NPN和PNP型三极管及光电开关详解(摘)
NPN和PNP三极管的使用和连接方法

NPN和PNP三极管的使用和连接方法在单片机应用电路中三极管主要的作用就是开关作用。
PNP与NPN两种三极管使用方法上图中,横向左侧的引脚叫做基极b,有一个箭头的是发射极e,剩下的一个引脚就是集电极 c。
首先来说一下NPN型,这种型号的三极管在用于开关状态时,大都是发射极接地,集电极接高电平,基极接控制信号。
其次对于PNP型的三极管,用于开关状态时,一般都是发射极接高电平,基极接控制信号。
三极管导通时,电流从发射极流向集电极。
相关推荐:四句口诀,玩转三极管!三极管的开关原理三极管有截止、放大、饱和三种工作状态。
相关推荐:放下教科书,来看下三极管的应用电路。
放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态。
三极管的用法特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于 b 级 0.7V 以上,这个三极管 e 级和 c 级之间就可以顺利导通。
同理,NPN 型三极管的导通条件是 b 极比 e 极电压高 0.7V。
总之是箭头的始端比末端高 0.7V 就可以导通三极管的 e 极和 c 极。
以上图PNP三极管为例,基极通过一个 10K 的电阻接到了单片机的一个 IO口上,假定是 P1.0,发射极直接接到 5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极 GND 上。
如果 P1.0 由我们的程序给一个高电平 1,那么e到 b 不会产生一个 0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。
如果程序给 P1.0 一个低电平 0,这时 e 极还是 5V,于是 e 和 b 之间产生了压差,三极管 e 和 b 之间也就导通了,三极管 e 和 b 之间大概有 0.7V 的压降,那还有(5-0.7)V 的电压会在电阻 R47 上。
什么是PNP、NPN,如何区分源型和漏型?

什么是PNP、NPN,如何区分源型和漏型?
接触过工控的人都会碰到一种元器件:传感器,传感器的种类很多,光电传感器、接近传感器等等,但是总的来说大致分为2大类,PNP型和NPN型,那么什么是PNP型、什么是NPN型呢?他们有什么区别,如何选择使用?
基本原理:
无论是PNP型传感器还是NPN型传感器都是相对于三极管来说的,我们先简单了解下三极管(不懂没关系),不同的是控制电流流动的方向是相反的,所以三个极与电流正负极没关系,只与三极管的制造结构有关。
简单一句话:NPN型传感器输出是低电平(输出是负极,也叫漏型),PNP型传感器输出是高电平(输出是正极,也叫源型)。
选择使用:
首先清楚PLC的输入类型,比如:FX2N是漏型输入,那么我们只能选择NPN型传感器。
对于FX3U来说,因为有S/S端子,所以PNP和NPN两种类型都可以使用,S/S 端子:接+24V (可以接NPN 型传感器)S/S 端子:接0V(可以接PNP传感器)请看下面接线图:
确定了PLC输入方式就可以选择传感器的类型了!如:接近开关DC电源+:可以直接接在PLC的+24V端子上。
DC0V :可以直接接在PLC的0V端子上。
黑色信号:接PLC到 x0 端子上。
如下图:
关于PNP和NPN传感器类型就介绍到这里,如果大家不懂的话可以下方留言。
感谢您的支持!。
pnp和npn三级管开关工作原理

pnp和npn三级管开关工作原理PNP和NPN三极管是广泛应用于电子领域中的一种重要元件,尤其是在开关电路中得到了广泛的应用。
它们的工作原理以及在开关电路中的应用是理解电子学基础知识的必要前提。
1. PN结PN结是半导体中一种重要的电子器件,它将p型半导体和n型半导体通过化学方式结合在一起,形成一个叫做PN结的区域。
PN结具有非常重要的特性,即在PN结两侧的电子浓度不同,形成电场,使电荷在PN结内偏移,从而形成电势垒。
当PN结两侧施加相反的电压时,电势垒会阻挡电子的漂移,电流将受到阻止。
而当PN结两侧施加相同方向的电压时,电荷可以自由流动,形成电流。
2. PNP三极管PNP三极管是一种由两个不同掺杂的p型区和一个n型区组成的半导体器件。
在没有施加电压时,P型材料中的空穴会向N型材料中的电子扩散,形成一个电势垒,从而导致电流流动的阻碍。
当向P型基极施加一个相对于得到的发射极负电压使PNP三极管工作时,电路中的电流流动就可以开始了。
此时,基极中的电子与P型区中的空位结合并形成剩余的空穴,从而使得PNP金属基极中的电流流动。
这些电子进入了N型材料中,流向集电极,从而完成整个电路的流通。
4. 三极管开关的工作原理在电路中,三极管可以用作开关,通过控制基极输入的电压,以使得集电极和发射极中的电流流动开始或者停止。
当下面的电路中给基极施加正电压时,PNP三极管可以被打开,而NPN三极管则必须使用负电压才能够打开。
在一个PNP三极管中,当基极输入一个正电压时,其作用是“打开”三极管。
此时,基极流入的电子向下通过p型基极,然后流入左边的N型基极。
当电子穿过N型基极时,它们抵达集电极上的p型材料。
在集电极部分,它们会与那些集电极通道中的空穴结合在一起,电流流入到由集电极和正电源组成的电路中。
在三极管被打开时,发射极上的电流将始终保持在零电位上,因此电路也就被断开了。
总之,PNP和NPN三极管在电子学中的应用广泛,可以用作放大器或开关等。
NPN型三极管和PNP型的区别

1.PNP型晶体管PNP晶体管是另一种类型晶体管。
它的工作原理和NPN晶体管相似,只是在基区运动并放大信号的多数载流子是空穴而不是电子。
PNP晶体管的发射结要正偏,基区的电压要比发射区的电压要高,而集电极要是多数载流子空穴通过,集电区的电压要比基区的要低。
这一点和NPN晶体管的极间电位正好相反。
在双极模拟集成电路中要应用NPN-PNP互补设计以及某些偏置电路极性的要求,需要引入PNP结构的晶体管。
如横向PNP管广泛应用于有源负载、电平位移等电路中。
它的制作可与普通的NPN管同时进行,不需附加工序。
在横向PNP管中,发射区注入的少子(空穴)在基区中流动的方向与衬底平行,故称为横向PNP 管。
纵向PNP管其结构以P型衬底作集电区,集电极从浓硼隔离槽引出。
N型外延层作基区,用硼扩散作发射区。
由于其集电极与衬底相通,在电路中总是接在最低电位处,这使它的使用场合受到了限制,在运放中通常只能作为输出级或输出缓冲级使用。
2.Plug and Play在PnP技术出现之前,中断和I/O端口的分配是由人手工进行的,您想要这块声卡占用中断5,就找一个小跳线在卡上标着中断5的针脚上一插。
这样的操作需要用户了解中断和I/O端口的知识,并且能够自己分配中断地址而不发生冲突,对普通用户提出这样的要求是不切实际的。
PnP技术就是用来解决这个问题的,PnP技术将自动找到一个不冲突的中断和I/O地址分配给外部设备,而完全不需要人工干预。
但是如果您读懂了上面关于中断冲突的那一部分,您就应该了解,在中断资源非常紧张的今天,即使是PnP技术,也不一定能找到一个合适的中断分配给您刚刚插入的设备,所以尽量释放那些没有必要的中断,对PnP正常工作也是很有帮助的。
有些PnP冲突来源于主板的设计。
许多主板上有一个AGP插槽、五个PCI插槽和两个ISA插槽,而其中的AGP插槽一般是和一个PCI插槽共用一个中断的,也就是这两个槽的中断可以是合理的任何值,但必须是相同的,当您在AGP槽上插了显示卡,如果您还在同中断的PCI槽上插了一块声卡的话,就一定会产生中断冲突。
三极管不同类型开通关断详解

三极管不同类型开通关断详解三极管是一种常用的电子元件,常用于放大、开关等电路中。
在实际应用中,不同类型的三极管具有不同的特性和用途,本文将详细介绍三极管不同类型的开通关断特性。
一、PNP型三极管PNP型三极管是一种基极反接的三极管,它的电流流向与NPN型相反。
当P区的基极电压低于发射极时,PNP型三极管处于截止状态,此时集电极与发射极之间的电阻非常大,相当于开路状态。
当基极电压高于发射极时,PNP型三极管处于导通状态,此时集电极与发射极之间的电阻非常小,相当于闭路状态。
二、NPN型三极管NPN型三极管是一种基极正接的三极管,它的电流流向与PNP型相反。
当N区的基极电压高于发射极时,NPN型三极管处于截止状态,此时集电极与发射极之间的电阻非常大,相当于开路状态。
当基极电压低于发射极时,NPN型三极管处于导通状态,此时集电极与发射极之间的电阻非常小,相当于闭路状态。
三、场效应管场效应管也称为FET,是一种基于电场效应的半导体器件。
它有三个电极:源极、漏极和栅极。
当栅极电压低于源极电压时,场效应管处于截止状态,此时源极与漏极之间的电阻非常大,相当于开路状态。
当栅极电压高于源极电压时,场效应管处于导通状态,此时源极与漏极之间的电阻非常小,相当于闭路状态。
场效应管具有输入电阻高、噪声小、功耗低等优点,常用于高频放大和开关电路中。
四、继电器继电器是一种电磁开关,它由线圈、触点和固定铁芯组成。
当线圈通电时,铁芯被磁化,使得触点闭合,此时继电器处于闭合状态。
当线圈断电时,铁芯失去磁性,触点打开,此时继电器处于断开状态。
继电器具有开关能力强、绝缘性好、可靠性高等优点,常用于高压、大电流开关电路中。
不同类型的三极管和继电器在开通关断方面有着不同的特性和用途。
在实际应用中,应根据具体情况选择合适的器件,以保证电路的正常工作。
PNPNPN三极管原理讲解

PNPNPN三极管原理讲解PNP和NPN三极管是常用的半导体器件,广泛用于电子电路中。
它们基于不同的材料和结构,具有不同的工作原理和特性。
下面将详细讲解PNP和NPN三极管的工作原理。
首先,我们来了解PNP三极管的原理。
PNP三极管是由两个p型半导体夹一个n型半导体组成的。
在基区的两侧有两个异性材料组成的发射区和集电区。
PNP三极管的工作原理是基于两个二极管的特性。
具体来说,PNP三极管的工作原理如下:1. 当外加正向电压(VBE)施加在发射极和基极之间时,基区的pn结为正向偏置,使得n型电子从基区注入进发射区,同时与p型空穴结合。
这种注入使得发射极具有较大的电流增益。
2.当集电极和发射极之间施加正向电压(VCB)时,集电极结为正向偏置,从而吸引来自发射极的电子和空穴向集电极移动。
这样,整个三极管可以承受较大的集电电流。
3. 当基极与发射极之间没有电压(VBE=0V)时,发射区与集电区的pn 结为反向偏置,从而阻止电子和空穴的注入。
根据以上工作原理,PNP三极管可以作为开关或放大器来工作。
作为开关时,通过控制基极电压可以控制集电极电流的开关状态。
作为放大器时,输入信号施加在基极上,通过电流放大效应将输出信号放大到更高的电流或电压级别。
接下来,我们来了解NPN三极管的原理。
NPN三极管是由两个n型半导体夹一个p型半导体组成的。
在基区的两侧有两个异性材料组成的发射区和集电区。
NPN三极管的工作原理也是基于两个二极管的特性。
具体来说,NPN三极管的工作原理如下:1. 当外加正向电压(VBE)施加在发射极和基极之间时,基区的pn结为正向偏置,使得p型空穴从基区注入进发射区,同时与n型电子结合。
这种注入使得发射极具有较大的电流增益。
2.当集电极和发射极之间施加正向电压(VCB)时,集电极结为正向偏置,从而吸引来自发射极的电子和空穴向集电极移动。
这样,整个三极管可以承受较大的集电电流。
3. 当基极与发射极之间没有电压(VBE=0V)时,发射区与集电区的pn 结为反向偏置,从而阻止电子和空穴的注入。
如何区分贴片三极管NPN与PNP
(3)否则,重复步骤,直到测得的两个阻 值都很小或者测试三次以上为止。
(4)若以红表笔为基准,把三极管的三个
管脚都试了一遍,但它们都不满足步骤的条件,
则说明这个三极管是 NPN 型的三极管,对它的进
一步判断步骤如下:把红、黑表笔位置对调一下, 即以黑表笔为基准,红表笔分别接另外两个管
斜垮着那红得发黑的单肩包,一个人悠然的享受。知道那个他的存在
表笔相接触的那个管脚是它的基极 b.对它的进
一步判断是:将红、黑表笔对调一下,即将黑表
笔接触基极 b,红表笔先后接另外两个管脚,重 复测量一次,若测得的两个阻值均很大,则说明
此三极管就是 PNP 型的三极管,且红、黑表笔对
调后,与黑表笔相接触的那个管脚就是它的基极
b,这就是证明原来判断是正确的。
斜垮着那红得发黑的单肩包,一个人悠然的享受。知道那个他的存在
更多ቤተ መጻሕፍቲ ባይዱ
1cn0f5c7c 刷票公司
贴片三极管分为 PNP 与 NPN 型,一般说来,
PNP 型三极管的外壳比 NPN 型高得多。另外,NPN
型三极管外壳上有一个突出标志,我们可根据这 些不同就可以把它们区分开来.。
可以用万用电表的欧姆挡来判断根据等效
电路的不同,就可以用万用表的欧姆挡来区分它
们.方法如下:将万用电表拨至适当的欧姆挡(实 际上,在测量的过程中,要根据需要适当调节欧
脚。若某一次测得的这两个阻值都很小(即阻值
小于几百欧姆),则说明这个三极管是 NPN 型的
三极管,与黑表笔相接触的那个管脚是它的基极 b。
由以上可知,用万用电表测阻值法不仅可以
区分 PNP 和 NPN 型三极管,而且还可以把三极管
的基极 b 判断出来。
NPN和PNP两种型号三极管的使用和连接方法
NPN和PNP两种型号三极管的使用和连接方法描述分享这篇文章总结下关于NPN和PNP两种型号三极管的使用和连接方法。
在单片机应用电路中三极管主要的作用就是开关作用。
PNP与NPN两种三极管使用方法首先来说一下NPN型,这种型号的三极管在用于开关状态时,大都是发射极接地,集电极接高电平,基极接控制信号。
其次对于PNP型的三极管,用于开关状态时,一般都是发射极接高电平,基极接控制信号。
三极管导通时,电流从发射极流向集电极。
三极管的开关原理三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态。
三极管的用法特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于 b 级 0.7V 以上,这个三极管 e 级和 c 级之间就可以顺利导通。
同理,NPN 型三极管的导通条件是 b 极比 e 极电压高 0.7V。
总之是箭头的始端比末端高 0.7V 就可以导通三极管的 e 极和 c 极。
以上图PNP三极管为例,基极通过一个 10K 的电阻接到了单片机的一个 IO口上,假定是 P1.0,发射极直接接到 5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极 GND 上。
如果 P1.0 由我们的程序给一个高电平 1,那么e到 b 不会产生一个 0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。
如果程序给 P1.0 一个低电平 0,这时 e 极还是 5V,于是 e 和 b 之间产生了压差,三极管 e 和 b 之间也就导通了,三极管 e 和 b 之间大概有 0.7V 的压降,那还有(5-0.7)V 的电压会在电阻 R47 上。
这个时候,e 和 c 之间也会导通了,那么 LED 小灯本身有 2V 的压降,三极管本身e 和c 之间大概有0.2V的压降,我们忽略不计。
接近开关NPN和PNP区别(一看就懂)
接近开关NPN和PNP区别(初学必读!)接近开关NPN型和PNP型输出方式的区别在市场上不同类型的接近开关当中,除二线制开关以外,无论是在工程设计时选型还是使用安装时都需要考虑传感器与系统(PLC)的输出连接方式。
大多数的接近开关输出回路无论是NPN型还是PNP型都是属集电极开路输出信号形式(AC 型除外),且都具有最基本的3条信号线,其分别为(VCC;GND;OUT),也有4线制的OUT(NO+NC)。
一、NPN型、PNP型输出线定义要素首先我们对3条信号线定义或称呼进行说明:1. VCC:即为电源,又称为+V;(俗称电源正极,接红色或褐色线)。
2. GND:即为接地线,又称为0V;(俗称电源负极,接蓝色线)。
3. OUT:即为信号输出线,又称为负载;(接黑色(或白色)线)。
接着单纯的说明NPN型、PNP型代表的意思:NPN型:可简称N型,N表示信号端为负电压输出;内部开关连接于信号端与负极。
PNP型:可简称P型,P表示信号端为正电压输出;内部开关连接于信号端与正极。
同时两种类型都有NO(常开)型或NC(常闭)型不同的输出常态,在选型时单纯的选择NPN型或PNP型输出均是不全面的描述。
从信号端而言NPN型或PNP型严格来说应为如下情况:但是在实际应用中往往不仅仅简单了解信号端输出类型就能知道自己所需要的接近开关、光电开关、传感器之类的接线方法是否正确,还需要了解对具体应用的输入输出信号和电源。
多凯科技作为专业的传感器制造商,在多年与客户的接触中总结出,在实践中有直接连接中间继电器或者连接单片机使用的,也有连接PLC使用的,接入方式不同,对应的信号线接法也就不同,整理应用如下。
二、接近开关、光电开关接线方法接近开关是传感器中的一种,其连接并非单一形式,通用最多的是三线式;两线式相对简单,另四线连接方式也是基于三线的基础应需而产生的。
总合类型为:1.二线制传感器:1-1、NO(常开型)1-2、NC (常闭型)注:二线制分AC(交流)和DC(直流)2.三线制传感器:2-1、NPN - NO(常开型)2-2、NPN –NC(常闭型)2-3、PNP - NO(常开型)2-4、PNP –NC(常闭型)3.四线制传感器:3-1、NPN(NO + NC)常开+常闭型3-2、PNP(NO + NC)常开+常闭型4.接线图:4-1、NPN型工作工程NPN型接近开关用于正极共点(COM),传感器内部开关是信号输出线OUT与GND (0V)电源“-”极相连,相当于OUT信号输出低电平。
如何区分三极管PNP与NPN
根据三极管的外形来判断1.一般说来,PNP型三极管的外壳比NPN型高得多.另外,NPN型三极管外壳上有一个突出标志,根据这些不同就可以把它们区分开来.2.用万用电表的欧姆挡来判断根据等效电路的不同,就可以用万用表的欧姆挡来区分它们.方法如下:将万用电表拨至适当的欧姆挡(实际上,在测量的过程中,要根据需要适当调节欧姆挡的挡级):(1)将电表的红表笔接三极管的某一管脚,黑表笔先后分别接另外两个管脚,可测得两个阻值.(2)若这两个值都很小(即阻值小于几百欧),则说明这个三极管是PNP型的三极管,与红表笔相接触的那个管脚是它的基极b.对它的进一步判断是:将红、黑表笔对调一下,即将黑表笔接触基极b,红表笔先后接另外两个管脚,重复测量一次,若测得的两个阻值均很大,则说明此三极管就是PNP型的三极管,且红、黑表笔对调后,与黑表笔相接触的那个管脚就是它的基极b,这就是证明原来判断是正确的。
(3)否则,重复步骤(1),直到测得的两个阻值都很小或者测试三次以上为止。
(4)若以红表笔为基准,把三极管的三个管脚都试了一遍,但它们都不满足步骤(2)的条件,则说明这个三极管是NPN型的三极管,对它的进一步判断步骤如下:把红、黑表笔位置对调一下,即以黑表笔为基准,红表笔分别接另外两个管脚。
若某一次测得的这两个阻值都很小(即阻值小于几百欧姆),则说明这个三极管是NPN型的三极管,与黑表笔相接触的那个管脚是它的基极b。
由以上可知,用万用电表测阻值法不仅可以区分PNP和NPN型三极管,而且还可以把三极管的基极b判断出来。
NPN型三极管NPN型三极管由2块N型半导体中间夹着一块P型半导体所组成的三极管,称为NPN型三极管.也可以描述成,电流从发射极E流出的三极管.三极管按结构分,可分为型三极管和PNP型三极管.右图起开关管作用的型三极管.工作原理三极管除了有对电流放大作用外,还有开关作用(即通、断作用),当基极加上正偏压时,NPN型三极管即导通处于饱和状态及灯会亮,反之,三极管就不导通,灯不亮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关三极管的工作原理:
截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,即为三极管的截止状态饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并丐当基极的电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不再怎么变化,此时三极管失去电流放大作用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态,即为三极管的导通状态。
开关三极管正是基于三极管的开关特性来工作的。
PNP型三极管:
由2块P型半导体中间夹着1块N型半导体所组成的三极管,称为PNP型三极管。
也可以描述成,电流从发射极E流入的三极管. PNP型三极管发射极电位最高,集电极电位最低,UBE<0.
NPN型三极管:
由2块N型半导体中间夹着一块P型半导体所组成的三极管,称为NPN型三极管. 也可以描述成,电流从发射极E流出的三极管.
两者的区别:
NPN和PNP主要就是电流方向和电压正负不同,说得“丏业”一点,就是“极性”问题。
NPN 是用 B→E 的电流(IB)控制 C→E 的电流(IC),E极电位最低,丐正常放大时通常C极电位最高,
即 VC > VB > VE。
PNP 是用 E→B 的电流(IB)控制 E→C 的电流(IC),E极电位最高,丐正常放大时通常C极电位最低,
即 VC < VB < VE。
PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。
但输出信号是截然相反的,即高电平和低电平。
NPN输出是低电平0,PNP输出的是高电平1。
接近开关:
接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP 型,它们的接线是不同的。
请见下图所示:
三线制简单的讲就是信号输出分PNP型(24V输出)和NPN型(0V输出)。
首先说NPN:NPN接通时是低电平输出,即接通时黑色线输出低电平(通常为0V),下图即为NPN型接近开关原理图,中间电阻代表负载,此负载可以是金属感应物或继电器或PLC等,中间三个圆圈代表开关引出的三根线,其中棕线要接正,蓝线要接负,黑色为信号线。
此为常开开关,当开关动作关闭时黑色和蓝色两线接通如下图2,这时黑色线输出电压与蓝线电压相同,自然就是负极给定电压(通常为0V)。
图1:NPN型接近开关电路图
图2:NPN型接近开关工作状态
PNP:PNP接通时为高电平输出,即接通时黑线输出高电平(通常为24V),下图为PNP型三线开关原理图,电阻代表负载,当开关工作时,图1开关闭合,即黑线和棕线接通如图2,此时棕线与黑线相当于一条线,电压自然就是正极电压(通常为24V)。
图1:PNP接近开关原理图
图2:PNP常开型接近开关工作状态
为何要分为PNP型和NPN型
1.接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。
2.需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。
PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模
PNP 与NPN Glen
块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。
千万不要选错了。
3.两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。
三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。
PLC的源型输入————PLC输入点的光电耦合的公共端接0V;外部com口接24V。
PLC的漏型输入————PLC输入点的光电耦合的公共端接24V;外部com口接0V。
PLC的源型输入用PNP输出型传感器;
PLC的漏型输入用NPN输出型传感器。