高中数学 3.3.1《指数函数的概念》学案 北师大版必修1
高中数学 3.3《指数函数》课件(1) 北师大版必修1

规律方法 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比较,可以利用指 数函数的单调性来判断. (2)对于底数不同,指数相同的两个幂的大小比较,可以利用指 数函数图像的变化规律来判断. (3)对于底数不同,且指数也不同的幂的大小比较,可先化为同 底的两个幂,或者通过中间值来比较.
【训练 2】 求下列函数的定义域与值域;
(1)y=
;(2)y=23 ;(3)y=
解 (1)令 x-4≠0,得 x≠4,∴定义域为{x|x∈R 且 x≠4}.
∵x-1 4≠0,∴
≠1,∴y=
的值域为{y|y>0 且
y≠1}.
(2)定义域为 R.
故 y=23-|x|的值域为{y|y≥1}. (3)定义域为[2,+∞).
【示例】 若直线 y=2a 与函数 y=|ax-1|+1(a>0 且 a≠1)的 图像有两个公共点,求 a 的取值范围. [思路分析] 本题涉及两个函数图像的交点,需作出图像,根据 交点的个数,讨论 a 的取值范围.
解 当 a>1 时,通过平移变换和翻折变换可得(实线),由图可
知 1<2a<2,即12<a<1,与 a>1 矛盾;
(2)函数 y=ax 的图像与函数 y=a-x 的图像关于 y 轴对称,y=ax 的图像与 y=-ax 的图像关于 x 轴对称,函数 y=ax 的图像与 y =-a-x 的图像关于坐标原点对称. (3)使用指数函数 y=ax(a>0 且 a≠1)的单调性时,要首先讨论 底数 a 与 1 的关系. 当 a>1 时,y=ax 在 R 上单调递增,且 x>0 时,ax>1;当 x =0 时,ax=1;当 x<0 时,0<ax<1; 当 0<a<1 时,y=ax 在 R 上单调递减,且 x>0 时,0<ax<1; 当 x=0 时,ax=1;当 x<0 时,ax>1. 单调性是指数函数最重要的一个性质,运用此性质可以求与指 数函数有关的函数的值域、单调区间.
【新教材】3.3.1-2 指数函数的概念+指数函数的图象和性质课件-北师大版高中数学必修第一册(共22张PPT)

练习
教材P84, 练习1、2、3.
作业
教材P89,习题3—3:
A组第3、4、5、6题 B组第1、2、3题
第三章 指数运算与指数函数
第3节 指数函数
3.3.1指数函数的概念
3.3.2 指数函数的图象和性质
曾经有人断言,一张A4纸,不可能将其对折超 过8次,是不是这样呢?
思考讨论:
假设一张厚度0.01cm的A4纸可以无限折叠下去, 那么折叠30次的高度大约是多少?折叠50次呢?
思考讨论:
地球与太阳的距离约1.5亿km,已接近 地球与太阳的距离了
注意:
列表 描点
…
…
…
…
试一试
试一试
列表 描点 连线
…
…
…
…
Байду номын сангаас 试一试
思考讨论(综合练习):
思考讨论(综合练习):
方法点拨:
利用函数的性质解决方程、不等式等问题,是 函数思想的重要应用,指数函数的图象有别与初 中学习的函数图象,熟练掌握指数函数两种情况 的图象和性质,是解决复合函数问题的基础。
高中数学北师大版必修一3.3.1指数函数的概念 指数函数y=2x和y=12x的图像和性质课件.ppt

[解析]
由题意可得
a3=π,∴a=3
1
π=π3
,
x
1
所以 f(x)=π3 ,因此 f(0)=π0=1,f(1)=π3 ,f(-3)=π-1
=1π.
易错疑难辨析
•
函数f(x)=(a2-3a+3)·ax为指数函数,
求实数a的值.
• [错解] 因为f(x)=(a2-3a+3)·ax为指数函数,所以 有a2-3a+3=1.
[思路分析] 先求定义域→分解原函数→考虑单调性→求
出值域
[规范解答] (1)由 x-4≠0 得 x≠4.∴定义域为{x|x≠4}.
又x-1 4≠0,∴2x1-4
1
≠1.∴y=2x-4
的值域为{y|y>0 且 y≠1}.
(2)定义域为 R.∵|x|≥0,∴-|x|≤0. ∴(32)-|x| ≥1,∴y=(23)-|x|的值域为{y|y≥1}. (3)定义域为 R. 令 t=2x,则 t>0,从而函数可化为 y=t2+2t+1=(t+1)2>1. ∴y=4x+2x+1+1 的值域为{y|y>1}. [规律总结] 对于函数 y=af(x)
(2)定义域为 R,由 2x>0 得 2x+1>1,∴0<2x+1 1<1, 从而-2<2-x+21<0,则-1<1-2x+2 1<1, 即值域为(-1,1).
• 指数函数的图像及其变换
•
利用y=2x的图像,如何变换得到下列函
数的图像?试作出它们的图像.
• (1)y=2x-1;(2)y=2x+1;(3)y=2-x;(4)y=-2x; (5)y=-2-x;(6)y=2|x|.
• (4)将y=2x图像关于x轴对称,可得到y=-2x的图 像,如图④.
高中数学 33指数函数(二)导学案 北师大版必修1 学案

陕西省咸阳市泾阳县云阳中学高中数学 3.3指数函数(二)导学案 北师大版必修1【学习目标】1.进一步明确指数函数的定义,会用指数函数图象、性质解决简单问题.2. 培养学生用数形结合的方法解决问题的能力.培养学生勇于发现、勇于创新的精神和独立思考的良好个性品质.3.在合作探究过程中体验合作学习的快乐 【学习重点】指数函数的图象与性质的应用. 【学法指导】1 请同学们认真阅读课本72-76页内容,规范完成导学案,用红笔做好疑难标记。
2 本学案分为A、B、C三个层次,其中A、B层必须都完成;C层供有余力的同学选作。
3在课堂上联系课本知识和学过的知识,小组合作、讨论完成导学案上的内容,组长负责,拿出讨论结果,准备展示、点评。
【学习过程】 (一) 基础学习(A )1.通过你对指数函数图象、单调性的认识,完成下面几个问题:(1)在x ∈[m ,n ]上,)10()(≠>=a a a x f x且值域是(10<<a )或 (1a >);(2)对于)10()(≠>=a a a x f x且,总有(0)f = ,=)1(f 。
个 性 笔 记(二)学习探究 探究一(A )1.指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1从小到大的顺序为 .探究二(B )2.求下列函数的定义域(解题提示:指数函数单调性的应用)(1)y =1-3x(2))21(2xy -=;(四)达标检测 (A )1.函数0.(12>+=-a ay x 且)1≠a 的图像必经过点( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D(B )2.函数x x y 28)13(0-+-=的定义域为 。
(B )3.设0< a <1,解关于x 的不等式13+-x a >xa52+。
(C )4.已知x ∈[-3,2],求f(x)=12141+-x x 的最小值与最大值。
高中数学北师大版必修一 3.3.1 指数函数的概念 课件(41张)

[例1]
指出下列函数哪些是指数函数:
(1)y=3x;(2)y=x2; (3)y=-3x;(4)y=(-3)x; (5)y=πx;(6)y=(4x)2; 1 2 (7)y=x ;(8)y=(6a-3) (a>2,且a≠3).
x x
[思路点拨]
根据指数函数定义判断.
[精解详析]
(1)、(5)、(8)为指数函数.
3x-2
. 函数的定义域是使函数有意义的自变量的
[ 思路点拨 ]
取值范围,分式问题要使分母不为 0,根式问题要使被开方数 有意义,结合换元法,联想函数的图像,根据单调性等确定 值域.
[精解详析] ∴x≠4,
(1)要使函数有意义,必须 x-4≠0,
故所求函数的定义域为{x∈R|x≠4}. 1 ∵x≠4, ≠0, x-4 ∴2
答案:③
2.若函数y=(a2-3a+3)· ax是指数函数,求a的值.
解:由指数函数的定义知
2 a -3a+3=1 a>0且a≠1 ② Nhomakorabea①
由①得a=1或2,结合②得a=2.
[例 2] (1)y= 2
求下列函数的定义域和值域:
1 x 4
;
1 2 x-x2 (2)y=(2) ; (3)y=5
函数值 x>0时, y>1
1.指数函数y=ax的底数规定大于零且不等1的理由:
x 当x>0时,a 恒等于0; 如果a=0, x 当 x ≤ 0 时, a 无意义.
1 1 如果a<0,如y=(-4) ,当x=4、2等时,在实数范围内
x
函数值不存在. 如果a=1,y=1x=1,是一个常量,对它就没有研究的 必要.为了避免上述各种情况,所以规定a>0且a≠1.
高中数学北师大版高一必修1教案 3.3指数函数的图像和性质

3.3 指数函数的图像和性质 第1课时 指数函数的图像与性质●三维目标1.知识与技能理解指数函数的定义,掌握指数函数的图像、性质及其简单应用. 2.过程与方法培养学生数形结合的意识,提高学生观察、分析、归纳的思维能力. 3.情感、态度与价值观通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问、善于探索的思维品质.●重点难点重点:指数函数的概念、图像和性质及其应用. 难点:指数函数性质的归纳、概括及其应用.教学时,要让学生体会其中隐含的函数关系,引导学生通过y =2x 和y =(12)x 两个函数,感受到这两个函数中的指数幂具有的共性:可以写为y =a x 的形式.在学习指数函数的性质时,建议尽可能地引导学生通过观察图像,自己归纳概括出指数函数的性质.为了使学生能够主动研究指数函数的图像和性质,教师可以充分利用信息技术提供互动环境,先引导学生随意地取a 的值,并在同一个平面直角坐标系内画出它们的图像,然后再通过底数a 的连续动态变化展示函数图像的分布情况,这样就会使学生比较容易地概括出指数函数的性质.●教学建议为充分贯彻新课程理念,使教学过程真正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法.以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,让学生始终处在教学活动的中心.●教学流程从指数概念的扩充过程引出指数函数的概念,并完成例1及变式训练⇒通过描点法做出函数y=2x和y=(12)x的图像,观察两个函数图像的特征⇒通过例2及其变式训练,加深对指数函数的认识⇒通过多媒体课件展示当底数a取不同的值时函数图像,让学生直观感知底数对图像的影响⇒通过例3及其变式训练,让学生初步掌握函数的图像和性质⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(见学生用书第40页)课标解读1.理解指数函数的概念.2.通过具体指数函数的图像,体会指数函数图像与底数a的关系.(重点易混点)3.掌握指数函数的图像与性质及其简单应用.(难点) 【问题导思】已知函数y=2x,y=(13)x.1.上面两个关系式是函数式吗?【提示】是.2.这两个函数形式上有什么共同点?【提示】底数为常数,指数为自变量.函数y=a x叫作指数函数,自变量x在指数位置上,底数a是一个大于0且不等1的常量.【问题导思】1.试作出函数y=2x(x∈R)和y=(12)x(x∈R)的图像【提示】2.两函数图像有无交点?【提示】有交点,其坐标为(0,1).3.两函数图像与x轴有交点吗?【提示】没有交点,图像在x轴上方.4.两函数的定义域是什么,值域是什么?【提示】定义域是R,值域是(0,+∞).5.两函数的单调性如何?【提示】y=2x是增函数,y=(12)x是减函数.a>10<a<1 图象性质定义域:R值域:(0,+∞)过点(0,1),即x=0时,y=1x>0时,y>1;x<0时,0<y<1x>0时,0<y<1;x<0时,y>1是R上的增函数是R上的减函数(见学生用书第40页)指出下列函数哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x (a >12,且a ≠1).【思路探究】 紧扣指数函数的定义,能否转化为y =a x (a >0且a ≠1)的形式.【自主解答】 (1)(5)(8)为指数函数,(2)是幂函数;(3)是-1与指数函数y =4x 的乘积;(4)中底数-4<0,所以它不是指数函数,(6)中指数不是x ,(7)中底数x 不是常数.一般地,函数y =a x 叫作指数函数,其中a 是一个大于零且不等于1的常数,x 是自变量,正确完成例1需要准确理解指数函数的定义.严格对比指数函数的定义是解决好本题的关键.已知指数函数f (x )=(a 2-8)a x 的图像过点(-1,13).(1)求函数f (x )的解析式; (2)求f (-13)的值.【解】 (1)∵f (x )=(a 2-8)a x 为指数函数, ∴a 2-8=1.①又∵图像过点(-1,13),∴f (-1)=13.②联立①②得a =3, ∴f (x )=3x .(2)f (-13)=3-13=133=393.设f (x )=3x ,g (x )=(13)x .(1)在同一坐标系中作出f (x ),g (x )的图像;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 【思路探究】 建系→列表→描点→连线【自主解答】 (1)函数f (x )与g (x )的图像如图所示:(2)f (1)=31=3,g (-1)=(13)-1=3;f (π)=3π,g (-π)=(13)-π=3π;f (m )=3m ,g (-m )=(13)-m =3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图像关于y 轴对称.1.指数函数的图像根据底数不同分为两类:(1)当0<a <1时,指数函数y =a x 是定义域R 上的减函数; (2)当a >1时,指数函数y =a x 是定义域R 上的增函数.2.不论底数取何值,指数函数的图像恒过点(0,1).即要求指数型函数过定点,只需让指数位置等于0即可.(1)指数函数y =a x 与y =b x 的图像如图3-3-1所示,则( )图3-3-1A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <1 (2)函数y =15x 的图像是( )【解析】 (1)结合图像易知0<a <1,b >1.(2)因为指数函数y =15x 的底数15>1,所以函数y =15x 是R 上的增函数,排除A 、C ;又因为当x =0时,y =1,即图像过点(0,1),故选B.【答案】 (1)C (2)B比较下列各题中两个值的大小: (1)1.72.5,1.73; (2)2.3-0.28,0.67-3.1.【思路探究】 (1)构造指数函数,利用其单调性比较大小;(2)利用中间量1比较大小. 【自主解答】 (1)(单调性法)由于1.72.5与1.73的底数是1.7, 故构造函数y =1.7x ,则函数y =1.7x 在R 上是增函数. 又2.5<3,所以1.72.5<1.73.(2)(中间量法)由指数函数的性质,知 2.3-0.28<2.30=1,0.67-3.1>0.670=1,所以2.3-0.28<0.67-3.1.比较指数式大小的方法1.单调性法:比较同底数幂的大小,可构造指数函数,利用指数函数的单调性比较大小.2.中间量法:比较不同底且不同指数幂的大小,常借助于中间值1进行比较.利用口诀“同大异小”,判断指数幂和1的大小.(1)下列不等关系中,正确的是( ) A .(12)23<1<(12)13 B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<1(2)(2013·长沙高一检测)设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 1>y 2>y 3【解析】 (1)∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1. (2)从形式上看,三个幂式的底数和指数各不相同,但根据指数的运算性质可得,y 1=40.9=(22)0.9=21.8,y 2=80.48=(23)0.48=21.44,y 3=(12)-1.5=(2-1)-1.5=21.5.因为指数函数y =2x (x ∈R)是增函数,所以21.8>21.5>21.44,即y 1>y 3>y 2. 【答案】 (1)D (2)C第2课时 指数函数的图像与性质的应用●三维目标1.知识与技能(1)掌握和指数函数有关的简单图像变换.(2)能根据指数函数的性质解决有关函数单调性、奇偶性的讨论问题. (3)注意指数函数的底数的讨论. 2.过程与方法(1)通过师生之间、学生与学生之间的互相交流,使学生成为一个会与别人共同学习的人.(2)通过探索、比较复杂函数与简单初等函数的关系,培养学生利用化归思想解决问题的能力.3.情感、态度与价值观(1)通过讨论比较复杂的函数的单调性、奇偶性,使学生感知知识之间的有机联系,感受数学的整体性,感受并体会数学中的化归思想的巨大作用及其在生活中对处理生活琐事的指导作用,激发学生的学习兴趣.(2)在教学过程中,通过学生的相互交流,增强学生数学交流能力,合作学习的能力,同时培养学生倾听、接受别人意见的优良品质.●重点难点重点:讨论含有指数式的比较复杂的函数的单调性和奇偶性.难点:将讨论复杂函数的单调性、奇偶性问题转化为讨论比较简单的函数的有关问题. 讨论含有指数式的比较复杂的函数的单调性和奇偶性是本课的教学重点.将讨论复杂函数的单调性、奇偶性问题转化为讨论比较简单的函数的有关问题以及在解决具体实际问题中目标函数模型的确立、目标函数的定义域的确立是本课的教学难点.●教学建议判断复合函数的单调性时常按照定义进行,并且首先要判断定义域是否关于原点对称.有时也可将所给函数转化为两个或多个基本初等函数的复合函数,进而通过讨论每个基本初等函数的单调性确定所求复合函数的单调性.判断复合函数的奇偶性时,往往要进行通分,这样可以得到比较对称的形式,同时在证明函数的单调性或求函数的值域时往往要进行常数分离.另外,结合图形往往使得解题更加的简单,特别是在分析题目时,图形有助于我们的思考,找到解题思路.解决具体实际问题时,为了更快、更准确地确定目标函数模型,可以先由特殊的情况开始,多列举几种情形,分析、观察、寻找其中的规律,确立目标函数模型,同时也应根据具体问题的实际意义确定函数的定义域.●教学流程复习指数函数的图像与性质和复合函数的相关知识⇒通过指数函数的图像,利用图像的变换得到和指数函数相关的函数图像⇒完成例1及其变式训练,掌握函数的三种常见变换⇒师生合作交流,得出和指数函数相关的复合函数的单调性问题⇒通过例2及其变式训练,使学生加深对复合函数单调性的认识⇒合作探究和指数函数相关的函数奇偶性问题,完成例3及其变式训练,深化对知识的理解⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(见学生用书第42页)课标解读1.理解并掌握指数函数的图像和性质.(重点)2.掌握函数图像的简单变换.(易混点)3.能运用指数函数的有关性质去研究指数型函数的性质.(难点)【问题导思】若已知函数f(x)=2x的图像.1.如何得到f(x)=2x-1的图像?【提示】向右平移1个单位.2.如何得到f(x)=2x-2的图像?【提示】向下平移2个单位.3.如何得到f (x )=(12)x 的图像?【提示】 作f (x )=2x 关于y 轴的对称图像. 4.如何得到f (x )=-2x 的图像?【提示】 将f (x )=2x 的图像以x 轴为对称轴翻折到x 轴下方. 1.平移变换(1)左右平移:y =f (x )――→a >0,左移a 个单位a <0,右移|a |个单位y =f (x +a ) 特征:左加右减:(2)上下平移:y =f (x )――→k >0,上移k 个单位k <0,下移|k |个单位y =f (x )+k 特征:上加下减. 2.对称变换(1)y =f (x )――→关于x 轴对称y =-f (x ); (2)y =f (x )――→关于y 轴对称y =f (-x ); (3)y =f (x )――→关于原点对称y =-f (-x ). 3.翻折变换(1)y =f (x )――→y 轴左侧部分去掉,保留y 轴右侧部分,把y 轴右侧部分以y 轴为对称轴翻折到y 轴左侧 y =f (|x |).(2)y =f (x )――→x 轴下侧部分去掉,保留x 轴上侧部分,把x 轴下侧部分以x 轴为对称轴翻折到x 轴上侧 y =|f (x )|.(见学生用书第43页)函数图像的作法利用函数f (x )=(12)x 的图像,作出下列函数的图像:(1)f (x +1);(2)-f (x );(3)f (-x ).【思路探究】 作出y =(12)x的图像→明确f (x )与f (x +1), -f (x ),f (-x )图像间 的关系――→平移变换对称变换分别得出图像【自主解答】 作出f (x )=(12)x 的图像,如图所示:(1)f (x +1)的图像:需将f (x )的图像向左平移1个单位得f (x +1)的图像,如图(1). (2)-f (x )的图像:作f (x )的图像关于x 轴对称的图像得-f (x )的图像,如图(2). (3)f (-x )的图像:作f (x )的图像关于y 轴对称的图像得f (-x )的图像,如图(3).1.利用已知的函数图像作图,主要运用图像的平移、对称等变换,平移变换需分清楚向何方向移,要移多少个单位,如(1);对称变换需分清对称轴是什么,如(2)(3).2.利用变换作图,一般步骤是: 选基函数→写出变换过程→画图像函数y =2|x |的图像是( )【解析】 法一 由于y =2|x |=⎩⎪⎨⎪⎧2x x ≥0,12x x <0,所以A 正确. 法二 y =2|x |――→偶函数对称变换――→保留y 轴右侧部分,并对y 轴右侧部分翻折到左边y =2|x |,知选A. 【答案】 A与指数函数有关的复合函数(1)y =3x 2-2x +7;(2)y =4x -2·2x +5.【思路探究】 将复合函数写成y =f (u ),u =φ(x )的形式,然后利用复合函数的单调性求解.【自主解答】 (1)函数的定义域为R ,对u =x 2-2x +7=(x -1)2+6,当x ≥1时,u 为增函数,x ≤1时,u 为减函数,又3>1,∴函数y =3x 2-2x +7的增区间为[1,+∞),减区间为(-∞,1].(2)令2x =t ,则t 是x 的增函数,y =t 2-2t +5=(t -1)2+4,当t ≥1,即2x ≥1,即x ≥0时,y 是t 的增函数;当t ≤1,即2x ≤1,即x ≤0时,y 是t 的减函数;又函数的定义域为R ,∴函数y =4x -2·2x +5的单调增区间是[0,+∞),减区间是(-∞,0].1.求函数的单调区间,首先求函数的定义域,对复合函数的单调性,应注意y =f (u )与u =g (x )单调性的一致性和相反性. 2.在复合函数中,一般情况下,如果两个函数都是增函数或都是减函数,则复合函数是增函数;如果两个函数一增一减,则复合函数为减函数,简称“同增异减”.(1)函数y =(12)x 2-3x +2的单调增区间是________. (2)y =(2-1)-x 2+2x +3的单调增区间是( )A .(1,+∞)B .(-∞,1]C .(1,3)D .(-1,1)【解析】 令u =x 2-3x +2=(x -32)2-14,令y =(12)u 在定义域内是减函数,而求y =(12)x 2-3x +2的增区间,只需求u 的减区间,∴x ∈(-∞,32]. (2)函数y 的定义域为R ,u =-x 2+2x +3=-(x -1)2+4;x ≥1时,u 是减函数,又0<2-1<1,∴y 的增区间为(1,+∞).【答案】 (1)(-∞,32] (2)A指数函数的综合问题已知函数f (x )=2x +2ax +b ,且f (1)=52,f (2)=174. (1)求a ,b 的值;(2)判断f (x )的奇偶性并证明;(3)判断并证明函数f (x )在[0,+∞)上的单调性,并求f (x )的值域.【思路探究】 (1)将两个已知条件代入解析式即可求a ,b ;(2)求出函数的定义域,再依据奇偶性的判断方法求解;(3)依据单调性的证明步骤给出过程,再依据单调性求值域.【自主解答】 (1)∵⎩⎨⎧ f1=52,f2=174,∴根据题意得⎩⎨⎧ f 1=2+2a +b =52,f 2=22+22a +b =174,解得⎩⎪⎨⎪⎧a =-1,b =0. 故a ,b 的值分别为-1,0.(2)由(1)知f (x )=2x +2-x ,f (x )的定义域为R ,关于原点对称.因为f (-x )=2-x +2x =f (x ),所以f (x )为偶函数.(3)设任意x 1<x 2,且x 1,x 2∈[0,+∞),则f (x 1)-f (x 2)=(2x 1+2-x 1)-(2x 2+2-x 2)=(2x 1-2x 2)+(12x 1-12x 2)=(2x 1-2x 2)·2x 1+x 2-12x 1+x 2. 因为x 1<x 2,且x 1,x 2∈[0,+∞),所以2x 1-2x 2<0,2x 1+x 2>1,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[0,+∞)上为增函数.当x =0时,函数取得最小值,为f (0)=1+1=2,所以f (x )的值域为[2,+∞).1.指数函数的单调性与底数有关,因此讨论指数函数的单调性时,一定要明确底数与1的大小关系.与指数函数有关的函数的单调性也往往与底数有关,其解决方法一般是利用函数单调性的定义. 2.指数函数本身不具有奇偶性,但是与指数函数有关的函数可以具有奇偶性,其解决方法一般是利用函数奇偶性的定义和性质.设a 为实数,f (x )=a -22x+1(x ∈R). (1)证明f (x )在R 上为增函数;(2)试确定a 的值,使f (x )为奇函数.【解】 (1)证明:设x 1,x 2∈R ,x 1<x 2,则f (x 1)-f (x 2)=(a -22x 1+1)-(a -22x 2+1) =22x 1-2x 22x 1+12x 2+1. 由于指数函数y =2x 在R 上为增函数,且x 1<x 2,所以2x 1<2x 2,即2x 1-2x 2<0.又由2x >0,得2x 1+1>0,2x 2+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故f (x )在R 上为增函数.(2)若f (x )为奇函数,则f (-x )=-f (x ),即a -22-x+1=-(a -22x +1). 变形得2a =22-x +1+22x +1=2·2x2-x +1·2x +22x +1=22x +12x +1=2. 解得a =1.所以当a =1时,f (x )为奇函数.。
高中数学 3.3.3 指数函数的图像和性质教案 北师大必修1
指数函数的图像与性质一、教材分析(一)教材的地位和作用“指数函数”的教学共分三个课时完成,第1课时为指数函数的概念,具体指数函数的图像和性质;第2课时为指数函数的图像和性质及简单应用;第三课时为指数函数的性质应用。
本课时主要通过对指数函数图像的研究归纳其性质,并进行简单的应用。
“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。
通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。
(二)教学目标1、知识目标:i会做指数函数的图像;ii能归纳出指数函数的几个基本性质;iii会进行指数函数性质的简单应用。
2、能力目标:通过由指数函数的图像归纳其性质的学习过程,培养学生探究、归纳分析问题的能力。
3、情感目标:通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。
(三)教学重点和难点1、重点:指数函数的性质和图像。
2、难点:指数函数性质的归纳。
二、教法分析(一)教学方式直接讲授与启发探究相结合(二)教学手段借助多媒体,展示学生的做图结果;演示指数函数的图像三、教学基本思路:1、引入1)复习指数函数概念2)回忆指数函数图像的画法2、探究指数函数的性质1)研究指数函数的图象2)归纳总结指数函数的性质3、指数函数性质的简单应用4、巩固练习5、小结6、作业布置五、教学设计说明1、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。
通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。
2、进行一些巩固练习从而能对函数进行较为基本的应用。
数学必修一北师大版3.3 指数函数+指数的运算性质学案(无答案)
高一年级班第组学生姓名组评:编写时间:年月日授课时间:年月日共第课时课题:3.2.2 指数的运算性质主备人审核人学习目标熟记指数幂的运算性质学习重难点熟练运用指数的运算性质课时安排1课时教学用具教学过程师生笔记学习流程学习内容自主学习自主预习学案实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①a r·a s=a r+s(a>0,r,s∈R).②(a r)s=a rs(a>0,r,s∈R).③(a·b)r=a r b r(a>0,b>0,r∈R).无理数指数幂的运算法则:①a r·a s=a r+s(a>0,r,s都是无理数).②(a r)s=a rs(a>0,r,s都是无理数).③(a·b)r=a r b r(a>0,b>0,r是无理数).[来源:学科探究交流例1 在实数范围内,对比(ab)n=a n b n和()n nbanba=(其中a>0,b>0,b≠0),说明后者可以归入前者.例2 已知10α=3,10β=4,求10α+β,10α-β,10-2α例3 计算:(1)614+3338+40.062 5+(5π)0-2-1;训练达标1.以下各式中成立且结果为最简根式的是().A.a·5a3a·10a7=10a4; B.3xy2(xy)2=y3x2C.a2bb3aab3=8a7b15;D.(35-125)3=5+125125-235·1252、式子x-2x-1=x-2x-1成立的充要条件是().A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2 3、化简b-(2b-1)(1<b<2).课内小结(1)无理数指数幂的意义.一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.(2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①a r·a s=a r+s(a>0,r,s∈R).②(a r)s=a rs(a>0,r,s∈R).③(a·b)r=a r b r(a>0,b>0,r∈R).作业布置习题3—2A组6、8教学反思备注。
第三章-§3-指数函数高中数学必修第一册北师大版
根据在轴右侧③的图象在④的图象上方可知 > ;根据在轴左侧①的图象在②的
图象下方可知 > .
综上可知 < < 1 < < .
方法2 作直线 = 1(如图3-3-3),则直线 = 1与题中四个函数图象
例12 若方程 3 − 1 = 有一解,则的取值范围为_____________.
【解析】函数 = 3 − 1 的图象是由函数 = 3 的图象向下平
移一个单位长度后,再把位于轴下方的图象沿轴翻折到轴上
方得到的,函数图象如图3-3-6所示.
当 = 0或 ≥ 1时,直线 = 与函数 = 3 − 1 的图象有唯一的
所以2 − 3 + 3 = 1,解得 = 2或 = 1,又 > 0且 ≠ 1,所以 = 2.
题型2 求指数型函数的定义域或值域
例7 [教材改编P91 A组T1]求下列函数的定义域和值域:
(1) = 1 − 3 ;
【解析】要使函数式有意义,则1 − 3 ≥ 0,即3 ≤ 1 = 30 .
1 −4
2
2
− 4 ≥ −4,
= 16.
0,所以函数 =
2
1 −2−3
的值域为(0,16].
2
题型3 指数函数的图象及应用
例8 利用函数 = = 2 的图象,作出下列各函数的图象:
(1) − 1 ;(2) ;(3) − 1;
(4)− ;(5) − 1 .
【解析】作出函数 = |3 − 1| − 1的图象如图3-3-8所示.
由图象知 ≤ −1,
北师大版高中数学必修一课件3.3指数函数(1)
如果a=0 那么当x>0时,ax =0,当x≤0时, ax 无意义.
如果a<0 如y=( - 4)x 这时对于x= 1 ,1 等,在实数范围
内函数值不存在.
42
如果a=1,这时y=1x =1是一个常量,对它没有研究的必要,
为了避免上述各种情况,所以规定a>0,且a≠1即a>1或 0<a<1,在这个规定下,y=a x的定义域是R.
(1) y 2x1 ;
(2) y 2x2 .
解:(1)比较函数 y 2x1与 y 2x 的关系:
y 231 与 y 22 相等,
y 221 与 y 21 相等,
y 221 与 y 23 相等,
由此可以知道,将指数函数 y 2x的图像向左
平移1个单位长度,就得到函数 y 2x1 的图像.
说明:一般地,当a>0时,将函数y=f(x)的图像向 左平移a个单位得到y=f(x+a)的图像;
当a<0时,将函数y=f(x)的图像向右平移|a|个单位得 到y=f(x+a)的图像.
例题解析
例 3 比较下列各题中两个值的大小: (1) 1.72.5, 1.73; (2) 0.8-0.1, 0.8-0.2;
(1)确定所要考查的指数函数; (2)根据底数情况指出已确定的指数函数 的单调性; (3)比较指数大小,然后利用指数函数单 调性得出同底数幂的大小关系; (4)对于不同底不同指数的函数值比较大 小,一般要找中间量.
课堂小结
1. 什么是指数函数? 2. 指数函数的图像有哪些特征?
指数函数有哪些性质? 3. 怎样用指数函数的性质比较两个 幂的大小?
分析:通过恰当假设,将剩留量y表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求. 解:设这种物质量初的质量是1,经过x年,剩留量是y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 指数函数的概念
指数函数是数学中重要的函数。应用到值 e 上的这个函数写为 exp(x)。还可以等价
的写为 e,这里的 e 是数学常数,就是自然对数的底数,近似等于 2.718281828,还
称为欧拉数。
指数函数对于 x 的负数值非常平坦,对于 x 的正数值迅速攀升,在 x 等于 0 的
时候等于 1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识:d(a^x)
/dx=a^x*ln(a)。
作为实数变量 x 的函数,y=ex 的图像总是正的(在 x 轴之上)并递增(从左向右
看)。它永不触及 x 轴,尽管它可以任意程度的靠近它(所以,x 轴是这个图像的水平
渐近线。它的反函数是自然对数 ln(x),它定义在所有正数 x 上。
有时,尤其是在科学中,术语指数函数更一般性的用于形如 kax 的
指数函数
函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数。本文最初集中于带有底
数为欧拉数 e 的指数函数。
指数函数的一般形式为y=a^x(a>0且≠1) (x∈R),从上面我们关于幂函数的讨论
就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
在函数y=a^x中可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,
对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考
虑,
同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凸的。
(4) a大于1时,则指数函数单调递增;若a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过
指数函数
程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函
数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中
水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)
(8) 显然指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数
都不具有奇偶性。
(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
编辑本段指数函数求导公式的推导
e的定义:e=lim(x→∞)(1+1/x)^x=2.718281828...设a>0,a!=1----(log
a(x))'=lim(Δx→∞)((log a(x+Δx)-log a(x))/Δx)=lim(Δx→∞)(1/x*x/Δx*log
a((x+Δx)/x))=lim(Δx→∞)(1/x*log
a((1+Δx/x)^(x/Δx)))=1/x*lim(Δx→∞)(log a((1+Δx/x)^(x/Δx)))=1/x*log
a(lim(Δx→0)(1+Δx/x)^(x/Δx))=1/x*log a(e)特殊地,当a=e时,(log a(x))'=(ln
x)'=1/x。----设y=a^x两边取对数ln y=xln a两边对求x导y'/y=ln ay'=yln a=a^xln
a特殊地,当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。
编辑本段底数与指数函数图像:
指数函数
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上
相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图
像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;
在y轴左边“底大图低”。(如右图)》。
编辑本段幂的大小比较:
比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比
较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递
性得到A与B之间的大小。
比较两个幂的大小时,除了上述一般方法之外,还应注意:
(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性
来判断。
例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的
y值越大),因为5大于4,所以y2大于y1.
(2)对于底数不同,指数相同的两个幂的大小比较,可
指数函数
以利用指数函数图像的变化规律来判断。
例如:y1=1/2^4,y2=3^4,因为1/2小于1所以函数图像在定义域上单调递减;3大
于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过(0,1)然后随
着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1.
(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。
如:
<1> 对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与
0、1的大小)进行分组,再比较各组数的大小即可。
<2> 在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与
“1”的大小),就可以快速的得到答案。那么如何判断一个幂与“1”大小呢?由指数
函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向
(例如: a 〉1且x 〉0,或0〈 a〈 1且 x〈 0)时,a^x大于1,异向时a^x小于
1.
〈3〉例:下列函数在R上是增函数还是减函数?说明理由.
⑴y=4^x
因为4>1,所以y=4^x在R上是增函数;
⑵y=(1/4)^x
因为0<1/4<1,所以y=(1/4)^x在R上是减函数
编辑本段定义域:实数集
指代一切实数(-∞,+∞),就是R。
编辑本段值域:(0,+∞)
对于一切指数函数y=a^x来讲。他的a满足a>0且a≠1,即说明y>0。所以值域为
(0,+∞)
编辑本段分式化简的方法与技巧
(1)把分子、分母分解因式,可约分的先约分
(2)利用公式的基本性质,化繁分式为简分式,化异分母为同分母
(3)把其中适当的几个分式先化简,重点突破.
指数函数
(4)可考虑整体思想,用换元法使分式简化