5 浆体的胶体化学原理
胶体

紧密层
0热力学电势差:
固体表面与溶液本体间的电势差
x
双 电 层 的 Stern 模 型
当溶胶相对静止时,整个溶胶体系是电中性的,但 当分散相粒子和液体介质相对运动时,就会产生电位差, 这种电位差叫电动电势。 胶粒是带电的,由于静电引力使反粒子在表面周围,
又由于分子热运动,使反粒子在表面附近呈扩散分布。
离表面近的一层——紧密层(内层),厚度(约几
1869年,发现了Tyndall效应,可区别溶胶及溶液;
1903年,德国科学家Zsigmondy发明了超显微镜, 肯定溶胶的一个根本问题—体系的多相性,从而明确了 胶体化学是界面化学。
1907年,德国化学家Ostwald创办《胶体化学和工
业杂志》—胶体化学正式成为一门独立的学科。 1941年,前苏联的德查金(Derjaguin B V)和朗道 (Landau L D)以及1948年荷兰的维韦(Werwey E J W)和 奥佛比克(Overbeek J T G)胶体稳定性的DLWO理论。从 70年代起,对高分子稳定胶体的研究逐渐成为热点,其中
φ0
+ + + + + + + + + + + +
δ
φ0
+ + + + + + + + + + + + +
-
A B x -
平板双电层模型
扩散双电层模型
质 点 表面+ + + + + + + + + +
关于胶体化学的几个基本概念

一、概述1.关于胶体化学的几个基本概念(1)相和相界面相是指那些物质的物理性质和化学性质都完全相同的均匀部分。
体系中有两个或两个以上的相,称为多相体。
相与相之间的接触面称为相接面。
(2) 分散相与分散介质在多相分散体系中,被分散的物质叫做分散相。
包围分散相的另一相,称为分散介质。
例如,水基钻井液中,粘土颗粒分散在水中,粘土为分散相,水为分散介质。
(3)分散度和比表面分散度是某一分散程度的量度,通常用分散相颗粒平均直径或长度的倒数来表示。
如果用D表示分散度,用a表示颗粒的平均直径或长度,则分散度可表示为D=1/a。
比表面是物质分散度的另一种量度,其数值等于全部分散相颗粒的总面积与总质量(或总体积)之比。
如果用S代表总表面积,用V表示总体积,用m表示总质量,则比表面可表示为:=S/V (m-1) (2-2)S比或 S=S/m (m-1/kg) (2-3)比物质的颗粒愈小,分散度愈高,比表面愈大,界面能与界面性质就会发生惊人的变化。
所有颗粒分散体系的共性是具有极大的比表(界)面。
按分散度不同,可将分散体系分为细分散体系与粗分散体系。
胶体实际上是细分散体系,其分散相的比表面≥104 m2/kg,其颗粒长度在1 nm~1 μm 之间。
悬浮体则属于粗分散体系,其比表面大致不超过104m2/kg分散相的颗粒直径在1~40/μm之间。
钻井液是复杂的胶体分散体系。
水基钻井液基本上是溶胶和悬浮体的混合物,本书中统称为胶体分散体系。
(4)吸附作用物质在两相界面上自动浓集(界面浓度大于内部浓度)的现象,称为吸附。
被吸附的物质称为吸附质,吸附吸附质的物质称为吸附剂。
按吸附的作用力性质不同,可将吸附分为物理吸附和化学吸附两类。
仅由范德华引力引起的吸附,是物理吸附。
这类吸附一般无选择性,吸附热较小,容易脱附。
若吸附质与吸附剂之间的作用力为化学键力,这类吸附叫化学吸附。
化学吸附具有选择性,吸附热较大,不易脱附。
2.沉降与沉降平衡钻井液中的粘土粒子,在重力场的作用下会沉降。
胶体与界面化学在材料科学中的应用

胶体与界面化学在材料科学中的应用材料科学作为近年来发展最快的新兴学科,已经成为一个综合性的学科,是自然科学和工程技术学科直接交叉的领域。
其中,胶体与界面化学是材料科学中的重要分支之一,它不仅关乎材料的制备和性能,而且涉及到能源、环境等多个领域的应用。
一、胶体化学胶体是指粒径在1纳米至1微米之间的物质,如乳液、胶体溶液、气溶胶和胶质体等。
由于这些物质粒子呈现出分散状态,因此也被称为分散相。
而这些分散相与其中的介质会形成分界面,称为界面相。
胶体在化学、生物学、医学、环保等领域都有着重要的应用。
在材料科学中,胶体是一种非常有用的材料制备方式,因为它可以实现精细控制和组装结构。
例如,利用胶体制备纳米颗粒具有化学稳定性、单分散性等优点,已成为现代纳米材料制备的常用方法。
此外,将胶体作为载体,制备出多功能的复合材料,还能够大幅度提高材料在电、机、光、热、化等领域的性能。
二、界面化学界面化学主要研究分散相与介质之间的相互作用。
其中,最常见的界面是液体-气体界面和固体-液体界面。
液体-气体界面主要研究表面张力与表面活性物质的作用,而固体-液体界面则着重于电荷分布、表面形态、界面能等问题。
在材料科学中,界面化学是制备材料过程中不可或缺的一部分。
例如,在微细加工中,利用界面化学原理可以通过操控界面活性剂的溶液动力学性质,使得材料的表面能得到有效的控制。
这样可以对微米级别的结构进行精确的加工和制备。
界面化学还可以利用界面活性剂表面修饰的方法来提高材料的性能,例如耐磨、防水、阻燃等。
三、胶体与界面化学的应用胶体与界面化学在材料科学中有着广泛的应用。
下面将罗列几个具有代表性的例子。
1、纳米材料类胶体与界面化学在纳米材料制备上有着广泛的应用。
例如利用胶体制备出来的纳米颗粒单分散、稳定性好,可以作为荧光探针、催化剂、光催化剂、肿瘤治疗等方面的基础研究。
此外,利用超分子自组装等技术,也可以制备出具有一定结构的纳米材料。
2、复合材料类利用胶体制备的复合材料在材料科学领域中应用广泛。
胶体与界面化学

摘要:胶体与界面化学是研究胶体分散体系和界面现象的一门科学。
随着科学技术的迅速发展,它已经成为一门独立的学科。
胶体与界面化学与生产、生活实际有着紧密的联系,无论是在工业生产,还是在日常生活的衣、食、住、行等各个方面,都会遇到与胶体化学有关的的各种问题。
关键词:胶体界面化学生活应用引言:胶体与界面化学是研究胶体分散体系和界面现象的一门科学。
随着科学技术的迅速发展,它已经成为一门独立的学科,正是因为胶体现象很复杂,且有它自己独特的的规律性;更重要的是它与生产、生活实际有着紧密的联系,无论是在工业生产,还是在日常生活的衣、食、住、行等各个方面,都会遇到与胶体化学有关的的各种问题,如土壤改良、功能与复合材料、三次采油、浆体的管道运输、人造血浆、药物缓释与定向、摩擦与润滑和油漆涂料等,与国家安全、能源开发、环境保护和人民生活等方面密切相关。
胶体与界面化学是一门古老的科学。
他的历史比较一致的看法是从1861年开始的,创始人是英国科学家Thomas Graham他系统研究过许多物质的扩散速度,并首先提出晶体和胶体的概念,制定了许多名词用来形容他所发现的事实,如溶胶、凝胶、胶溶、渗析、离浆。
尽管在这一时期积累了大量的经验和知识,但是胶体化学真正为人们所重视并获得较大的发展是从1903年开始的,这时Zsigmondy (德)发明了超显微镜,肯定了溶胶的一个根本问题一一体系的多相性,从而明确了胶体化学是界面化学。
胶体与表面化学是物理化学的一个重要组成部分,是一门应用性极强的学科,它所研究的领域涉及到化学、物理学、材料科学、环境科学、生物化学等,是诸学科的交叉和重叠。
因此,它的应用领域是极其广泛的,近年Hiemenz就列举了涉及胶体和表面化学的实例:(1)分析深化中的吸附指示剂、离子交换、沉淀物的可滤性、色谱等;(2)物理化学中的成核作用,过饱和及液晶等;(3)生物化学和分子生物学中的电泳、膜现象、蛋白质和核酸等;(4)化学制造中的催化剂、洗涤剂、润滑剂、粘合剂等;(5)环境科学中的气溶胶、泡沫、污水处理等;(6)材料科学中的陶瓷制品、水泥、纤维、塑料等;(7)石油科学中的油器回收、乳化等;(8)日用品中的牛奶、啤酒、雨衣等。
胶体与表面化学第一讲

{[AgI]m· nAg+ · (n-x) NO3-} x+ · x NO3胶核 胶粒 胶团 胶粒带电,但整个胶体分散系是呈电中性的。 胶粒带电,但整个胶体分散系是呈电中性的。在 进行电泳实验时,由于电场的作用, 进行电泳实验时,由于电场的作用,胶团在吸附 层和扩散层的界面之间发生分离, 层和扩散层的界面之间发生分离,带正电的胶粒 向阴极移动,带负电的离子向阳极移动。因此, 向阴极移动,带负电的离子向阳极移动。因此, 胶团在电场作用下的行为跟电解质相似。 胶团在电场作用下的行为跟电解质相似。 吸附层 扩散层
胶粒带同种电荷,相互间产生排斥作用, 胶粒带同种电荷,相互间产生排斥作用, 不易结合成更大的沉淀微粒, 不易结合成更大的沉淀微粒,这是胶体具有稳 定性的主要因素 主要因素。 定性的主要因素。
例 在陶瓷工业上常遇到因陶土里混有 Fe2O3而影响产品质量的问题。解决方法 而影响产品质量的问题。 之一是把这些陶土和水放在一起搅拌, 之一是把这些陶土和水放在一起搅拌,使 粒子大小在1nm~100nm之间,然后插入 之间, 粒子大小在 之间 两根电极,接通直流电源, 两根电极,接通直流电源,这时阳极聚 带负电荷的胶粒(粒子陶土) 积 带负电荷的胶粒(粒子陶土), 带正电荷的胶粒( 阴极聚积 带正电荷的胶粒(Fe2O3) ,理由 是
3、 电泳现象 电学性质 、 电泳现象(电学性质 电学性质) 在外加电场作用下, 在外加电场作用下 胶体粒子在分散剂里 阴极或阳极) 的现象, 向电极 (阴极或阳极 作定向移动的现象 阴极或阳极 作定向移动的现象 叫做电泳
Fe(OH)3胶体向阴极 移动——带正电荷 带正电荷 移动 阴极
阳极
+
原因:粒子胶体微粒带同种电荷,当胶粒带正 原因:粒子胶体微粒带同种电荷, 电荷时向阴极运动, 电荷时向阴极运动,当胶粒带负电荷时 向阳极运动。 向阳极运动。 胶体的胶粒有的带电, 电泳现象 现象; 胶体的胶粒有的带电,有电泳现象;有的不带 没有电泳现象。 电,没有电泳现象。
第一章 溶液和胶体

水的凝固点:0º C
加入溶质
Δtf = Kf · bB B
A C
海水0º C时是否冻结? 溶液凝固点Tf下降
611
Tf 0
t/º C
42
溶液凝固点降低的应用
1、溶质相对分子量的计算
mB t f K f bB K f M B mA
mB MB K f mAt f
2、致冷剂
43
溶液组成的表示方式
3
化学研究的目的
科技发展的基本考虑 人类生存 化学的作用
20世纪初、化学提供肥料(合成
氨)合成纤维和其它高分子材料, 石油化工产品。 人类生存质量 化学创造了许多饲料和肥料添 加剂,食品添加剂,生产更多、 更可口食物;创造了许多功能 材料;创造了许多药物和诊断 方法,战胜和消灭了某些疾病。
20世纪末资源问题?环境问题?
36
稀溶液的通性
溶液的性质
稀溶液的依数性
条件:稀溶液、 难挥发的非电解质溶质 与溶质的本性无关, 只与溶液的浓度 (粒子 数目)有关
溶液的渗透压
溶液的蒸气压
溶液的沸点 溶液的凝固点
37
1. 溶液的蒸气压
1)纯水的蒸气压
蒸发:水分子从液态 气态 凝聚:水分子从气态 液态
水的饱和蒸气压
平衡时:蒸气压不变 蒸发速度=凝聚速度 温度高蒸气压大
• 分析化学的定义
分析化学(Analytical Chemistry)是人们 获得物质化学组成和结构信息的科学
• 分析化学的任务
1. 定性分析 —— 鉴定物质的化学组成(或成 分),如元素,离子,原子团,化合物等,即"解决物 质是什么的问题". 2. 定量分析 —— 测定物质中有关组分的含 量,即"解决物质是多少的问题". 3. 结构分析 —— 确定物质的化学结构,如分 子结构,晶体结构等.
胶体表面与化学PPT课件
动态润湿法
通过测量液体在固体表面的动态接触线移动 速度,评估表面的润湿性。
05
CATALOGUE
胶体表面化学未来展望
新材料开发
高性能材料
利用胶体表面化学技术,开发具有优异性能的新材料,如高强度 、高韧性、耐高温、耐腐蚀等。
功能材料
探索具有特殊功能的材料,如光电转换、传感、催化等,以满足不 同领域的需求。
通过红外光谱、核磁共振等技术手段鉴别 表面活性剂的类型。
表面活性剂浓度测定
表面活性剂界面行为研究
利用滴定法、分光光度法等方法测定表面 活性剂浓度。
利用显微镜、光谱等技术手段研究表面活 性剂在界面上的行为。
表面吸附研究方法
等温吸附法
在恒温条件下,研究物质在表面的吸附量与浓度之间的关系。
吸附动力学法
研究物质在表面的吸附速率和吸附机理。
03
CATALOGUE
胶体表面化学应用
石油工业
石油开采
利用胶体表面化学原理, 通过改变钻井液的流变性 、稳定性等性质,提高石 油开采效率。
油气分离
利用胶体表面化学原理, 通过改变油水乳液的稳定 性、界面张力等性质,实 现油气高效分离。
石油运输
利用胶体表面化学原理, 通过改变油品的流变性、 粘度等性质,提高石油运 输效率。
X射线光电子能谱法
利用X射线光电子能谱技术测定表面吸附物的组成和结构。
原子力显微镜法
利用原子力显微镜技术观察表面吸附物的形貌和分布。
表面润湿性研究方法
接触角法
通过测量液体在固体表面的接触角大小,评 估表面的润湿性。
滑移长度法
测量液体在固体表面滑动时的滑移长度,评 估表面的润湿性。
滴液法
化学胶体
【细颗粒物】
细颗粒物比表面大,吸附性强,可携带重金属等,对人体影响十分严重 人类开始把空气中细颗粒物含量作为重要的大气质量标准:
PM2.5年均值不超过10μg/m3,日均值不超过25μg/m3
第三节
高分子溶液
第三节 高分子溶液
高分子化合物:单个分子相对分子量在 以上的大分子 (一般来说)
包括:蛋白质、核酸、糖原、存在体液中重要物质
非均相 热力学不稳定 分散相粒子不能透过
滤纸和半透膜
葡萄糖水溶液
氢氧化铁溶胶 蛋白质溶液 超过或达到临界浓度 的十二烷基硫酸钠溶
液 乳汁 泥浆
【比表面】
■ 分散度:分散相在介质中分散的程度(常用比表面来表示) ■ 比表面(S0):单位体积物质所具有的表面积
S0=S/V 该式说明,胶体分散相粒子的总表面积随分散程度增大时,比表面积也相应增大 溶胶是高度分散的多相分散系统,高度分散使得分散相表面积急剧增大。 当物质形成高度分散系统时,因表面积大大增加,表面性质就十分突出。 界面:相与相之间的接触面 表面:习惯上,把固相或液相与气相的界面称为表面
■ Fe(OH)3溶胶
溶胶
FeCl3 (aq) +3H2O (l) → Fe(OH)3 (aq) + 3HCl (aq)
Fe(OH)3 (s) + HCl (aq) → FeOCl (aq) + 2H2O (l) FeOCl (aq) → FeO+ (aq) + Cl- (aq)
Fe(OH)3胶核吸附溶胶中与其组成类似的FeO而带正电,而溶胶中电性相反的Cl-则
的次数叫聚合度,以n表示。
• 天然橡胶 链节为异戊二烯单位(-C5H8-) 。化学式可写作(C5H8)n • 纤维素、淀粉、糖原或高分子右旋糖酐,链节为葡萄糖单位(-
胶体化学第4章
2 2
K 1n
m K 2 2 2r1 h
式中,K1和K2是仪器常数;n为转速,φ为扭力弹簧偏转的刻 度。黏度计出厂时仪器常数皆已标出,只要测出不同n下的φ, 就可得出不同D下的τ-D流变曲线。
塑性流体和假塑性流体的流变参数计算如下:
P
2 1
8lv
P gh
对于选定的仪器和实验条件, 式中r、l、v、h均为常数,所以
η =kρ t
t 0 0t0
k为仪器常数,ρ 为液体的密度。
2、同轴转筒型黏度计 同轴转筒型黏度计主要研究非牛顿液体 的流变性。
它的主要构造如图所示, 由两个同轴圆筒组成。
经推导,不同转速下的D和τ计算公式 2 r n
所以,在体积分数相同的情况下,不对称的粒子其体 系黏度比对称质点(如球形质点)的体系黏度要大。
对于粒子为任意形状的稀分散体系,黏度方程可写为
ηr = 1+ Kφ
式中,K为形状系数。粒子越不对称,K值越大,溶液的黏度越 高。
3、粒子溶剂化对黏度的影响
Einstein定律中,体积分数φ均指分散相的有效体积分数。 若质点在分散介质中发生溶剂化作用,溶剂化层随质点一起 运动,使得质点有效体积分数增大,φ干→φ湿,则
第四章 分散体系的流变性质 第一节 流变性质的基本概念与规律 一、基本概念: 1、切变速率和切应力 在流速不太快时,可以把流动着的液体看作是许多相互平行移动 的液层(如右图), 由于各层的速度不同,
dv 便形成速度梯度 。 dx
速度梯度也叫切变速率D, 单位为s-1。 切应力τ——在单位液层面积上所需施加的克服流动阻力的力。 单位为N/m2.
胶体与界面化学在环境污染治理中的应用研究
胶体与界面化学在环境污染治理中的应用研究第一章引言近年来,随着工业化进程的加速和人们生活水平的提高,环境污染问题日益突出。
特别是大气污染、水污染和土壤污染对人体健康和生态系统造成了严重的威胁。
为了解决这一问题,科学家们不断探索新的环境污染治理技术。
其中,胶体与界面化学作为一门交叉学科,发挥了重要的作用。
本文旨在探讨胶体与界面化学在环境污染治理中的应用研究。
第二章胶体与界面化学基础2.1 胶体化学的基本概念与原理胶体是指由两种或多种不相溶的物质组成的系统中,其中一种物质以微粒状或颗粒状分散均匀地悬浮于另一种物质中。
胶体颗粒的直径一般在1纳米至1微米之间。
胶体的存在形式有胶体溶液、胶体胶体胶体凝胶及胶体泡沫等。
2.2 界面化学的基本概念与原理界面化学研究的是各种相之间的界面现象以及其背后的化学现象。
界面化学常涉及的重要概念包括表面张力、界面活性剂和乳化剂等。
表面张力是指液体表面自由液面上每单位长度的作用力,而界面活性剂和乳化剂则能调节液体相的界面性质。
第三章胶体与界面化学在大气污染治理中的应用近年来,大气污染成为全球范围内的一个严重问题。
胶体与界面化学能够帮助解决大气污染问题。
3.1 大气颗粒物的分散与沉降利用胶体与界面化学的原理,研究人员可以制备一系列的胶体溶液,通过喷洒或喷雾的方式将其喷洒到空气中。
这些胶体溶液中的微粒状物质能够与空气中的颗粒物相互作用,使其分散或沉降,从而有效降低大气污染物的浓度。
3.2 光催化降解大气污染物光催化是利用光和催化剂来促进化学反应的过程。
胶体与界面化学可以提供催化剂以及稳定分散体系,从而使大气污染物光催化降解的效率得到提高。
第四章胶体与界面化学在水污染治理中的应用4.1 悬浮物和胶体的分离水中的悬浮物和胶体对水质造成了很大的污染,影响了水的透明度和水生态系统的健康。
胶体与界面化学可以通过调控溶液的pH值、离子强度和添加适当的沉淀剂等方式,实现悬浮物和胶体的分离。
4.2 吸附剂的应用胶体溶液中的吸附剂能够通过化学吸附或物理吸附的方式,吸附水中的有害物质。