锐角三角函数的应用 习题精选
2024中考数学全国真题分类卷 第十六讲 锐角三角函数及其实际应用(含答案)

2024中考数学全国真题分类卷第十六讲锐角三角函数及其实际应用命题点1特殊角的三角函数值1.(2023天津)tan 45°的值等于()A.2B.1C.22D.33命题点2直角三角形的边角关系2.(2023陕西)如图,AD 是△ABC 的高.若BD =2CD =6,tan C =2,则边AB 的长为()第2题图A.32B.35C.37D.623.(2022玉林)如图,△ABC 底边BC 上的高为h 1,△PQR 底边QR 上的高为h 2,则有()第3题图A.h 1=h 2B.h 1<h 2C.h 1>h 2D.以上都有可能4.(2023乐山)如图,在Rt △ABC 中,∠C =90°,BC =5,点D 是AC 上一点,连接B D.若tan A =12,tan ∠ABD =13,则CD 的长为()A.25B.3C.5D.2第4题图5.(2023连云港)如图,在6×6正方形网格中,△ABC 的顶点A ,B ,C 都在网格线上,且都是小正方形边的中点,则sin A =______.第5题图6.(2022上海)如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=45,BF为AD 边上的中线.(1)求AC的长;(2)求tan∠FBD的值.第6题图命题点3锐角三角函数的实际应用类型一解一个直角三角形7.(2023福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC =27°,BC=44cm,则高AD约为(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)() A.9.90cm B.11.22cm C.19.58cm D.22.44cm第7题图8.(2023金华)一配电房示意图如图所示,它是一个轴对称图形,已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()第8题图A.(4+3sinα)mB.(4+3tanα)mC.(4+3sinα)m D.(4+3tanα)m9.(2023柳州)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=35,堤坝高BC=30m,则迎水坡面AB的长度为________m.第9题图10.(2023宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识.某消防大队进行了消防演习.如图①,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长;(2)如图②,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)第10题图类型二背靠背型11.(2023安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.第11题图12.(2023宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).第12题图13.(2022遂宁)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A处看到B,C 处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向,C在北偏东30°方向,他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离(结果保留根号).第13题图类型三母子型考向1同一个观测点观测两个位置点14.(2023天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.第14题图源自人教九下P76第1题考向2两个观测点观测同一个位置点15.(2023山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC 的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,3≈1.73).第15题图16.(2023甘肃省卷)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图①),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图②,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF 和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF =26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan 35°≈0.70.根据上述方案及数据,请你完成求解过程.第16题图考向3两个观测点观测两个位置点17.(2023重庆A卷)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米,点E在点A的正北方向.点B,D 在点C的正北方向,BD=100米,点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)第17题图源自人教九下P84第9题类型四拥抱型18.(2022自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1.参考数据tan37°≈0.75,tan 53°≈1.33,3≈1.73)第18题图类型五实物模型19.(新趋势)·真实问题情境(2023成都)2023年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A′OB=108°时(点A′是A的对应点),用眼舒适度较为理想.求此时顶部边缘A′处离桌面的高度A′D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)第19题图20.(新趋势)·真实问题情境(2023常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图①),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图②是其示意图,已知:助滑坡道AF =50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)第20题图21.(2023江西)图①是某长征主题公园的雕塑,将其抽象成如图②所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A≈72.9°,AD=1.6m,EF =6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)第21题图22.(2023嘉兴)小华将一张纸对折后做成的纸飞机如图①,纸飞机机尾的横截面是一个轴对称图形,其示意图如图②,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连接DE,求线段DE的长;(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos 40°≈0.77,tan40°≈0.84)第22题图参考答案与解析1.B2.D 【解析】∵AD 是△ABC 的高,∴AD ⊥BC ,∵BD =2CD =6,∴CD =3,又∵tan C =2,∴AD CD =2,即AD 3=2,∴AD =6.在Rt △ABD 中,AB =AD 2+BD 2=62+62=62.3.A4.C 【解析】如解图,过点D 作DE ⊥AB 于点E ,∵tan A =12,且BC =5,∴AC =25,∴AB =5,∵tan A =DE AE =12,tan ∠ABD =DE EB =13,∴AE ∶EB =2∶3,∴EB =35AB =3,∴DE =1,∴BD =BE 2+DE 2=10,∵BC =5,∴CD =BD 2-BC 2=5.第4题解图5.45【解析】如解图,过点C 作CD ⊥AB 于点D ,∵点A ,B ,C 都在网格线上,且都是小正方形边的中点,∴CD =4,AD =3,∴AC =AD 2+CD 2=5,∴sin A =CD AC =45.第5题解图6.解:(1)在Rt △ABC 中,cos ∠ABC =BC AB =45,∵BC =8,∴AB =10,由勾股定理,得AC =AB 2-BC 2=6;(2)如解图,过点F 作FN ⊥BD 于点N ,第6题解图∵BF 为AD 边上的中线,AC ⊥BD ,∴FN 为△ACD 的中位线,∴FN =12AC =3,CN =12CD =2,∴tan ∠FBD =FN BN =FN BC +CN=310.7.B 【解析】由题意知AD ⊥BC ,AB =AC ,∴BD =CD =12BC =22,∵tan B =AD BD,∴AD =BD ·tan B =22×tan27°≈22×0.51=11.22cm.8.B 【解析】如解图,过点A 作BC 的垂线,垂足为D ,∵AB =AC ,∴D 为BC 的中点.∵BC =6m ,∴BD =3m .∵∠ABC =α,∴tan ∠ABD =AD BD,∴AD =3tan α,又∵BC 与EF 的距离为4m ,即BE =4m ,∴A 离地面EF 的高度为BE +AD (4+3tan α)m.第8题解图9.50【解析】由题意知,AB =BC sin α=3035=50m.10.解:(1)在Rt △ABD 中,∠ABD =53°,BD =9m ,∴AB =BD cos ∠ABD=9cos 53°≈90.6=15(m).答:此时云梯AB 的长为15m ;(2)云梯能伸到险情处,理由如下:∵AE =19m ,BC =2m ,∴AD =19-2=17m.在Rt △ABD 中,BD =9m ,∴AB =AD 2+BD 2=172+92=370(m).∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.11.解:如解图,由题意可知CE ∥AD ,∠ECA =37°,∠BDA =53°,∴∠A =37°,∠ABD =90°,在Rt △BCD 中,CD =90,∠BDC =37°,∴BD =CD ·cos 37°≈90×0.8=72,在Rt △ABD 中,∠A =37°,BD =72,∴AB =BD tan 37°≈720.75=96(米).答:A ,B 两点间的距离为96米.第11题解图12.解:如解图,过点A 作AE ⊥CD 于点E ,第12题解图∵AB ⊥BD ,CD ⊥BD ,∴四边形ABDE 是矩形,∴AB =DE =20,∵在Rt △ADE 中,∠DAE =30°,∴tan 30°=DE AE ,即33=20AE,解得AE =203,∵在Rt △ACE 中,∠CAE =45°,∴CE =AE =203,∴CD =CE +DE =(203+20)m.答:信号塔的高度为(203+20)m.13.解:(1)∵BE ∥AD 且∠EBD =60°,∴∠BDA =∠EBD =60°.∵∠BDA =∠C +∠CAD 且∠CAD =30°,∴∠C =∠BDA -∠CAD =30°;(2)如解图,过点B 作BG ⊥AD 于点G ,则∠AGB =∠BGD =90°.在Rt △AGB 中,∵AB =20米,∠BAG =45°,∴AG =BG =20·sin 45°=102,在Rt △BGD 中,∵∠BDA =60°,∴BD =BG sin 60°=102sin 60°=2063,DG =BG tan 60°=102tan 60°=1063,∵∠C =∠CAD =30°,∴CD =AD =AG +DG =(102+1063)米.∴BC =BD +CD =(102+106)米.答:两棵银杏树B ,C 之间的距离为(102+106)米.第13题解图14.解:根据题意得,BC =32m ,∠APC =42°,∠APB =35°.在Rt △PAC 中,tan ∠APC =AC PA ,∴PA =AC tan ∠APC.在Rt △PAB 中,tan ∠APB =AB PA ,∴PA =AB tan ∠APB ,∵AC =AB +BC ,∴AB +BC tan ∠APC=AB tan ∠APB ,∴AB =BC ·tan ∠APB tan ∠APC -tan ∠APB =32×tan 35°tan 42°-tan 35°≈32×0.700.90-0.70=112(m).答:这座山AB 的高度约为112m.15.解:如解图,延长AB 和CD 分别与直线OF 交于点G 和点H ,则∠AGO =∠EHO =90°.又∵∠GAC =90°,∴四边形ACHG 是矩形,∴GH =AC .由题意,得AG =60,OF =24,∠AOG =70°,∠EOF =30°,∠EFH =60°.在Rt △AGO 中,∠AGO =90°,tan ∠AOG =AG OG,∴OG =AG tan ∠AOG=60tan 70°≈602.75≈21.82.∵∠EFH 是△EOF 的外角,∴∠FEO =∠EFH -∠EOF =60°-30°=30°,∴∠EOF =∠FEO ,∴EF =OF =24.在Rt △EHF 中,∠EHF =90°,cos ∠EFH =FH EF,∴FH =EF ·cos ∠EFH =24×cos 60°=12,∴AC =GH =GO +OF +FH =21.82+24+12≈58(m).答:楼AB 与CD 之间的距离AC 的长约为58m.第15题解图16.解:设CF =x ,在Rt △ACF 中,AF =CF tan ∠CAF =x tan 26.6°≈x 0.50,在Rt △BCF 中,BF =CF tan ∠CBF=x tan 35°≈x 0.70,∵AF -BF =AB =8.8,∴x 0.50-x 0.70=8.8,解得x =15.4,∴CF =15.4.∵FG =DE =1.5,∴CG =CF +FG =15.4+1.5=16.9.答:灞陵桥拱梁顶部C 到水面的距离CG 约为16.9m .17.解:(1)如解图,过点E 作EH ⊥DC 于点H .第17题解图由题意得,EH =AC =200米.∵在Rt △EHD 中,∠HDE =45°,∴DE =2EH =2002≈200×1.414≈283米.答:步道DE 的长度约为283米;(2)∵DH =EH =200,BD =100,∴BH =DH -BD =100,∵在Rt △ABC 中,∠ABC =30°,∴AB =400,BC =2003,∴HC =BC -BH =(2003-100)米,∴AE =HC =(2003-100)米,从点A 经过点B 到达点D 的路线长为AB +BD =400+100=500米;从点A 经过点E 到达点D 的路线长为AE +DE =2003-100+2002≈529.2>500.答:小红经过点B 到达点D 的路线较近.18.解:在Rt △ABD 中,∠BAD =90°,AB =24,∠ABD =90°-53°=37°,∴AD =AB ·tan ∠ABD =24×tan 37°≈24×0.75=18(米),在Rt △ACD 中,∠ADC =90°,∠CAD =30°,∴CD =AD ·tan 30°=18×33=63≈10.38≈10.4(米).答:办公楼的高度约为10.4米.19.解:∵∠AOB =150°,∴∠AOC =30°,∴在Rt △AOC 中,sin ∠AOC =AC OA,即sin 30°=10OA,解得OA =20cm ,∴OA ′=OA =20cm.∵∠A ′OB =108°,∴∠A ′OD =72°,∴在Rt △A ′OD 中,sin ∠DOA ′=A ′D A ′O ,即sin 72°=A ′D 20,解得A ′D ≈19cm.答:此时顶部边缘A ′处离桌面的高度A ′D 的长约为19cm.20.解:如解图,过点E 作EM ⊥BC 于点M ,与FG 交于点N ,则BH =MN ,EM =40,∵HG ∥BC ,∴∠EGN =∠ECB =36°,设EN =x ,∴NG =EN tan ∠EGN=x tan 36°≈x 0.73=100x 73,FN =EN tan ∠EFN=x tan 25°≈x 0.47=100x 47,∵FN +NG =FG ,∴100x 47+100x 73=7,解得x ≈2,∴EN =2,∴HB =MN =EM -EN =40-2=38,∵AH =AF ·sin ∠AFH =50×sin 40°≈50×0.64=32,∴AB =AH +BH =32+38=70米,答:此大跳台最高点A 距地面BD 的距离约是70米.第20题解图21.(1)证明:∵AB ∥CD ,∴∠CDG =∠A ,∵∠FEC =∠A ,∴∠CDG =∠FEC ,又∵CD ∥FG ,即ED ∥FG ,∴四边形DEFG 是平行四边形;(2)解:如解图,过点G 作GM ⊥AB 于点M ,由(1)知四边形DEFG 是平行四边形,∵DG =EF =6.2,∴AG =AD +DG =1.6+6.2=7.8,∵在Rt △AGM 中,∠A =72.9°,sin A =GM AG,∴GM =AG ·sin A =7.8×sin 72.9°≈7.8×0.96≈7.5(m),答:雕塑的高约为7.5m.第21题解图22.解:(1)如解图,过点C 作CF ⊥DE 于点F ,∵CD =CE ,∴DF =EF ,CF 平分∠DCE ,∴∠DCF =∠ECF =20°,∴DF =CD ·sin 20°≈5×0.34=1.7,∴DE =2DF =3.4cm ;第22题解图(2)如解图,连接AB ,过点D 作DG ⊥AB 于点G ,∵纸飞机机尾的横截面示意图是一个轴对称图形,∴AB ⊥CF ,DE ⊥CF ,∴AB ∥DE .∴DG ∥CF .∴∠DAB =∠GDC =∠DCF =12∠DCE =20°,∴AG =AD ·cos 20°≈10×0.94=9.4,∴AB =2AG +DE =22.2cm.。
锐角三角函数练习题及答案

锐角三角函数练习题及答案锐角三角函数练习题及答案三角函数是数学中的重要概念之一,它们在几何学、物理学和工程学等领域中都有广泛的应用。
其中,锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。
本文将介绍一些锐角三角函数的练习题及答案,帮助读者加深对这些函数的理解和运用。
1. 练习题:已知一个锐角三角形的一条边长为5,另一条边长为12,求这个三角形的正弦值、余弦值和正切值。
解答:首先,我们可以利用勾股定理求得这个三角形的第三条边长。
根据勾股定理的公式,设第三条边长为c,则有c^2 = 5^2 + 12^2,即c^2 = 25 + 144,解得c ≈ 13。
接下来,我们可以利用三角函数的定义来求解所求的值。
正弦值(sin)定义为对边与斜边的比值,即sinθ = 对边/斜边。
在这个三角形中,对边为5,斜边为13,所以sinθ = 5/13。
余弦值(cos)定义为邻边与斜边的比值,即cosθ = 邻边/斜边。
在这个三角形中,邻边为12,斜边为13,所以cosθ = 12/13。
正切值(tan)定义为对边与邻边的比值,即tanθ = 对边/邻边。
在这个三角形中,对边为5,邻边为12,所以t anθ = 5/12。
因此,这个三角形的正弦值为5/13,余弦值为12/13,正切值为5/12。
2. 练习题:已知一个锐角三角形的两条边长分别为3和4,求这个三角形的角度大小及其正弦值、余弦值和正切值。
解答:根据余弦定理,我们可以求得这个三角形的第三条边长。
设第三条边长为c,则有c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cosθ,即c^2 = 9 + 16 - 24cosθ,解得c ≈ 5。
接下来,我们可以利用三角函数的定义来求解所求的值。
首先,我们可以利用余弦值(cos)的定义来求解角度大小。
由于已知两条边长分别为3和4,我们可以利用余弦定理来求解cosθ。
根据余弦定理的公式,cosθ = (3^2 + 4^2 - 5^2) / (2 * 3 * 4),即cosθ = (9 + 16 - 25) / 24,解得cosθ = 0。
典型锐角三角函数练习题(用)

典型锐角三角函数题一、选择题1. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.452.一人乘雪橇沿如图2所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A.24米B.12米C.米D.6米3.下列计算错误的是( )A .sin60sin30sin30︒-︒=︒B .22sin 45cos 451︒+︒= C .sin 60cos60cos60︒︒=︒ D .cos30cos30sin 30︒︒=︒4.如图3,在ABC ∆中30A ∠=︒,tan 2B =, AC =则AB 的长是( )A.3 B.2+ C .5 D .925.如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.456.如图5,在直角坐标系中,将矩形OABC 沿OB 对折,使点A落在1A 处,已知OA =1AB =,则点1A 的坐标是( )A.32⎫⎪⎪⎝⎭, B.3⎫⎪⎪⎝⎭C.32⎛ ⎝⎭D.12⎛ ⎝⎭,7.已知正三角形ABC ,一边上的中线长为a ,则此三角形的边长为( )A .B .3 C D . 3a图3α 图1 图2A D E CB F 图4图58. 点()sin60,cos60M -︒︒关于x 轴对称的点的坐标是( )A .12⎫⎪⎪⎝⎭ B .12⎛⎫- ⎪ ⎪⎝⎭ C.12⎛⎫⎪ ⎪⎝⎭ D .12⎛- ⎝⎭9.在ABC ∆中,A ∠、B ∠都是锐角,且1sin 2A =,cos B =则ABC ∆的形状是 ( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定10.如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )AB .2C .1 D.(中考深圳市 11 ,3分)、小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图3,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A. (6米B. 12米 C ()+423米 D. 10米二、填空题11.如图7,在坡度为1﹕2的山坡上种树,要求株距(相邻两树间的水平距离)是6米, 斜坡上相邻两树间的坡面距离是________米.12.如图8,Rt ABC ∆中,90C ∠=︒,D 是直角边AC 上的点,且2AD DB a ==,15A ∠=︒ ,则BC 边的长为 .13.如图9,在ABC ∆中,90C ∠=,2BC =,1sin 3A =, 则AB =______.. 14.如图10,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,图7图9 图8图6图3 21图3-1若4tan 3AEH ∠=,四边形EFGH 的周长为40,则矩形ABCD 的面积为 ______.15.如图11所示,在高2米、坡角为30︒的楼梯表面铺地毯,地毯的长度至少需______米.1.732≈,精确到0.1米)16.如图12所示,ABC ∆中,AB AC =,BD AC ⊥于D ,6BC =,12DC AD =, 则cos C =____.17.某山路的路面坡度1i =200m ,升高了______m . 18.等腰三角形的顶角是120︒,底边上的高为30,则三角形的周长是______. 19.某人沿着山脚到山顶共走了1000m ,他上升的高度为500m ,这个山坡的坡度i 为____. 20.(中考福州,15,4分,)如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)三、解答题 21.计算:(1)22sin30cos60tan 60tan30cos 45+-⋅+︒ (2)22sin 45cos30tan 45+- (3) 3-1+(2π-1)0-33tan30°-tan45° (4)30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+. 22已知,如图,海岛A 四周20海里范围内是暗礁区.一艘货轮由东向西航行,在B 处测得岛A 在北偏西︒60,航行24海里后到C 处,测得岛A 在北偏西︒30.请通过计算说明,货轮继续向西航行,有无触礁危险?24.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,图10图11 图12某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度. (参考数值:tan31°≈53,sin31°≈21) .25.在一次公路改造的工作中,工程计划由A 点出发沿正西方向进行,在A 点的南偏西60︒ 方向上有一所学校B ,如图14 ,占地是以 B 为中心方圆100m 的圆形,当工程进行了200m 后到达C 处,此时B 在C 南偏西30︒的方向上,请根据题中所提供的信息计算并分析一下,工程若继续进行下去是否会穿越学校.(2)如图17,是一座人行天桥的示意图,天桥的高是10米,坡角是45︒,为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30︒,若新坡角需留3米的人行道,问:离原坡底A 处111.732≈≈)(第22题图)A PC B36.9°67.5°28(中考山西9分)如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端A .B 的距离,飞机在距海平面垂直高度为100米的点C 处测得端点A 的俯角为60°,然后沿着平行于AB 的方向水平飞行了500米,在点D 测得端点B 的俯角为45°,求岛屿两端A .B 的距离(结果精确到0.1米,参考数据:)(中考山东东营,22,9分)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)29.(中考江苏苏州,26,6分)如图,已知斜坡AB 长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请讲下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE 的坡角(即∠BEF)不大于45°,则平台DE 的长最多为 11.0 米; (2)一座建筑物GH 距离坡角A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM)为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米?30.(中考,黔东南州,22)如图,一艘货轮在A 处发现其北偏东45º方向有一海盗船,立即向位于正东方向B 处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60º方向的C 处。
锐角三角函数的经典测试题

锐角三角函数的经典测试题一、选择题1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )A .asinα+asinβB .acosα+acosβC .atanα+atanβD .tan tan a a αβ+ 【答案】C【解析】【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.【详解】在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,∴CD =BC+BD =atanα+atanβ,故选C .【点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=,500BD m =,55D ∠=,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55mB .500cos55mC .500tan55mD .500cos55m 【答案】B【解析】【分析】根据已知利用∠D的余弦函数表示即可.【详解】在Rt△BDE中,cosD=DE BD,∴DE=BD•cosD=500cos55°.故选B.【点睛】本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.在半径为1的O中,弦AB、AC的长度分别是3,2,则BAC∠为()度.A.75B.15或30C.75或15D.15或45【答案】C【解析】【分析】根据题意画出草图,因为C点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:AD=3222AE=,.sin∠AOD=32,∴∠AOD=60°;sin∠AOE=22,∴∠AOE=45°;∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C.【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.4.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=35,则下列结论正确的个数有()①DE=3cm; ②BE=1cm; ③菱形的面积为15cm210cm.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案【详解】∵菱形ABCD的周长为20cm∴AD=5cm∵sinA=3 5∴DE=3cm(①正确)∴AE=4cm∵AB=5cm∴BE=5﹣4=1cm(②正确)∴菱形的面积=AB×DE=5×3=15cm2(③正确)∵DE=3cm,BE=1cm∴BD=10cm(④不正确)所以正确的有三个.故选C.【点睛】本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键5.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )A 83B43C.8 D.83【答案】A 【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,解得:BM=833,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.6.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是( )A.B.C.D.【答案】A【解析】【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.【详解】解:因为AC=40,BC=10,sin∠A=BC AC,所以sin∠A=0.25.所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.点睛:本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为 45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为 60°,已知斜坡AB的坡角为30°,AB=AE=10 米.则标识牌CD的高度是( )米.A.15-53B.20-103C.10-53D.53-5【答案】A【解析】【分析】过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN−DE即可求出结论.【详解】解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABE中,AB=10米,∠BAM=30°,∴AM=AB•cos30°=3BM=AB•sin30°=5(米).在Rt△ACD中,AE=10(米),∠DAE=60°,∴DE=AE•ta n60°=3在Rt △BCN 中,BN =AE +AM =10+53(米),∠CBN =45°,∴CN =BN•tan45°=10+53(米),∴CD =CN +EN−DE =10+53+5−103=15−53(米).故选:A .【点睛】本题考查了解直角三角形−仰角俯角问题及解直角三角形−坡度坡脚问题,通过解直角三角形求出BM ,AM ,CN ,DE 的长是解题的关键.8.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C .2D .3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒3 由翻折变换的性质可知,3∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b +++的值为( ) A .12 B .22 C .1 D .2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin602︒=,cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°,∴13,,22DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b ++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.如图,一张直角三角形纸片BEC 的斜边放在矩形ABCD 的BC 边上,恰好完全重合,边BE ,CE 分别交AD 于点F ,G ,已知8BC =,::4:3:1AF FG GD =,则CD 的长为()A .1B 2C 3D .2【答案】C【解析】【分析】 由ABCD 是矩形,得到AD=BC=8,且矩形的四个角是直角,根据::4:3:1AF FG GD =,可以求出DG 的长度,再根据余角的性质算出∠DCE 的大小,根据三角函数即可算出DC 的长度.【详解】解:∵四边形ABCD 是矩形,∴AD=BC=8,∠DCB=90︒,又∵::4:3:1AF FG GD = ∴1114318GD AD AD ===++, ∵∠ECB=60°,∴∠DCE=906030︒-︒=︒, 又∵31tan 303GD CD CD ︒===, ∴3CD =故答案为C.【点睛】本题主要考查矩形、特殊直角三角形、余角的性质,运用线段的比例长算出其中各段的长度是解本题的关键,特殊角的三角函数也是重要知识点,应掌握.11.如图,正方形ABCD 的边长为4,点E 、F 分别在AB 、BC 上,且AE=BF=1,CE 、DF 交于点O ,下列结论:①∠DOC=90°,②OC=OE ,③CE=DF ,④tan ∠OCD=43,⑤S △DOC =S 四边形EOFB 中,正确的有( )A.1个B.2个C.3个D.4个【答案】D【解析】分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4﹣1=3.在△EBC和△FCD中,BC CDB DCFBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;连接DE,如图所示,若OC=OE.∵DF⊥EC,∴CD=DE.∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC=DCFC=43,故④正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;故正确的有:①③④⑤.故选D.点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.12.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;【详解】解:当0<x⩽2时,如图1:连接BD,AC,交于点O′,连接NM,过点C作CP⊥AB垂足为点P,∴∠CPB=90°,∵四边形ABCD是菱形,其中点B的坐标是(0,4),点D的坐标是3,4),∴BO′3,CO′=4,∴228O B O C',+'=∵AC=8,∴△ABC是等边三角形,∴∠ABC=60°,∴CP=BC×sin60°=8×32=43,BP=4, BN=4x ,BM=2x , 242BM x x BP ==,2BN x BC =, ∴=BM BN BP BC, 又∵∠NBM=∠CBP , ∴△NBM ∽△CBP ,∴∠NMB=∠CPB=90°, ∴114438322CBP S BP CP =⨯⨯=⨯⨯=; ∴2NBMCBP S BN S BC ⎛⎫= ⎪⎝⎭, 即y=22283=232NBMCBP BN x S S x BC ⎛⎫⎛⎫=⨯=⨯ ⎪ ⎪⎝⎭⎝⎭, 当2<x ⩽4时,作NE ⊥AB ,垂足为E ,∵四边形ABCD 是菱形,∴AB ∥CD ,∴3BM=2x ,∴y=11=2434322BM NE x x ⨯⨯=; 故选D.【点睛】 本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.13.如图,Rt △AOB 中,∠AOB=90°,AO=3BO ,OB 在x 轴上,将Rt △AOB 绕点O 顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=k x 的图象于点C ,且OC=2CA',则k 的值为( )A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.14.如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于12 CD为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是()A .60ABC ∠=︒B .2ABE ADE S S ∆=C .若AB=4,则47BE =D .21sin 14CBE ∠= 【答案】C【解析】【分析】 由作法得AE 垂直平分CD ,则∠AED=90°,CE=DE ,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE 得到S △ABE =2S △ADE ;作EH ⊥BC 于H ,如图,若AB=4,则可计算出CH=12CE=1,EH=3CH=3,利用勾股定理可计算出BE=27 ;利用正弦的定义得sin ∠CBE=2114EH BE =. 【详解】解:由作法得AE 垂直平分CD ,∴∠AED=90°,CE=DE ,∵四边形ABCD 为菱形,∴AD=2DE ,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A 选项的说法正确;∵AB=2DE ,∴S △ABE =2S △ADE ,所以B 选项的说法正确;作EH ⊥BC 于H ,如图,若AB=4,在Rt △ECH 中,∵∠ECH=60°,CH=12CE=1,33,在Rt△BEH中,BE=22(3)527+=,所以C选项的说法错误;sin∠CBE=3211427EHBE==,所以D选项的说法正确.故选C.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.15.一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A.(303-50,30) B.(30, 303-50) C.(303,30) D.(30,303)【答案】A【解析】【分析】【详解】解:OA=15×4=60海里,∵∠AOC=60°,∴∠CAO=30°,∵sin30°=OCAO=12,∴CO=30海里,∴AC=303海里,∴BC=(303-50)海里,∴B(303-50,30).故选A【点睛】本题考查掌握锐角三角函数的应用.16.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60︒刻度线,则假山的高度CD 为( )A .()23 1.6m +B .()22 1.6m +C .()43 1.6m +D .23m【答案】A【解析】 【分析】 根据已知得出AK=BD=6m ,再利用tan30°= 6CK CK AK =,进而得出CD 的长. 【详解】解:如图,过点A 作AK ⊥CD 于点K∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK ,AB=KD=1.6米,∠CAK=30°,∴tan30°=6CK CK AK =, 解得:3即3(3+1.6)m .故选:A .【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.17.如图,抛物线y =ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB为等边三角形,则b的值为()A.﹣3B.﹣23C.﹣33D.﹣43【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣23;故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.18.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-1 2x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.19.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,且BE ∥AC ,CE ∥DB ,连接DE ,则tan ∠EDC =( )A.14B.16C .26D.310【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=12 x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.20.如图,在Rt ABC 中,90ACB ∠=︒,3tan 4B =,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD的值( )A .35B .34C .45D .67【答案】D【解析】【分析】根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37AB ,再由点D 为AB 中点得AD =12AB ,进而可求得AE AD的值. 【详解】 解:∵CE 平分ACB ∠,∴点E 到ACB ∠的两边距离相等,设点E 到ACB ∠的两边距离位h ,则S △ACE =12AC·h ,S △BCE =12BC·h , ∴S △ACE :S △BCE =12AC·h :12BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE ,∴AE :BE =AC :BC , ∵在Rt ABC 中,90ACB ∠=︒,3tan 4B =, ∴AC :BC =3:4,∴AE :BE =3:4∴AE =37AB , ∵CD 为AB 边上的中线, ∴AD =12AB ,∴367172ABAEAD AB==,故选:D.【点睛】本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键.。
中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案一、锐角三角函数1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B 港口之间的距离CB 的长为海里.考点:解直角三角形的应用-方向角问题.3.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.4.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.6.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数7.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标⊙P 与菱形OABC 的边所在直线相切,则可与OC 相切;或与OA 相切;或与AB 相切,应分三种情况探讨:①当圆P 与OC 相切时,如图1所示,由切线的性质得到PC 垂直于OC ,再由OA=+t ,根据菱形的边长相等得到OC=1+t ,由∠AOC 的度数求出∠POC 为30°,在直角三角形POC 中,利用锐角三角函数定义表示出cos30°=oc/op ,表示出OC ,等于1+t 列出关于t 的方程,求出方程的解即可得到t 的值;②当圆P 与OA ,即与x 轴相切时,过P 作PE 垂直于OC ,又PC=PO ,利用三线合一得到E 为OC 的中点,OE 为OC 的一半,而OE=OPcos30°,列出关于t 的方程,求出方程的解即可得到t 的值;③当圆P 与AB 所在的直线相切时,设切点为F ,PF 与OC 交于点G ,由切线的性质得到PF 垂直于AB ,则PF 垂直于OC ,由CD=FG ,在直角三角形OCD 中,利用锐角三角函数定义由OC 表示出CD ,即为FG ,在直角三角形OPG 中,利用OP 表示出PG ,用PG+GF 表示出PF ,根据PF=PC ,表示出PC ,过C 作CH 垂直于y 轴,在直角三角形PHC 中,利用勾股定理列出关于t 的方程,求出方程的解即可得到t 的值,综上,得到所有满足题意的t 的值.8.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .①求证BDE DBA ∆≅∆;②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.【解析】【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,225OB OA AB =+=, 过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒∴ABD BDE ∠∠=. 又∵BD BD =,∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时, 同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.9.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴¶¶AD AC=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.10.阅读下面材料:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD b ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C = .同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB .(3)在(2)的条件下,试求75°的正弦值.(结果保留根号)【答案】(1)6;(2)6海里;(36+2 【解析】【分析】(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB的值.(2)此题可先由速度和时间求出BC的距离,再由各方向角得出∠A的角度,过B作BM⊥AC于M,求出∠MBC=30°,求出MC,由勾股定理求出BM,求出AM、BM的长,由勾股定理求出AB即可;(3)在三角形ABC中,∠A=45,∠ABC=75,∠ACB=60,过点C作AC的垂线BD,构造直角三角形ABD,BCD,在直角三角形ABD中可求出AD的长,进而可求出sin75°的值.【详解】解:(1)在△ABC中,∠B=75°,∠C=45°,BC=60,则∠A=60°,∵ABsinC =sinBCA,∴45ABsin o=60sin60o,即2 =3,解得:AB=206.(2)如图,依题意:BC=60×0.5=30(海里)∵CD∥BE,∴∠DCB+∠CBE=180°∵∠DCB=30°,∴∠CBE=150°∵∠ABE=75°.∴∠ABC=75°,∴∠A=45°,在△ABC中,sin AB ACB∠=BCsin A∠即60?ABsin=3045?sin,解之得:AB=156.答:货轮距灯塔的距离AB=156海里.(3)过点B作AC的垂线BM,垂足为M.在直角三角形ABM中,∠A=45°,6,所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以3,15315+156sin75°6+2.【点睛】本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.11.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的¶BD 交y轴正半轴于点D,¶BD与BC有交点时,交点为E,P为¶BD上一点.(1)若c=3,①BC=,¶DE的长为;②当CP=2时,判断CP与⊙A的位置关系,井加以证明;(2)若c=10,求点P与BC距离的最大值;(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)【答案】(1)①12,π;②详见解析;(2)①65;②65(3)答案见详解 【解析】【分析】 (1)①先求出AB ,AC ,进而求出BC 和∠ABC ,最后用弧长公式即可得出结论;②判断出△APC 是直角三角形,即可得出结论;(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;(3)画图图形,同(2)的方法即可得出结论.【详解】 (1)①如图1,∵c =3+2,∴OC =3,∴AC =3﹣2=3∵AB =6,在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =AC AB3 ∴∠ABC =60°,∵AE =AB ,∴△ABE 是等边三角形,∴∠BAE =60°,∴∠DAE =30°, ∴»DE的长为306180π⨯=π, 故答案为12,π;②CP 与⊙A 相切.证明:∵AP =AB =6,AC =OC ﹣OA =63, ∴AP 2+CP 2=108,又AC 2=(63)2=108,∴AP 2+PC 2=AC 2.∴∠APC =90°,即:CP ⊥AP .而AP 是半径,∴CP 与⊙A 相切.(2)若c =10,即AC =10﹣2=8,则BC =10.①若点P 在»BE上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245, ∴PF =AP ﹣AF =65; ②如图3,若点P 在»DE 上,作PG ⊥BC 于点G ,当点P 与点D 重合时,PG 最大.此时,sin ∠ACB =PG AB CP BC =, 即PG =AB CP BC ⋅=65∴若c =10,点P 与BC 距离的最大值是65; (3)当c =1时,如图4,过点P 作PM ⊥BC ,sin ∠BCP =AB PMBC CD= ∴PM =67423737AB CD BC ⋅⨯===423737; 当c =6时,如图5,同c =10的①情况,PF =6﹣1213=1213613-,当c =9时,如图6,同c =10的①情况,PF =4285685-,当c =11时,如图7,点P 和点D 重合时,点P 到BC 的距离最大,同c =10时②情况,DG 18117. 【点睛】此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.12.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠,//OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==. OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.13.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH=EB•sin∠OBC=5,CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.14.如图,在ABC △中,10AC BC ==,3cos5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】 【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解; (2)PD ∥BE ,则EB PD =BFPF,即:2248805x x x y xy--+=,即可求解;(3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解. 【详解】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=35, sinC=HP CP =R 10R -=45,解得:R=409; (2)在△ABC 中,AC=BC=10,cosC=35, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB=BDcosβ=(45-25x)×5=4-25x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+-=,整理得:y=()25x x8x800x10-+<<;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.15.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE ,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.。
锐角三角函数练习题

锐角三角函数练习题一、填空题:1、在Rt △ABC 中,∠C 为直角,若sinA=53,则cosB=_________. 2、在Rt △ABC 中,∠C 为直角,cot(900则tan(900-B)=_________. 3、∠A 为锐角,已知sinA=12,那么cos(900-A)=___________. 4、若00<α<900,sin α=cos600,则tan α=_________.5、用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6、计算:2sin450-21cos600=____________.7、在ABC △中,12,60,45a b A B +=== ,则a =____________8、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
9、如图,在菱形ABCD 中, AE ⊥BC 于E ,已知EC=l, cosB=513则这个 菱形的面积是 .10、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=,)二、选择题:1、如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 坐标为(-2,0),点B 在x 轴上方,设AB=a,那么点B 的横坐标为( ) A 、2-2a ; B 、2+2a ; C 、-2-2a ; D 、-2+2a 2、在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( ). A.21; B. 23; C.1; D. 22. 4、如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D,已知BACDAC=3,AB=5,则tan ∠BCD 等于( ).C A.43; B. 34; C. 53; D. 54.A DB 5、已知α为锐角,且21<cos α<22,则α的取值范围是( ) A. 00<α<300; B. 600<α<900; C. 450<α<600; D. 300<α<450.6、AE 、CF 是锐角△ABC 的两条高,如果AE :CF=3:2,则sinA :sinC 等于( ) (A )3:2 (B )2:3 (C )9:4 (D )4:97、在ABC △中,60,16,A b == 面积3220=S ,则c =( ) A 、610 B 、75 C 、55 D 、498、某水库大坝的横断面是梯形,坝内斜坡的坡度3:11=i ,坝外斜坡的坡度1:12=i ,则两个坡角的和为( )A 、090 B 、060 C 、075 D 、0105 9、在ABC ∆中,若2cos 2sinB A B +=,则ABC ∆为 ( ) (A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )正三角形 三、1、)21sin 4520066tan 302-+2、2sin 30cos 45tan 60-⋅+45tan 30cos 60sin -3、在海岸A 处,发现北偏东45方向,距A 为)13(-km 的B 处有一艘走私船,在A 处北偏西75方向,距A 为2km 的C 处的缉私船奉命以310km/h 的速度追截走私船,此时走私船正以10km/h 的速度从B 处向北偏东30方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.4、如图,已知测速站P 到公路L 的距离PQ 为40米,一辆小轿车在公路L 上行驶, 测得此车从点A行驶到点B 所用的时间为2秒,并测得∠APQ=60°,∠BPQ=30°. (1)计算此车从A 到B 的平均速度为每秒多少米?(结果保留三个有效数字) (2)判断此车是否超过了每小时80千米的限制速度.QlPBA5、如图,在一个坡角为30°的斜坡上有一棵树,高为AB .当太阳光与水平线成50°角时,测得该树在斜坡上的树影BC 的长为8m.⑴求树影顶端C 到树AB 所在直线的距离(结果保留根号); ⑵求这棵树的高度(精确到0.01m) .(备用数据:Sin300=0.5000,cos300=0.8660,tan300=0.5773,Sin500=0.7660,cos500=0.6427,tan500=1.1917)6、如图,小刘在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC 为 米(用根号表示).7、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上, 量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为 2米,求电线杆的高度。
锐角三角函数练习题答案
锐角三角函数练习题答案锐角三角函数练习题答案三角函数是数学中的重要概念,它与三角形的边长和角度之间的关系密切相关。
其中,锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切函数。
在学习三角函数时,练习题是非常重要的,可以帮助我们巩固理论知识并提高解题能力。
下面,我将给出一些锐角三角函数练习题的答案,希望能对大家的学习有所帮助。
1.已知一个直角三角形的斜边长为5,其中一个锐角的正弦值为0.6,求另一个锐角的余弦值。
解:根据正弦函数的定义,正弦值等于对边与斜边的比值。
设另一个锐角的余弦值为x,则有:sinA = 0.6cosA = x由直角三角形的性质可知,对边等于斜边乘以正弦值,即:对边 = 5 * 0.6 = 3根据余弦函数的定义,余弦值等于邻边与斜边的比值,即:cosA = 邻边 / 斜边将已知条件代入,得:x = 3 / 5 = 0.6所以,另一个锐角的余弦值为0.6。
2.已知一个锐角的正弦值为0.8,求该锐角的余弦值和正切值。
解:根据正弦函数的定义,正弦值等于对边与斜边的比值。
设该锐角的余弦值为x,正切值为y,则有:sinA = 0.8cosA = xtanA = y由正弦函数和余弦函数的关系可得:sin^2A + cos^2A = 1将已知条件代入,得:0.8^2 + x^2 = 1解方程得:x^2 = 1 - 0.64 = 0.36x = √0.36 = 0.6所以,该锐角的余弦值为0.6。
由正弦函数和正切函数的关系可得:sinA / cosA = tanA将已知条件代入,得:0.8 / 0.6 = yy = 1.33所以,该锐角的正切值为1.33。
3.已知一个锐角的余弦值为0.5,求该锐角的正弦值和正切值。
解:根据余弦函数的定义,余弦值等于邻边与斜边的比值。
设该锐角的正弦值为x,正切值为y,则有:cosA = 0.5sinA = xtanA = y由余弦函数和正弦函数的关系可得:sin^2A + cos^2A = 1将已知条件代入,得:x^2 + 0.5^2 = 1解方程得:x^2 = 1 - 0.25 = 0.75x = √0.75 ≈ 0.87所以,该锐角的正弦值为0.87。
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。
2021年中考一轮复习数学 分类训练:锐角三角函数及其应用(含答案)
2021中考数学 分类训练:锐角三角函数及其应用一、选择题 1. (2020·聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .553 B .517C .53D .542. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( ) A . 6 cm B . 7 cm C . 8 cm D . 9 cm3. 满足下列条件时,△ABC 不是直角三角形的为 ( )A .AB=,BC=4,AC=5B .AB ∶BC ∶AC=3∶4∶5 C .∠A ∶∠B ∶∠C=3∶4∶5D .cos A -+tan B -2=04. 在直角三角形中,下列条件中不能解直角三角形的是( )A .已知一直角边和一锐角B .已知斜边和一锐角C .已知两边D .已知两角5. (2019•山东威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB 的长度,下列按键顺序正确的是A.B.C.D.6. 如图,平面直角坐标系中,☉P经过三点A(8,0),O(0,0),B(0,6),点D 是☉P上的一动点,当点D到弦OB的距离最大时,tan∠BOD的值是()A.2B.3C.4D.57. (2019·浙江杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于A.asinx+bsinx B.acosx+bcosxC.asinx+bcosx D.acosx+bsinx8. (2019·浙江金华)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是A.∠BDC=∠αB.BC=m•tanαC .AO 2sin mα= D .BD cos mα=二、填空题 9. 【题目】(2020·黔东南州)cos60°= .10. 如图,在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为________.11. (2019•湖北随州)计算:(π–2019)0–2cos60°=__________.12. (2019·浙江衢州)如图,人字梯AB ,AC 的长都为2米,当α=50°时,人字梯顶端离地面的高度AD 是__________米(结果精确到0.1m .参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).13. (2020·天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin ∠AOB 的值是________.14. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)15. (2019·浙江舟山)如图,在△ABC中,若∠A=45°,AC2–BC255AB2,则tanC=__________.16. 如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点.当△APB为直角三角形时,AP=________.三、解答题17. 如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,连接CE,求:(1)线段BE的长;(2)∠ECB的正切值.18. 如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边AB,BC于点D,E,连接AE.(1)如果∠B=25°,求∠CAE的度数;(2)如果CE =2,sin ∠CAE =23,求tanB 的值.19. 如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN平行且距离为0.8米.已知小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会撞到墙?请说明理由.(参考数据:sin 40°≈0.64;cos 40°≈0.77;tan 40°≈0.54)20. 某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.21. 如图,⊙O是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E .(1)求证:∠1=∠BCE ;(2)求证:BE 是⊙O 的切线;(3)若EC =1,CD =3,求cos ∠DBA .22. 阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=tanα±tanβ1∓tanαtanβ利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan75°=tan(45°+30°)=tan45°+tan30°1-tan45°tan30°=1+331-1×33=2+ 3根据以上阅读材料,请选择适当的公式计算下列问题:(1)计算sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为 3 米,请你帮助李三求出纪念碑的高度.23. 如图1,图2,在△ABC中,AB=13,BC=14,5cos13ABC∠=.探究如图1,AH⊥BC于点H,则AH=_____,AC=______,△ABC的面积S △ABC=________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD 的垂线,垂足为E、F.设BD=x,AE=m,CF=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x ,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m +n )与x 的函数关系式,并求(m +n )的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围. 发现 请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.图1 图22021中考数学 分类训练:锐角三角函数及其应用-答案一、选择题 1. 【答案】D【解析】利用网格特征把∠ACB 放置于直角三角形中求正弦值.如图,在Rt △ACD 中,由勾股定理,得AC =22CD AD +=2234+=5,于是sin ∠ACB =AC AD =54.ABCD2. 【答案】C【解析】∵sin A=BCAB=45,∴设BC=4a,则AB=5a,AC=(5a)2-(4a)2=3a,∴3a=6,即a=2,故BC=4a=8 cm.3. 【答案】C[解析]A.∵52+42=25+16=41=()2,∴△ABC是直角三角形;B.设AB=3x,则BC=4x,AC=5x.∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC 是直角三角形;C.∵∠A∶∠B∶∠C=3∶4∶5,∴∠C=×180°=75°≠90°,∴△ABC不是直角三角形;D.∵cos A-+tan B-2=0,∴cos A=,tan B=,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形.故选C.4. 【答案】D5. 【答案】A【解析】在△ABC中,sinA=sin20°=BCAB,∴AB=sin20BC︒=2sin20︒,∴按键顺序为:2÷sin20=,故选A.6. 【答案】B[解析]如图所示,当点D到弦OB的距离最大时,DE⊥OB于E点,且D,E,P三点共线.连接AB,由题意可知AB为☉P的直径,∵A(8,0),∴OA=8,∵B(0,6),∴OB=6,∴OE=BE=OB=3,在Rt△AOB中,AB==10,∴BP=AB=×10=5,在Rt△PEB中,PE==4,∴DE=EP+DP=4+5=9,∴tan∠DOB===3,故选B.7. 【答案】D【解析】如图,过点A 作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx , 故选D.8. 【答案】C【解析】A 、∵四边形ABCD 是矩形,∴∠ABC=∠DCB=90°,AC=BD ,AO=CO ,BO=DO ,∴AO=OB=CO=DO ,∴∠DBC=∠ACB ,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意; B 、在Rt △ABC 中,tan αBCm=,即BC=m •tan α,故本选项不符合题意; C 、在Rt △ABC 中,AC cos m α=,即AO 2cos mα=,故本选项符合题意;D 、∵四边形ABCD 是矩形,∴DC=AB=m ,∵∠BAC=∠BDC=α,∴在Rt △DCB 中,BD cos mα=,故本选项不符合题意; 故选C .二、填空题9. 【答案】【答案】10. 【答案】2 [解析] 过点A 作AD ⊥BC ,垂足为D ,如图所示.设AC =x ,则AB =2x. 在Rt △ACD 中,AD =AC·sinC =22x , CD =AC·cosC =22x. 在Rt △ABD 中,AB =2x ,AD =22x , ∴BD =AB 2-AD 2=62x. ∴BC =BD +CD =62x +22x =6+2, ∴x =2.11. 【答案】0 【解析】原式=1–2×=1–1=0,故答案为:0.12. 【答案】1.5【解析】∵sin αAD AC,∴AD=AC •sin α≈2×0.77≈1.5,故答案为:1.5. 13. 【答案】22【解析】连接AB ,利用勾股定理的逆定理证明△OAB 是等腰直角三角形,得到∠AOB =45°,再根据特殊角的三角函数求解.∵AB 2=12+32=10,OB 2=12+32=10,OA 2=22+42=20,∴AB 2+OB 2=OA 2,∴△OAB 是等腰直角三角形,∠AOB =45°,∴sin ∠AOB =sin45°=22.14. 【答案】11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B=PM PB ,∴0.8=9PB ,∴PB ≈11海里.15. 【答案】5【解析】如图,过B 作BD ⊥AC 于D ,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2–BC2=(AD+DC)2–(DC2+BD2)=AD2+DC2+2AD•DC–DC2–BD2=2AD•DC=2BD•DC,∵AC2–BC255=AB2,∴2BD•DC55=⨯2BD2,∴DC55=BD,∴tan555BD BDCDCBD===.故答案为:5.16. 【答案】3或3 3 或37【解析】如解图,∵点O是AB的中点,AB=6,∴AO=BO=3.①当点P为直角顶点,且P在AB上方时,∵∠1=120°,∴∠AOP1=60°,∴△AOP1是等边三角形,∴AP1=OA=3;②当点P为直角顶点,且P在AB下方时,AP2=BP1=62-32=33;③当点A为直角顶点时,AP3=AO·tan∠AOP3=3×3=33;④当点B为直角顶点时,AP4=BP3=62+(33)2=37.综上,当△APB为直角三角形时,AP的值为3或3 3 或37.三、解答题17. 【答案】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt △ABC 中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE ⊥AB ,∴∠AED=90°,∴AE=AD ·cos45°=2×=, ∴BE=AB -AE=3=2, 即线段BE 的长为2. (2)过点E 作EH ⊥BC ,垂足为点H ,如图所示.∵在Rt △BEH 中,∠EHB=90°,∠B=45°,∴EH=BH=BE ·cos45°=2=2,∵BC=3,∴CH=1,在Rt △CHE 中,tan ∠ECB==2,即∠ECB 的正切值为2.18. 【答案】 解:(1)∵DE 垂直平分AB ,∴EA =EB ,∴∠EAB =∠B =25°.又∵∠C =90°,∴∠CAE =90°-25°-25°=40°.(2)∵∠C =90°,∴sin ∠CAE =CE AE =23. ∵CE =2,∴AE =3,∴AC = 5.∵EA =EB =3,∴BC =5,∴tanB =AC BC =55.19. 【答案】【思路分析】本题是一道锐角三角形函数的实际应用问题,关键是从实际问题抽象出数学模型.本题车门是否会碰到墙?实际上就是求点A到直线OB的距离,所以过点A作AC⊥OB于点C,在Rt△AOC中,利用锐角三角函数关系,可求得AC的长,与0.8米比较就可得出结论.解图解:如解图,过点A作OB的垂线,垂足为C,在Rt△AOC中,sin∠AOC=AC AO,(3分)∴AC=AO·sin40°=1.2×0.64=0.768. ∵0.768<0.8,∴车门不会碰到墙.(8分)20. 【答案】解:(1)∵新坡面AC的坡度为1∶3,∴tanα=13=33,∴α=30°.(2分)答:新坡面的坡角α的度数为30°.(3分)(2)原天桥底部正前方8米处的文化墙PM不需要拆除.理由如下:如解图所示,过点C作CD⊥AB,垂足为点D,∵坡面BC的坡度为1∶1,∴BD=CD=6米,(4分)∵新坡面AC的坡度为1∶3,∴CD∶AD=1∶3,∴AD=63米,(6分)∴AB=AD-BD=(63-6)米<8米,故正前方的文化墙PM不需拆除.答:原天桥底部正前方8米处的文化墙PM 不需要拆除.(7分)21. 【答案】(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵,∴AB =BD在△ABF 与△DBE 中,⎩⎨⎧∠BAF =∠BDE∠AFB =∠DEB AB =DB,∴△ABF ≌△DBE (AAS),∴BF =BE ,∵BE ⊥DC ,BF ⊥AC ,∴∠1=∠BCE ;(2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°,∵∠BCE +∠EBC =90°,且∠1=∠BCE ,∴∠BAC =∠EBC ,∵OA =OB ,∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°,∴∠EBO =90°,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;解图(3)解:在△EBC 与△FBC 中,⎩⎨⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS),∴CE =CF =1.由(1)可知:AF =DE =1+3=4,∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.22. 【答案】解:(1)sin 15°=sin (45°-30°)(2分)=sin 45°cos 30°-cos 45°sin 30°(3分) =22×32-22×12 =6-24.(4分)(2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3,(5分)∴ BE =14+73,(6分)又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),(7分) 答:纪念碑的高度是(14+83)米.(8分)23. 【答案】探究 AH =12,AC =15,S △ABC =84.拓展 (1)S △ABD =12mx ,S △CBD =12nx . (2)由S △ABC =S △ABD +S △CBD ,得118422mx nx +=.所以168m n x +=. 由于AC 边上的高565BG =,所以x 的取值范围是565≤x ≤14. 所以(m +n )的最大值为15,最小值为12. (3)x 的取值范围是x =565或13<x ≤14. 发现 A 、B 、C 三点到直线AC 的距离之和最小,最小值为565.。
专题01 锐角三角函数(原卷版)
2021-2022学年北师大版数学九年级下册压轴题专题精选汇编专题01 锐角三角函数一.选择题1.(2021春•金台区期末)如图,在Rt△ABC中∠C=90°,直线MN垂直平分AB交AB于M,交BC于N,且∠B=15°,AC=3,则BC的长为( )A.6B.6+3C.6+2D.92.(2020秋•南召县期末)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的格点上,那么tan∠ABC的值为( )A.B.C.4D.3.(2020秋•仁寿县期末)等腰三角形底边与底边上的高的比是2:,则它的顶角为( )A.30°B.45°C.60°D.120°4.(2020秋•紫金县期末)如图,点A(3,4)在第一象限,OA与x轴所夹的锐角为α,则cosα=( )A.B.C.D.5.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC 于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为( )A.B.C.D.6.(2021•宜兴市模拟)如图,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,连接CD,则CD长的最大值是( )A.2+B.2+1C.2+D.2+27.(2020秋•北碚区校级期末)北碚区政府计划在缙云山半山腰建立一个基站AB,其设计图如图所示,BF,ED与地面平行,CD的坡度为i=1:0.75,EF的坡角为45°,小王想利用所学知识测量基站顶部A 到地面的距离,若BF=ED,CD=15米,EF=3米,小王在山脚C点处测得基站底部B的仰角为37°,在F点处测得基站顶部A的仰角为60°,则基站顶部A到地面的距离为( )(精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.21.5米B.21.9米C.22.0米D.23.9米8.(2021•渝中区校级二模)如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为i=.小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得旗杆顶端点A的仰角为39°,则旗杆的高度AB约为( )米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.12.9B.22.2C.24.9D.63.1二.填空题9.(2021春•沙河口区期末)如图,从一艘船A上测得海岸上高为42米的灯塔顶部B的仰角∠BAC=30°,求船离灯塔的水平距离AC的长度是 米(参考数据:≈1.7,≈2.2,结果取整数).10.(2020秋•肥城市期末)如图,在正方形网格中,△ABC的顶点都在格点上,则cos B+sin B的值为 .11.(2020秋•崇川区期末)如图,若A,B,C,D都在格点处,AB与CD相交于O,则∠BOD的余弦值为 .12.(2020秋•锡山区期末)如图的正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为 .13.(2020秋•龙口市期末)如图,在Rt△ABC中,∠C=90°,D为边AC上一点,∠A=∠CBD,若AC=8cm,cos∠CBD=,则边AB= cm.14.(2020秋•德江县期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=6,tan B=,则CE= .15.(2020秋•新吴区期末)如图,△ABC的顶点都在正方形网格纸的格点上,则sin = .16.(2021春•瑞安市月考)如图,在河对岸有一等腰三角形场地EFG,FG=EG,为了估测场地的大小,在笔直的河岸上依次取点C,D,B,A,使FC⊥l,BG⊥l,EA⊥l,点E,G,D在同一直线上,在D观测F后,发现∠FDC=∠EDA,测得CD=12米,DB=6米,AB=12米,则FG= 米.17.(2021•道里区三模)△ABC中,AB=8,∠B=60°,AC=7,则∠BAC的余弦值为 .18.(2021•新洲区模拟)如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,M是射线AB上的一动点,以AM为斜边在△ABC外作Rt△AMN,且使tan∠MAN=,O是BM的中点,连接ON.则ON长的最小值为 .19.(2021•乐山)如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x正半轴所夹的锐角为α,那么当sinα的值最大时,n的值为 .三.解答题20.(2021•河池)如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为100m,从A处看风筝的仰角为30°,小明的父母从C处看风筝的仰角为50°.(1)风筝离地面多少m?(2)A、C相距多少m?(结果保留小数点后一位,参考数据:sin30°=0.5,cos30°≈0.8660,tan30°≈0.5774,sin50°≈0.7760,cos50°≈0.6428,tan50°≈1.1918)21.(2020秋•长沙期末)如图,A、B、D三点在同一水平线上,CD⊥AD,∠A=45°,∠CBD=75°,AB=60m.(1)求∠ACB的度数;(2)求线段CB的长度.22.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)23.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)24.(2020秋•阜宁县期末)在Rt△ABC中,∠C=90°,∠A﹣∠B=30°,a﹣b=2﹣2,解这个直角三角形.25.(2021•荆门)某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?26.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.27.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB 行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求D处的竖直高度;(2)求基站塔AB的高.28.(2021•莱芜区二模)如图,为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某段限速道路AB=328米,当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°.求无人机距离地面道路的高度和飞行距离各为多少米.(均精确到1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)29.(2021•碑林区校级模拟)学校“科技创新小团队”设计的智能照明家居(如图①)的设计方案(如图②)所示:MN为台灯底座,支架AB与MN的夹角为60°.支架AB与BC的夹角可以调节的.试用后发现,当支架AB与BC的夹角为108°时,可以达到较好的照明效果.若AB=21cm,BC=28cm.此时点C离底座MN的距离为多少?(结果精确到0.1cm.参考数据:≈1.41;≈1.73;sin48°≈0.74;cos48°≈0.67;tan48°≈1.11)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数的应用 习题精选 自主演练,各个击破 三角函数的简单应用 1.在Rt△ABC中,∠C=90°,下列关系式错误的是( )
A.cosbcB B.tanbaB C.sinacA D.tanbaB 2. 在Rt△ABC中,∠C=90°,下列式子不成立的是( ) A.222acb B.sinaAc C.tanabA D.coscbB 3. Rt△ABC中,CD为斜边AB上的高,AD=4,BD=2,那么tanA=( )
A.22 B. 33 C. 24 D. 28 4.太阳光与地面成42.5°的角,一树的影长10米,则树高约为________。(精确到0.01米)
5.在离地面高6米处的拉线固定一烟囱,拉线与地面成60°角,则拉线的长约是________米。(精确到0.01米)
6.如图31—3—1,大坝横截面是梯形ABCD,CD=3 m, AD=6 m. 坝高是3 m ,BC坡的坡度i=1:3, 则坡角∠A=__________,坝底宽AB=_____________。
7.如图31—3—2,在2005年6月份的一次大风中,育英中学一棵大树在离地面若干米的B处折断,树顶A落在离树根12米的地方,现测得∠BAC=48°,求原树高是多少米?(精确到0.01米) 互动探究,拓展延伸 学科综合 8.由于过度采伐森林和破坏植被,使我国某些地区受到沙尘暴侵袭,近日A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向转移(如图31—3—3所示),距沙尘暴中心300km的范围内将受其影响,问A市是否会受到这次沙尘暴的影响?
9.如图31—3—4,为了测量电视塔AB的高度,在C、D两点测得塔顶A的仰角分别为30°,45°。已知C、D两点在同一水平线上,C、D间的距离为60米,测倾器CF的高为1.5米,求电视塔AB的高。(精确到0.1米)
10.如图31—3—5,一只船自西各东航行,上午9时到达一座灯塔P的西南方向68海里的M处,上午11时到达这座灯塔的正南方向N处,求这只船航行的速度。
创新思维 (一)新型题 11.如图31—3—6,为了测量河的宽度,东北岸选了一点A,东南岸选相距200m的B、C两点测得∠ABC=60°,∠ACB=45°,求这段河的宽度。(精确到0.1m) (二)课本习题变式题 12.(习题第1题变式题)如图31—3—7,瞭望台AB高20m,瞭望台底部B测得对面塔顶C的仰角为60°,从瞭望台顶A测得C的仰角为45°,已知瞭望台与塔CD地势高低相同,求塔CD的高。
(三)易错题 13.如图31—3—8,在天桥广场上的A处放一气球,当气球上升了75m时,恰在旗杆CD的上空B处,在A点测得气球和C的仰角分别是47°54′、25°17′,求旗杆CD的高(精确到0.01m)。
迁移动用,落实课标 数学在经济、科技、生活中的应用 14.(2003·贵阳)如图31—3—9,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货。此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响。
(1)问:B处是否会受到台风的影响?请说明理由。 (2)为避免受到台风的影响,该船应在多少小时内卸完货物?
15.如图31—3—10,某移动公司移动电话的信号收发塔建在某中学的科技楼上,李明 同学利用测倾器在距离科技楼靠塔的一面25米远处测得塔顶A的仰角为60°,塔底B的仰角为30°,你能利用这些数据帮李明同学计算出该塔的高度吗?(结果精确到0.1米)
自主探究 16.(2003·辽宁)如图31—3—11,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺,测倾器。
(1)请你根据现在条件,充分利用矩形建筑物,设计一下测量塔顶端到地面高度HG的方案。
具体要求如下: ① 测量数据尽可能少;②在所绘图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测线段长用m、n表示;如果测角用、、表示,测倾器高度不计)。 (2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示)。
潜能开发 17.为建一座桥,施工时,需求出B、C两地的距离,如图31—3—12,现测得A到BC的距离是h,∠ABC=,∠ACB=,试确定BC的距离。 经典名题,提升自我 中考链接 18.(2004·泰州)李小同的叔叔下岗后想自主创业搞大棚蔬菜种植,需要修一个如图31—3—13所示的育苗棚,棚宽a=3 m,棚顶与地面所成的角约为25°,长b=9 m,则覆盖在顶上的塑料薄膜至少需_________㎡.(精确到1㎡)
19.(2004·曲沃课改实验区)如图31—3—14,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2 m,那么相邻两棵树的斜坡距记AB约为_________m.
20.(2004·淮安)如图31—3—15,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m,60°角对的直角边平行于地面,斜边所在直线过树的顶端,那么这棵树的高度大约为( )
A.5.2m B. 6.8m C. 9.4m D. 17.2m 21.(2004·重庆)如图31—3—16,CD是平面镜,光线从A点出发经CD上点E反射后照到B点,若入射角为(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tan的值为( )
A.113 B. 311 C. 911 D. 119
22.(2004·河南)如图31—3—17,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为米,此时梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的距离NC为b米,梯子的倾斜角为45°,这间房子的宽AC一定是( )
A.2ab米 B.2ab米 C.b米 D.米
23.(2004·陕西)如图31—3—18,有甲、乙两楼,甲楼高AD是23米,现在想测量乙楼CB的高度,某人在甲楼的楼底A和楼顶D分别测昨乙楼的楼顶B的仰角为65°13′和45°,利用这些数据可求得乙楼的高度为_________米。(结果精确到0.01米)
24.(2004·四川)如图31—3—19,小丽的家住在成都市锦江河畔的电梯公寓AD内, 她家的河对岸新建了一座大厦BC,为了测得大厦的高度,小丽在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°,已知小丽所住的电梯公寓高82米,请你帮助小丽计算出大厦高度BC及大厦与小丽所在电梯公寓间的距离AC。
自主探究 25.(昆明市初中数学竞赛试题)如图31—3—20海中一小岛A在周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B测得小岛A在北偏东60°方向,航行12海里后到达D,这时测得小岛A在北偏东30°方向,如渔船不改变航向,有没有触礁的危险?
趣味数学 26.如图31—3—21,Rt△ABC中,∠C=90°,P是斜边AB上的一个动点(不与AB重合),过P分别作PM⊥AC,PN⊥BC,△AMP的面积是1S,△PNB的面积是2S,四边形CMPN
的面积是aS,1S+2S与3S之间有怎样的关系? 参考答案: 1.A 2.D 3.A 4.9.16米 5.6.93 6.30°,AB=1233(m) 7.树高为31.26 m 8.过点A作AC⊥BD于C。在Rt△ABC中,∠ABC=45°,AB=400
∴AC=AB·sin452002,而2002<300.∴A市受其影响。 9.电视塔高约是83.5米。
10.由题意∠M=45°,则在Rt△PNM中,cosMNMMP,即2682MN
∴MN=342 ∴342119≈24.04(海里/小时) 11.过A作AO⊥BC于D,在Rt△AOB中,∠B=60°,∴∠BAD=30°, ∴BD=AD·3tan303AD.在Rt△ADC中,∠C=45°.
∴CD=AD,又BC=200,∴BD+CD=33AD+AD=200.解得AD≈126.8(米) 12. 47.3(m) 13.设CD=x m, ∵BD=75∴AD=75tantan4754BDBAD≈67.768(m) ∴x=AD·tanCAD=67.768×tan25°17′≈32.01(m) 14.(1)受台风影响。(2)应在3.9小时内卸完货。
15.在Rt△ACD中 ,AC=CD·tan60°=25×3253.
在Rt△BCD中,BC=CD·tan30°=2533.∴AB=AC-BC=2532533≈28.9(米) 16.答案不唯一,如图 HG=tantantantanmana. 17.在Rt△ABD中,BD=tantanADhaa.在Rt△ADC,CD=tantanADh, ∴BC=BD+CD=(tantan)tantantantanhhhaaa. 18.30 19. 2.3 20. D 21. D 22. D 23. 42.73 24.大厦高BC是123米,电梯公寓与大厦间距离413米。 25.设AC=x海里。在Rt△ABC中,BC=tan30x.在Rt△ADC中,DC=tan60x, 又BC-DC=12.∴tan30x-tan60x=12.解得x=63≈10.4, 10.4>8,故渔船无触礁危险。
26.略