难溶于水、密度小于空气的密度。 2.化学性质 (1)氧化反应 a.燃烧 CH 2=CH 2+3O 2??→?点燃 2CO 2+2H 2O (火焰明亮,并伴有黑烟) b.使酸性KMnO 4溶液褪色 (2)加成反应:有机物分子中双键(或叁键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。 (溴的四氯化碳溶液的红棕色褪去) 乙烯除了与溴之外还可以与H 2O 、H 2、卤化氢、Cl 2等在一定条件下发生加成反应,如工业制酒精的原理就是利用乙烯与H 2O 的加成反应而生成乙醇. 3)聚合反应 n CH 2==CH 2???→?催化剂[— CH 2—CH 2 ]— n ( 聚乙烯) 其中 CH 2=CH 2 为单体 —CH 2—CH 2— 为链节 n 为聚合度 四、乙烯的用途 作植物生长的调节剂,还可以作催熟剂;可用于制酒精、塑料、合成纤维、有机溶剂等, 五、烯烃 1.烯烃的概念:分子里含有碳碳双键的一类链烃 2.烯烃的通式:C n H 2n (n ≥2) 最简式:CH 2 可见,烯烃中碳和氢的质量分数别为85.7%和14.3%,恒定不变 环烷烃的通式与烯烃的通式相同,故通式为C n H 2n 的烃不一定是烯烃,如右图中其分子符合C n H 2n ,但不是烯烃而是环烷烃。 (环丁烷) 一般,我们所说的烯烃都是指分子中只含一个碳碳双键的不饱和烃,所以也叫单烯烃,也还有二烯烃:CH 2=CH - CH=CH 2 苯及其同系物知识点 苯 分子结构 分子式:C 6H 6 最简式:CH 结构式: 结构简式:或 比例模型: 球棍模型: 空间构型: 1、具有平面正六边形结构,所有原子共平面 2、键角都是120°。 3、不存在单双键交替排列,6个碳碳键完全相同,是一种介于单键和双键之间的独特的化学键。

乙烯裂解炉工作流程

管式炉裂解 guanshilu liejie 管式炉裂解 pyrolysis in tubular furnace 石油烃通过管式裂解炉进行高温裂解反应以制取乙烯的过程。它是现代大型乙烯生产装置普遍采用的一种烃类裂解方法。 管式炉裂解生产乙烯的工艺已有60多年的历史。管式裂解炉是其核心设备。为了满足烃类裂解反应的高温、短停留时间和低烃分压的要求,以及提高加热炉的热强度和热效率,炉子和裂解炉管的结构经历了不断的改进。新型的管式裂解 炉的热强度可达290~375MJ/(m h),热效率已可达92%~93%,停留时间可低于0.1s,管式炉出口温度可到900℃,从而提高了乙烯的产率。 工艺流程可分为裂解和急冷-分馏两部分(图1[管式炉裂解工艺流程]

①裂解裂解原料经预热后,与过热蒸汽(或称稀释蒸汽)按一定比例(视原料不同而异)混合,经管式炉对流段加热到500~600℃后进入辐射室,在辐射炉管中加热至780~900℃,发生裂解。为防止高温裂解产物发生二次反应,由辐射段出来的裂解产物进入急冷锅炉,以迅速降低其温度并由换热产生高压蒸汽,回收热量。 ②急冷-分馏裂解产物经急冷锅炉冷却后温度降为350~600℃,需进一步冷却,并分离出各个产品馏分。来自急冷锅炉的高温裂解产物在急冷器与喷入的急冷油直接接触,使温度降至200~220℃左右,再进入精馏系统,并分别得到裂解焦油、裂解柴油、裂解汽油及裂解气等产物。裂解气则经压缩机加压后进入气体分离装置。 裂解原料和产品分布最初,美国管式炉裂解原料是用天然气、油田伴生气和炼厂气中回收的轻质烃,其中主要含有乙烷、丙烷、丁烷及碳五馏分。50年代,西欧和日本的石油化工兴起,由于缺乏石油及天然气资源,因而采用石脑油作裂解原料。60年代后,又相继开发以轻柴油、重柴油和减压瓦斯油为原料的裂解技术,扩大了裂解原料来源。对于不同的原料,裂解工艺参数不同、在适宜条件下的裂解产品分布也各异(见表[不同原料管式炉裂解产品

中国现有乙烯装置及其技术水平.doc

1.中国现有乙烯装置多少套? 2012年,我国乙烯工业产能快速增长,装置大型化、炼化一体化程度进一步提升,但开工率有所下降,进口量有所增加,总体走势呈以下三个特点:一是增速加快,乙烯总产能突破1700万吨/年。建设大型化装置、发展规模经济,是国内外乙烯工业实现低成本发展战略的有效途径。统计数据显示,100万吨/年乙烯与50万吨/年乙烯装置相比较,吨成本可降低25%. 截至2012年底,我国乙烯新增产能140万吨,总产能达1709.5万吨,比上年增长8.9%.一批新建和改扩建乙烯项目快速推进,其中大庆石化120万吨/年乙烯改扩建工程和抚顺石化80万吨/年乙烯装置,均实现一次开车成功,四川、武汉等地的煤制烯烃,以及浙江宁禾、陕西延长榆林等多个煤制烯烃项目在稳步推进中。 2012年,我国共有24家乙烯生产企业、有32套乙烯装置(其中石脑油基制乙烯装置28套),装置平均规模约52.4万吨/年,而2005年装置的平均规模仅为39.5万吨/年。若不计算煤制烯烃和甲醇制烯烃装置,蒸汽裂解装置共有29套,蒸汽裂解装置平均规模近60万吨/年,高于世界52万吨/年的平均规模。我国产能在80万吨/年以上的装置数量也有大幅增长。截至2012

年,共有10套80万吨以上的蒸汽裂解装置,合计产能达988万吨/年,占总产能的58.9%。单套最大规模为上海赛科119万吨/年的乙烯装置。乙烯生产企业平均规模74.1万吨/年,比2011年的68万吨/年增加了6.1万吨/年;乙烯装置平均规模57万吨/年,比2011年的56.1万吨/年上升了0.9万吨/年,高于世界52万吨/年的平均规模。 若不计算煤制烯烃和甲醇制烯烃装置,我国石脑油裂解乙烯装置的平均规模为59.2万吨/年,单套规模达80万吨/年以上的装置有8套,合计产能774万吨/年,占总产能的45%;单套规模60万吨/年以下的装置降至12套,产能合计263.5万吨/年,占总产能的16%. 据美国《油气杂志》最新统计数据显示,当前全球十大乙烯生产商排名情况如下: 排名第一的是埃克森美孚公司,共有19套装置,总产能1251.5万吨/年; 排名第二的是陶氏化学,共有18套装置,产能1214.48万吨/年; 排名第三的是沙伯公司,共有13套装置,产能1084.22万吨/年; 排名第四的是壳牌化学,共有13套装置,产能935.84万吨/年;

常用乙烯裂解炉概述

常用乙烯裂解炉简介 ①鲁姆斯公司的SRT型裂解炉 鲁姆斯公司的SRT型裂解炉(短停留时间裂解炉)为单排双辐射立管式裂解炉,已从早期的SRT-I型发展为近期的SRT-Ⅵ型。 SRT型裂解炉的对流段设置在辐射室上部的一侧,对流段顶部设置烟道和引风机。对流段内设置进料、稀释蒸汽和锅炉给水的预热。从SRT-Ⅵ型炉开始,对流段还设置高压蒸汽过热,由此取消了高压蒸汽过热炉。在对流段预热原料和稀释蒸汽过程中,一般采用一次注入蒸汽的方式,当裂解重质原料时,也采用二次注汽。 早期SRT型裂解炉多采用侧壁无焰烧嘴烧燃料气,为适应裂解炉烧油的需要,目前多采用侧壁烧嘴和底部烧嘴联合的布置方案。底部烧嘴最大供热量可占总热负荷的70%。SRT-Ⅲ型炉的热效率达93.5%。图1—21为SRT型裂解炉结构示意图。 图1-21鲁姆斯SRT-Ⅱ型裂解炉结构示意图 ②斯通-伟伯斯特(S.W)公司的USC型裂解炉

S.W的USC裂解炉(超选择性裂解炉)为单排双辐射立管式裂解炉,辐射盘管为W型或U 型盘管。由于采用的炉管管径较小,因而单台裂解炉盘管组数较多(16-48组)。每2组或4组辐射盘管配一台USX型(套管式)一级废热锅炉,多台USX废热锅炉出口裂解气再汇总送入一台二级废热锅炉。近期开始采用双程套管式废热锅炉(SLE),将两级废热锅炉合并为一级。 USC型裂解炉对流段设置在辐射室上部一侧,对流段顶部设置烟道和引风机。对流段内设有原料和稀释蒸汽预热、锅炉给水预热及高压蒸汽过热等热量回收段。大多数USC型裂解炉为一个对流段对应一个辐射室,也有两个辐射室共用一个对流段的情况。 当装置燃料全部为气体燃料时,USC型裂解炉多采用侧壁无焰烧嘴;如装置需要使用部分液体燃料时,则采用侧壁烧嘴和底部烧嘴联合布置的方案。底部烧嘴可烧气也可烧油,其供热量可占总热负荷的60%-70%。 由于USC型裂解炉辐射盘管为小管径短管长炉管,单管处理能力低,每台裂解炉盘管数较多。为保证对流段进料能均匀地分配到每根辐射盘管,在辐射盘管入口设置了文丘里喷管。图1-22是USC型裂解炉结构示意图。

高密度聚乙烯生产工艺开发进展

高密度聚乙烯生产工艺开发进展 概述世界聚乙烯工业生产和消费现状,了解高密度聚乙烯(HDPE)生产工艺的最新进展,提出本地该行业发展建议。 标签:聚乙烯;生产工艺;现状 高密度聚乙烯(HDPE)是一种不透明白色腊状材料,密度比水小,柔软而且有韧性,被广泛应用于制备诸如片材挤塑、薄膜挤出、管材或型材挤塑,吹塑、注塑和滚塑等。 在聚乙烯生产工艺技术领域,一直是多种工艺并存,各展其长。目前并存的液相法工艺有Nova公司的中压法工艺、Dow化学公司的低压冷却法工艺和DSM 公司的低压绝热工艺。应用最为广泛的浆液法工艺是科诺科菲利浦斯、索尔维公司的环管工艺和赫斯特、日产化学、三井化学的搅拌釜工艺。气相法工艺主要有Univation公司的Unipol工艺、BP公司的Innovene工艺和Basell公司的Spherilene 工艺。近年来,气相法由于流程较短、投资较低等特点发展较快,目前的生产能力约占世界聚乙烯总生产能力的34%,新建的LLDPE装置近70%采用气相法技术。近年来,在各工艺技术并存的同时,新技术不断涌现。其中冷凝及超冷凝技术、不造粒技术、共聚技术、双峰技术、超临界烯烃聚合技术以及反应器新配置等新技术的开发,极大地促进了世界聚乙烯工业的发展。 1 冷凝及超冷凝技术 冷凝及超冷凝技术是UCC、Exxon化学和BP公司开发的,是指在一般的气相法PE流化床反应器工艺的基础上,使反应的聚合热由循环气体的温升和冷凝液体的蒸发潜热共同带出反应器,从而提高反应器的时空产率和循环气撤热的一种技术。冷凝操作可以根据生产需要随时在线进行切换,使装置可以在投资不需要增加太大的情况下大幅度提高装置的生产能力,装置操作的弹性大,使得该技术具有无可比拟的优越性。通过采用该技术不仅将单线最大生产能力从22.5wt/y 提高到45wt/y年以上,而且进一步降低了单位产品的投资和操作费用,操作稳定性也得到了进一步提高。国外已有大量采用冷凝和超冷凝技术对气相法PE装置扩能的实绩,最高扩能达到原有能力的2.5倍以上。我国扬子石化公司、天津石化公司、广州石化公司以及吉林石化公司、中原石化有限责任公司、新疆独山子石化公司等的聚乙烯装置采用该技术也取得扩能成功。 2 不造粒技术 随着催化剂技术的进步,现在已出现了直接由聚合釜中制得无需进一步造粒的球形PE树脂的技术。直接生产不需造粒树脂,不但能省去大量耗能的挤出造粒等步骤,而且从反应器中得到的低结晶产品不发生形态变化,这样有利于缩短加工周期、节省加工能量。Montell公司的Spherilene工艺采用负载于MgCl2上的钛系催化剂,由反应器直接生产出密度为0.890-0.970g/cm3的PE球形颗粒,

乙烯裂解炉的几种节能措施

乙烯裂解炉的几种节能措施 裂解炉是乙烯装置的能耗大户,其能耗占装置总能耗的50%-60%。降低裂解炉的能耗是降低乙烯生产成本的重要途径之一。随着能源价格的不断上涨,国内外相关部门均加强了裂解炉节能措施的研究。裂解炉的能耗在很大程度上取决于裂解炉系统本身的设计和操作水平,近年来,裂解炉技术向高温、短停留时间、大型化和长运转周期方向发展。通过改善裂解选择性、提高裂解炉热效率、改善高温裂解气热量回收、延长运转周期和实施新型节能技术等措施,可使裂解炉能耗显著下降。 1 改善裂解选择性 对相同的裂解原料而言,在相同工艺设计的装置中,乙烯收率提高1%,则乙烯生产能耗大约相应降低1%。因此,改善裂解选择性,提高乙烯收率是决定乙烯装置能耗的最基本因素。通过裂解选择性的改善,不仅达到节能的效果,而且相应减少裂解原料消耗,在降低生产成本方面起到十分明显的作用。 (1)采用新型裂解炉。新型裂解炉均采用高温-短停留时间与低烃分压的设计。20世纪70年代,大多数裂解炉的停留时间在0.4s左右,相应石脑油裂解温度控制在800-810℃,轻柴油裂解温度控制在780-790℃。近年来,新型裂解炉的停留时间缩短到0。2s左右,并且出现低于0.1s 的毫秒裂解技术,相应石脑油裂解温度提高到840℃以上,毫秒炉达890℃;轻柴油裂解温度提高到820℃以上,毫秒炉达870℃。由于停留时间大幅度缩短,毫秒炉裂解产品的乙烯收率大幅度提高。对丁烷和馏分油而言,与0.3-0.4s停留时间的裂解过程相比,毫秒炉裂解过程可使乙烯收率提高10%-15%。 (2)选择优质的裂解原料。在相同工艺技术水平的前提下,乙烯收率主要取决于裂解原料的性质,不同裂解原料,其综合能耗相差较大。裂解原料的选择在很大程度上决定乙烯生产的能耗水平。通过适当调整裂解原料配置结构,优化炼油加工方案,增加优质乙烯原料如正构烷烃含量高的石脑油等供应,改善原料结构和整体品质,在提高乙烯收率的同时,达到节能降耗的目标。 (3)优化工艺操作条件。通过优化裂解炉工艺操作条件,不仅能使原料消耗大幅度降低,也能够使乙烯生产能耗明显下降。不同的裂解原料对应于不同的炉型具有不同的最佳土艺操作条件。对于一定性质的裂解原料与特定的炉型来说,在满足目标运转周期和产品收率的前提下,都有其最适宜的裂解温度、进料量与汽烃比。如果裂解原料性质与原设计差别不大,裂解炉最优化的工艺操作条件可以参照设计值。反之,则需要利用SPYR软件或裂解试验装置对原料重新评价,以确定最佳的工艺操作条件。 2 延长裂解炉运行周期 (1)优化原料结构与工艺条件。裂解原料组成与性质是影响裂解炉运行周期的重要因素。一般含氢量高、低芳烃含量的原料具有良好的裂解性能,是裂解炉长周期运行的必要条件。对不饱和烃含量较高的原料进行加氢处理,是提高油品质量的有效途径。当裂解原料一定时,工艺条件是影响裂解炉运行周期的主要因素。低烃分压、短停留时间和低裂解温度有利于延长裂解炉运行周期。但考虑到

乙烯装置技术水平分析及节能措施

乙烯装置技术水平分析及节能措施 近年来,随着新的乙烯装置建设及老装置的扩能改造,新技术、新工艺及相关系统的设计优化的应用,我国乙烯装置能耗显著下降,随着国家“节能、降耗、减排”的要求提高,作为石油工企业耗能大户的乙烯装置将面临更大的节能降耗压力。乙烯企业应严格控制工艺参数、工况条件,保证装置平稳运行、延长运行周期;通过用能数据、产品收率的对比分析以及对工艺单元的模拟计算,提出具体节能增效的措施。乙烯企业应减少非计划停工事故发生,并结合装置特点逐步降低负荷、逐台有序停炉,尽可能回收物料,实现乙烯装置的无排放开停工。 标签:乙烯装置;综合能耗;节能措施 1乙烯装置节能增效措施的研究 1.1裂解炉系统优化 原料的裂解性能在很大程度上决定了乙烯生产的能耗水平,但乙烯装置原料的优化和其上游炼厂的配制有很大关系。大炼油小乙烯的配制,乙烯装置的原料就有很大的灵活性,相反小炼油或自身没有炼厂的乙烯装置其对原料就没有多少选择的余地。我国优化裂解原料的重要措施就是实行“煉油化工一体化”,采用“宜烯则烯,宜芳则芳”的原则,它有利于炼厂和乙烯装置之间的原料互供和优化。 1.2装置精细化管理和无排放开停工 创建节约型企业是企业增强核心竞争力的根本要求,石油化工企业通过精细化管理来实现节能增效具有重要的现实意义。乙烯生产具备流程长、设备多、工艺机理复杂等特点,装置工艺指标约有上百个关键指标,因此在乙烯实际生产过程中,实施精细化管理、不断提升管理水平显得尤为重要。乙烯企业应严格控制工艺参数、工况条件,例如裂解炉单元应加强烟道气氧含量、炉出口温度、炉管出口温度偏差、排烟温度及燃烧状况等工艺指标的管理,保证装置平稳运行、延长运行周期,为装置节能增效打下坚实基础。 例如独山子乙烯装置通过进细化管理和操作,裂解炉出口温度偏差保持在±2℃之间,双烯收率平均提高0.59%,经济效益显著。同时应对重点耗能单元制订能耗消减措施,对易波动的工艺指标实行跟踪监控;通过用能数据的对比分析以及产品收率的对比评估,以及应用如Aspon等化工辅助模拟软件对工艺单元进行模拟计算,提出具体节能增效的措施。乙烯装置开停工是一个物耗、能耗较大的操作,传统开工方式一般沿流程从前到后,将不合格物料放火炬,对经济效益和周边环境产生很大的影响;停工操作程序是将裂解炉整体退料、压缩机组整体停车,时间短且操作快,但大量物料留在系统管线中造成浪费又增加了火炬排放。尤其是对目前新设计装置能力较大,如采用传统的开停工方式物料损失量更大,其弊端表现的更为明显,因此减少非计划停工事故发生,实现乙烯装置的无排放开停工可降低加工损失率、降低成本、提高综合效益。

甲烷氧化偶联制乙烯工艺研究进展

甲烷氧化偶联制乙烯工艺研究进展 李燕 诸林 (西南石油学院化学化工学院,四川成都610500) 摘要 甲烷氧化偶联(OC M )途径是通过一步法获取乙烯,是现有乙烯生产中最为简捷的工艺。本文综述了该工艺催化剂系统、反应机理、工艺开发研究的新进展,并探讨了OC M 过程面临的关键问题有催化剂的选择、反应器和反应流程的设计和反应温度的控制。关键词 甲烷氧化偶联 乙烯 催化剂 收稿日期:2004-11-23 作者简介:李燕(1982~),女,硕士生,诸林(1965~),男,教授,从事天然气加工的教学和科研工作。 Development on T echnology of the Oxidative Coupling of Methane to E thylene Li Y an Zhu Lin (Department of Chemistry and Chemical Engineering of S outhwest Petroleum Institute ,Sichuan Chengdu ,610500)Abstract The approach of OC M gains ethylene through one step ,which is sim plest and directest in producing ethylene nowadays.The new researches on catalytic system ,reaction mechanism and technological development were reviewed.The key problems during the industralization of OC M process such as choose of ctalyzer ,the design of reactor and technical pro 2cess ,control of the tem perature were discussed. K ey w ords oxidative coupling of methane ethylene catalyst 现代工业三大能源:煤、石油、天然气中,天然气 占有十分重要的地位。CH 4是天然气中的主要成分,含量90%以上,CH 4好的化学稳定性使天然气的开发和加工大受限制,活化CH 4使之转化为化工原料已成为C 1化学研究领域[1]的重要课题。 CH 4的利用途径主要有直接选择氧化制合成气、部分氧化制甲醇和甲醛、氧化偶联(OC M )制C 2烃以及甲烷无氧芳构化。自K eller 和Bhasin [2]1982年首次研究OC M 以来,由于石油价格上涨和乙烯在石油化工工业上的重要性使该领域的研究不断深入,开发表征了一些高活性、高C 2选择性的催化剂体系并对O 2的活化及CH 4转化机理进行了广泛的研究[3],取 得了可喜的进展。 1催化剂 1.1 催化剂研究的方向 众所周知,从化学组分而言,催化剂的研制包括 主组分、助催化剂及载体的选择。与此同时,催化剂的物理化学及物理参数(如晶态、表面状态、孔隙结构及表面积等)对其性能也有不容低估的影响。1.1.1 碱金属与碱土金属氧化物 未改性的碱土金属本身具有活性,而加入碱金属后,可能引起晶格畸变,增加了活性中心,并减少了表面积,防止甲烷的深度氧化,从而提高了催化剂的活性和选择性。碱土金属氧化物催化剂(MgO 、CaO 、SrO 、BaO )的OC M 活性的高低在于它们的碱性强弱,碱性越强,活性越高。将两种(以上)碱土金属氧化物(盐)复配使用,OC M 反应活性与C 2选择性明显提高,以S O 422、C O 32-、NO -3取代氧构成的含盐催化剂稳定性更好[4],以碱金属促进的碱土金属氧化物因碱性位数目的增多和对非选择性氧化物的抑制剂[5]使甲烷的转化率(X CH 4)和C 2的选择性(S C 2)大大提高,选 — 45—第19卷第4期2005年4月 化工时刊Chemical Industry T ime s Vol.19,No.4 Apr.4.2005

甲烷乙烯苯知识点总结复习课程

甲烷乙烯苯知识点总 结

专题复习16--甲烷乙烯苯知识点总结核心知识图 1.烃的分类、通式和主要化学性质 氧化:燃烧 饱和烃:烷烃 C n H2n+2(n≥1) 甲烷取代 结构:链状、碳碳单键裂解 链烃氧化:燃烧、使KMnO4(H+)褪色 (脂肪烃) 烯烃 C n H2n(n≥2) 乙烯加成:H2、 X2、 HX 、H2O等 结构:链状、碳碳双键加聚 氧化:燃烧、使KMnO4(H+)褪色 炔烃 C n H2n-2(n≥2) 乙炔加成 不饱和烃结构:链状、碳碳叁键加聚 氧化:燃烧、使KMnO4(H+)褪色 烃二烯烃 C n H2n-2 (n≥3) 1,3—丁二烯加成:1,2加成、1,4加成 结构:链状、两个碳碳双键加聚 饱和环烃:环烷烃C n H2n (n≥3) 结构:环状、碳碳单键氧化:燃烧、不能使KMnO4(H+)褪色,不能因反应使反应使溴水褪色 苯加成 环烃取代:卤代、硝化、磺化 苯及其同系物C n H2n-6 (n≥6) 结构:环状、大 键 不饱和环烃:芳香烃氧化:燃烧、使KMnO4(H+)褪色 稠环芳烃:萘、蒽甲苯取代 加成 甲烷的化学性质 通常情况较稳定,与强酸、强碱、KMnO4等均不反应。 (1)氧化反应甲烷燃烧的热化学方程式为: (2)取代反应 ①定义:有机物分子里的某些被其他 所替代的反应。 ②甲烷与Cl2反应

乙烯 烯烃知识点总结 一、乙烯的组成和结构 乙烯分子的结构简式:CH 2 〓 CH 2 乙烯分子的结构: 键角约120°,分子中所有原子在同一平面,属平面四边形分子。 二、乙烯的制法 工业上所用的大量乙烯主要是从石油炼制厂和石油化工厂所生产的气体中分离出来的。 实验室制备原理及装置 三、乙烯的性质 1.物理性质:无色、稍有气味、难溶于水、密度小于空气的密度。 2.化学性质 (1)氧化反应 a.燃烧 CH 2=CH 2+3O 2??→?点燃 2CO 2+2H 2O (火焰明亮,并伴有黑烟) b.使酸性KMnO 4溶液褪色 (2)加成反应:有机物分子中双键(或叁键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。 (溴的四氯化碳溶液的红棕色褪去) 乙烯除了与溴之外还可以与H 2O 、H 2、卤化氢、Cl 2等在一定条件下发生加成反应,如工业制酒精的原理就是利用乙烯与H 2O 的加成反应而生成乙醇. 3)聚合反应 n CH 2==CH 2???→?催化剂[— CH 2—CH 2 ]— n ( 聚乙烯) 其中 CH 2=CH 2 为单体 —CH 2—CH 2— 为链节 n 为聚合度 四、乙烯的用途 作植物生长的调节剂,还可以作催熟剂;可用于制酒精、塑料、合成纤维、有机溶剂等, 五、烯烃 1.烯烃的概念:分子里含有碳碳双键的一类链烃 2.烯烃的通式:C n H 2n (n ≥2) 最简式:CH 2 可见,烯烃中碳和氢的质量分数别为85.7%和14.3%,恒定不变 环烷烃的通式与烯烃的通式相同,故通式为C n H 2n 的烃不一定是烯烃,如右图中其分子符合C n H 2n ,但不是烯烃而是环烷烃。 (环丁烷)

国内外乙烯生产技术进展与评述

生产情况 1.1 世界 截至2007年1月1日,世界乙烯的总生产能力约为11757.52万t/a,开工率约为91%。预计到2010年末,世界乙,烯产能将上升到1.56亿t/a,开工率将下降到86%,生产能力的增长主要来自中东及亚太地区。 2006年世界十大乙烯生产商的产能情况见表1,世界十大乙烯生产厂见表2。 表1 世界十大乙烯生产商

注:截至2007年1月1日。 表2 世界十大乙烯生产厂

注:截至2007年1月1日。 全球乙烯发展的重心将由墨西哥湾转移到亚洲和中东,尤其是具有廉价原料优势的中东。尽管目前美国、欧洲和日本占世界乙烯总产能的60%,但在2010年前这些地方将不会有新建乙烯装置投产,而某些装置可能将永久性关闭,剩下的装置将集中力量进行脱瓶颈改造。到2012年,中东地区的乙烯生产能力将和北美持平,我国大陆、新加坡、印度及中国台湾将有多套乙烯装置投产。 表3为世界主要地区乙烯产能分布及增长情况。 表3 世界各地区乙烯生产能力

1.2 国内 随着中海油壳牌乙烯项目的建成投产,2006年我国乙烯的生产厂家达到19家,装置达到23套。截至2006年底,我国乙烯产能已经达到984.5万t/a,比2005年增长25%;2006年乙烯产量达922.6,较2005年的754.1万t增加22.3%。其中,中国石油生产乙烯206.8万t,同比增长9.6%;中国石化共生产乙烯633.1万t,同比增长15.19%;中海油生产乙烯64.6万t。装置的开工率约为97%,

大大高于世界平均水平。我国乙烯产能的增加主要来自于中海油壳牌乙烯项目投产、中国石化茂名乙烯扩能以及兰州乙烯扩能。 2006年,中国石油吉林石化、兰州石化的两套70万t/a乙烯装置扩能顺利完成;中海油壳牌项目建成投产;中国石化与国外公司合资的上海赛科石化增产乙烯33.6万t,南京扬巴乙烯增产30.6万t。 表4为2006年我国乙烯装置生产能力,表5为各公司2006年比2005年乙烯产量增长情况。 表4 2006年我国主要乙烯装置生产能力

甲烷(CH4)的直接转化利用技术

2010年第09期甲烷(CH4)的直接转化利用技术 苗蓓蓓 大庆炼化公司档案管理中心 黑龙江大庆 163411 摘 要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。 关键词:甲烷 直接转化 利用技术 一、甲烷直接制备甲醇 (1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。 (2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。 二、甲烷制备低碳烯烃 (1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能。在680℃,甲烷转化率为27.3%,C2选择性为65.2%,C2收率为17.8%的结果;在700℃,C2收率达到21.8%。王凡,郑丹星通过平衡常数法研究了500-1000℃、0.1-3.0MPa,以及进料组成中甲烷与氧的摩尔比(即n0,CH4/n0,O2)为1-10下的甲烷转化率及其他各组分收率和选择性的变化情况,在对甲烷氧化偶联制烯烃体系的热力学平衡进行分析后发现,在甲烷氧化偶联制烯烃体系中,H2、CO 的生成相对容易,C2产物(C2H6、C2H4)不容易生成。实验为甲烷氧化偶联反应器和催化剂的开发研究提供热力学依据。由于甲烷氧化偶联制乙烯反应本身受动力学控制,C2烃单程收率低,产物分离困难。目前同时能使甲烷转化率、C2选择性之和达到或接近100%的催化剂为数不多,催化剂筛选成为其实现工业化的重要阻碍。 (2)等离子体催化甲烷合成烯烃。除了传统的催化剂活化甲烷合成乙烯外,电催化、等离子催化、激光表面催化也被用于甲烷氧化偶联的催化研究中。陈韩飞等综述了等离子体活化及等离子体与催化剂协同活化甲烷转化的国内外研究进展。同时对其反应机理进行了讨论,分析了当前利用等离子体活化甲烷所存在的问题,并提出了今后的研究方向。 (3)氯甲烷路线。1988年,TaylorC.E.等人提出了甲烷经氯甲烷合成汽油产品的循环利用途径。氯甲烷转化为低碳烯烃作为天然气利用的一个全新途径,已经引起了甲烷转化研究领域的关注。甲烷首先在催化剂的作用下发生氧氯化反应得到氯甲烷,氯甲烷干燥后在催化剂上转化为汽油产品,而过程中产生的HCl可以通过循环继续参与第一步的反应形成循环过程。使用分子筛催化剂可以将氯甲烷转化为烃类产品,但产物大多数以芳烃和烷烃为主,使用镁和磷镁修饰的催化剂可以提高产物中烯烃的选择性。张大治等经过研究认为镁的修饰对催化剂酸性的影响导致了产物中低碳烯烃的增加。 (4)天然气部分氧化制乙炔。天然气部分氧化制乙炔主要采用气相氧化法,主要有德国的BASF工艺、比利时的SBA工艺和意大利的Motecatini工艺。其中,以BASF工艺为主,约占80%。BASF 工艺原料中的O2,与CH4的摩尔比为0.6,在反应炉进行复杂的气相反应,主要反应通过部分甲烷进行部分氧化提供热量,剩余甲烷被加热到1500℃后裂解缩合为乙炔。 三、甲烷制备芳烃 (1)甲烷部分氧化制备芳烃。上个世纪80年代,Shepelev等对甲烷催化氧化制芳烃技术进行了研究,结果表明,在氧化条件下,甲烷合成芳烃的反应很难控制,甲烷的转化率很低,芳烃选择性和收率也很低,在经济上不具备开发前景。舒玉瑛等发现,不同方法制备的Mo/H-ZSM-5催化剂上甲烷的芳构化反应,对甲烷制备芳烃反应有较大的影响。 (2)甲烷无氧脱氢制备芳烃。从热力学角度来讲,甲烷直接转化为芳烃要比直接转化为乙烷和乙烯更为有利。而且,在无氧条件下也不生成CO和CO2。自1993年大连化学物理研究所首先报道了在无氧和连续流动的反应条件下,甲烷在Mo/HZSM-5催化剂上直接转化为芳烃以来,甲烷无氧芳构化已经成为甲烷直接催化转化研究中的一个重要分支,是目前甲烷直接转化的主要研究内容。魏飞等综述了利用甲烷直接脱氢制备芳烃的催化剂方面的研究情况,此外,郑海涛等人还研究了甲烷和丙烷混合气体在不同催化剂上的无

甲烷、乙烯的综合运用

56 甲烷、乙烯的综合运用 主编人:审核人:审批人:周次13 所需时间1课时班级第小组姓名组评 【学习目标】 1.能熟练的利用甲烷的化学性质进行解题; 2.能记住乙烯的主要性质以及它的用途,并加以应用; 3.能说出取代反应和加成反应的原理,并区分取代和加成反应。【学习重点】甲烷和乙烯的性质 【学习难点】甲烷和乙烯的性质的利用;取代反应和加成反应。 温馨提示:本学案结甲烷与乙烯的性质,独立思考并完成,请勿参 考课本与资料。 【我的地盘我做主】练一练,你还有哪些是不会的呢? 一、填空题 1.关于甲烷结构的说法中正确的是() A.甲烷的分子式是C H 4 ,5个原子共面 B.甲烷分子中,碳原子和氢原子形成了4个不完全相同的碳氢共价键 C.甲烷分子的空间构型属于正四面体结构 D.甲烷中的任意三个原子都不共面 2.关于烃和甲烷的叙述正确的是() A.烃的组成均符合通式C n H 2n+2 B.烃类通常都难溶于水 C.甲烷在同系物中含碳量最高,因而是清洁能源 D.甲烷只能发生取代反应而不能发生其他反应 3.下列关于有机化合物的性质与应用不正确的是() A.甲烷和氯气关照条件下发生取代反应,产物是气体与液体的混合物 B.通过加成反应,可以以乙烯为原料制备乙醇、氯乙烷等 C.乙炔分子中的碳碳键不是碳碳双键,故不可以发生加成反应 D.甲烷与氯气反应,试管内黄绿色消失,内壁出现油状液滴 4.城市居民使用的石油气的主要成分是丁烷,在使用过程中,常有一些杂质以液态沉积于钢瓶中,这些杂质是() A.甲烷和丙烷 B.乙烷与丙烷 C.乙烷与戊烷 D.戊烷与己烷 ★5.下列有关同系物的说法中正确的是() A.分子组成相差一个或若干个CH2原子团的有机化合物一定是同系物 B.具有相同通式的有机化合物一定是同系物 C.互为同系物的有机物分子结构必然相同

我国乙烯生产工艺现状与发展趋势分析

我国乙烯生产工艺现状与发展趋势分析 2017.6 世界乙烯工业已走过90多年历程。2014年,世界乙烯产能为1.53亿吨,乙烯生产装置271套,平均规模为56.5万吨/年,同比增长4.3%。世界范围内,已建和在建生产能力在100万吨/年以上的裂解装置已达40多套。美国是世界大的乙烯生产国,2014年乙烯生产能力为2842.6万吨,占世界总产能的18.5%;中国排名第二,占世界总产能的13.4%。 过去几年,中国乙烯产能和需求量均呈现增长态势,产能从2011年的1536.5万吨增至2015年的2137.5万吨,年均增幅为6.8%;产量从2011年的1553.6万吨增至2015年1730.3万吨,年均增幅为2.2%;当量需求量从2011年的3132.4万吨增至2015年的3733.0万吨,年均增幅为3.6%。 1.低油价下石油乙烯原料具有更大优化空间 蒸汽裂解制乙烯技术的原料适应范围宽,乙烷、轻烃、液化气、石脑油、加氢尾油、柴油等均可,原料成本在总成本中所占比例高达60%~80%。采用的原料不同,乙烯的生产成本也有很大的差别。但如果综合考虑乙烯和裂解副产品的价值,在当前原油价格低位运行的情况下,石脑油裂解装置与乙烷裂解装置的竞争差距有所缩小。 石脑油裂解装置的乙烯生产成本约为4500元/吨,北美和中东乙烷裂解装置的乙烯生产成本分别在1500元/吨和1000元/吨左右,中东和北美以乙烷为原料的乙烯生产成本依然保持绝对的竞争优势。

低油价下,替代能源的发展和煤、甲醇等非石油路线生产烯烃将会受到抑制,而石脑油生产烯烃将存在原料低成本化、多元化和炼化一体化的更大优化空间,石油化工竞争力增强。对于千万吨炼油、百万吨乙烯一体化企业,由于柴汽比的降低以及成品油消费增速的趋缓,炼油从大量生产柴油、汽油将转向生产更多的高标号汽油、航空煤油和清洁柴油以及低成本化工原料。这种变化趋势是长期的,国家“十三五”期间结构调整步伐还将加快,将会有更多的低成本优质原料进入乙烯裂解装置。应充分利用蒸汽裂解副产物多样化的优势,做好碳四、碳五和芳烃的综合利用。下游的配套产品应充分体现差异化、高端化、高附加值化,避免加剧通用产品过剩。 2.低油价下煤制烯烃仍然具有盈利能力 煤制烯烃成本变化与油价变化关系不大,而石脑油制烯烃成本与油价变化密切相关,在35~55美元/桶低油价下,石油烯烃成本优势明显、盈利空间较大,而煤制烯烃也能实现盈亏平衡;在65~75美元/桶油价下,煤制烯烃成本与石脑油制烯烃成本相当,具有较好盈利水平; 当油价在90美元/桶以上时,煤制烯烃具有良好效益,而石脑油制烯烃则面临高成本、低利润的状况。随着油价走高,煤制烯烃盈利水平增强。特别是煤制烯烃在85美元/桶油价下,完全可以满足新建装置内部收益率大于12%的要求,盈利能力强。 甲醇制烯烃成本构成中甲醇原料成本占比在75%以上,其成本变化与进口甲醇价格变化有较大程度的关联,进口甲醇价格升高,导致

甲烷 乙烯测试题(A组B组)

甲烷乙烯测试题(A组) 一选择题 1、下列有机物说法正确的是() A、凡含有碳元素的化合物都是有机物 B、易溶于汽油、酒精、苯等有机溶剂中的物质,一定是有机物 C、所有有机物都很容易燃烧 D、大多数有机物聚集时都形成分子 2、有机物中的烃是指的化合物( ) A.含有碳B.含有碳和氢C.仅含有碳和氢D.燃烧后生成CO2和H2O 3、下列物质中,可以跟甲烷发生化学反应的是() A.氯气B.强酸C.强碱D.高锰酸钾溶液 4、在下列反应中,光照对反应几乎没有影响的是() A.氯气与氢气反应 B.氯气与甲烷反应C.HClO分解 D.甲烷与O2反应 5、某烷烃含有200个氢原子,那么该烃的分子式是() A.C49H200 B. C99H200 C. C99H198 D. C49H100 6、若甲烷与氯气以物质的量之比1:1混合,在光照下得到的取代产物是() ①CH3CI ②CH2CI2③CHCI3④CCI4 A、只有① B、只有③ C、①②③ D、①②③④ 7、若要使0.5摩尔甲烷完全和氯气发生取代反应,并生成相同物质的量的四种取代物,则需要氯气的物质的量为() A、2.5mol B、2mol C、1.25mol D、0.5mol 8、下列是属于取代反应的是() A.CH3Cl + Cl2CH2Cl2+ HCl B.2KBr + Cl2 == 2KCl + Br2 C.CH3CH2OH + HBr CH3CH2Br + H2O D.NaOH + HCl == NaCl + H2O 9、下列结构简式表示的物质属于烷烃的是() A. CH3CH2CH=CH2 B. CH3(CH2)2CH(CH3)2 C. CH3CH2OH D. CH3CH=CHCH3 10、同分异构体具有() ①相同的分子量②相同的分子式③相同的最简式④相同的物理性质⑤相同的化学性质 A.①②③B.①②④C.①②⑤D.②③⑤ 11、可燃冰是天然气与水作用形成的晶体物质,主要存在于冻土层和海底大陆架中。据测定每0.1m3的固体“可燃冰”可释放20m3的甲烷气体,则下列说法不正确的是() A.“可燃冰”释放的甲烷属于烃 B. “可燃冰”是水变油,属于化学变化

相关文档
最新文档