初二数学下册:二次根式常考10大题型

合集下载

二次根式考试题型汇总

二次根式考试题型汇总

二次根式考试题型汇总二次根式题型一:二次根式的定义例1、(1)求自然数n的值,使得18-n是整数。

2)当x≥-1时,求式子√(x+1)+√(1-x)的值。

题型二:二次根式有意义的条件例2、当x>-1时,二次根式√(x+1)有意义。

例3、已知x、y为实数,y=√(y^2+8y+16-3xy),求y的值。

例4、已知y=√(x-3)+3-√(x+4),求x的值使得有意义。

题型三:二次根式的性质与化简例5、已知实数a,b在数轴上的位置如图所示:化简(1/(a+3))^2-(1/(b-23))^2.例6、计算(1/(x-1))-((1-x)/(x-1)(x+1))。

已知a、b、c为正数,d为负数,化简(ab-c^2d^2)/(ab+cd)^2.例7、化简求值:1)(a^2-a+b)/((c-a)^2+b+c);2) 11/[(2-1)/(2+1)+(2-1-√2)/(2-1+√2)];3)若x<y<z,则x^2-2xy+y^2+z^2-2yz+xz;4)[(x-1)^2+4-(x+1)^2]/(x^2-1);5)化简(a<0)得-1/(a)。

6)当a<0,b<0时,-a+2ab-b可变形为(a-b)^2.题型四:最简二次根式例8、下列式子中,属于最简二次根式的是9,而1/√3和√(9+x^2)都不是最简二次根式。

题型五:二次根式的乘除法例9、已知m=(3/3-2)(3/3+2-1),则有-5<m<-4.例10、计算:1)(5-3+2)(5-3-2);2) (a+3b)/(a+b)-(a-b)/(a+2b);3)(a^2/n-m^2/mn+n)/(a^2b^2);4)(a+b)/(ab+b-a)/(ab-a).a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013答案解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)20131.求解x的值:$$\frac{x+a}{x^2+a^2}+\frac{2x-x^2+a^2}{x^2-a^2}+\frac{1}{x^2+a^2/2}$$2.若x,y为实数,且$y=1-4x+4x^{-1}+x^{-2}$,求$\frac{x+y}{y+x^2}-2\frac{y}{yx^2}$的值。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

(完整版)八年级数学下学期二次根式知识点典型例题练习题,推荐文档

(完整版)八年级数学下学期二次根式知识点典型例题练习题,推荐文档

2 x 2 x + y -73 2ma 2 +13x - 4 1- 8a3m 2 + 42 - xx -1x - 23 - x2x +3 2x +3 x + 2 x2 1- 2x第六章二次根式的知识点、典型例题及相应的练习 1、二次根式的概念:1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。

当 a≥0 时,√ā 表示 a 的算术平方根,当 a 小于 0 时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子√ā(a≥0)叫二次根式。

√ā(a≥0)是一个非负数。

题型一:判断二次根式(1) 下列式子,哪些是二次根式,哪些不是二次根式: 、 1、 、 (x>0)、x、 4 2 、- 、 1 x + y、 (x≥0,y ≥0).(2) 在式子(x 0), y +1 (y = -2), (x 0), 3 3, x 2 +1, x + y 中,二次根式有()A. 2 个B. 3 个C. 4 个D. 5 个 (3) 下列各式一定是二次根式的是( )A. B. C.2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1) (2) (3) (4)2、有意义,则 ;3、若= 成立,则 x 满足 。

典型练习题:1、当 x 是多少时, + 1 x + 1在实数范围内有意义?2、当 x 是多少时, +x 2 在实数范围内有意义?x3、当 时, + 有意义。

3 3 2, -2x 0 ab-1 xx - 2 3 - xx 3 + 3x 2 x + 3 x 2 - 2xy + y 2 x 2 + 2xy + y 2 (x - 1 )2 + 4 x (x + 1)2 - 4 x- a a - a a 2b + 2ab 2 + b 3 8x 1 39 + x 2 162 32 ⨯ 75 92 2 2 92 ⨯ 2 ,求4有意义的未知数 x 有( )个. A .0 B .1C .2D .无数5、已知 y=x 的值. y6= .781有意义,则m 的取值范围是。

初二数学八下二次根式所有知识点总结和常考题型练习题

初二数学八下二次根式所有知识点总结和常考题型练习题

二次根式知识点 一、二次根式:式子a (a ≥0)叫做二次根式。

二、最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母; ⑶分母中不含根式。

三、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

四、二次根式性质:五、二次根式运算:二次根式练习一、选择题1.=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2xD. 2x ≥ 2. 下列根式中,是最简二次根式的是( )B. 3.已知1018222=++x x x x ,则x 等于( ) A .4 B .±2 C .2 D .±44.下列说法正确的是( ).(A)被开方数相同的二次根式可以合并 (B)8与80可以合并(C)只有根指数为2的根式才能合并 (D)2与50不能合并5. 下列各组中的两个根式是同类二次根式的是( )A 、x 25和x 3B 、2375b a 和a 12C 、y x 2和2xyD 、a 和21a6. 已知a>b>0,的值为( )A .2B .2CD .127. 下列根式中,不能与合并的是( )A .B .C .D .8.下列运算正确的是( )A . 5a 2+3a 2=8a 4B . a 3?a 4=a 12C .(a +2b )2=a 2+4b 2D .﹣=﹣4二、填空题1. 在27,8,31,12,是同类二次根式的有 个。

2. 已知三角形底边的边长是6cm,面积是12cm 2, 则此边的高线长 。

3. 若()2240a c -+-=,则=+-c b a 。

4. 若=3﹣x ,则x 的取值范围是 .5. 若11m +有意义,则m 的取值范围是6.已知411+=-+-y x x ,则x y 的平方根为______。

7.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= 。

专题7 二次根式章末八大题型总结(拔尖篇)(解析版)-八年级数学下册

专题7 二次根式章末八大题型总结(拔尖篇)(解析版)-八年级数学下册

专题16.7二次根式章末八大题型总结(拔尖篇)【人教版】【题型1二次根式双重非负性的运用】 (1)【题型2复合二次根式的化简】 (3)【题型3二次根式的运算与求值技巧】 (7)【题型4二次根式中的新定义问题】 (9)【题型5利用分母有理化求值】 (15)【题型6二次根式中的阅读理解类问题】 (20)【题型7二次根式的规律探究】 (25)【题型8二次根式的实际应用】 (27)【题型1二次根式双重非负性的运用】【例1】(2023春·天津和平·八年级耀华中学校考期中)若实数a,b,c满足关系式−199+199−= 2+−+−6,则c=.【答案】404【分析】根据二次根式有意义条件求得a=199,然后由非负数的性质求得b、c的值.【详解】解:根据题意,得−199=0199−=0,解得a=199,则2+−+−6=0,所以2×199+−=0−6=0,解得=6=404,故答案为:404.【点睛】本题考查二次根式的意义和性质,熟知相关知识点是解题的关键.(2023春·全国·八年级期中)已知实数x,y,a,b满足3−−7+−2−4=+−2022×【变式1-1】2022−−.求+的值及7−2023的值.【答案】15【分析】根据算术平方根的非负性列方程和不等式计算即可.【详解】解:由已知,得+−2022≥02022−−≥0,∴+−2022=0,∴+=2022,∴3−−7+−2−4=0,∴3−−7=0−2−4=0,解得=2=−1,∴7−2023=7×2−−12013=14+1=15.【点睛】本题考查二次根式的乘法、非负数的性质、二次根式有意义的条件以及解二元一次方程组,熟练掌握二次根式的乘法以及非负数的性质是解答本题的关键.【变式1-2】(2023春·湖北恩施·八年级校联考阶段练习)设x、y、z是两两不等的实数,且满足下列等式:3(−p3+3(−p3=−−−,则3+3+3﹣3B的值是()A.0B.1C.3D.条件不足,无法计算【答案】A【分析】首先根据二次根式的被开方数为非负数与x、y、z是两两不等的实数,即可求得:x为0,y与z互为相反数,据此即可求得代数式的值.【详解】解:根据题意得:3−3≥0 3−3≥0−>0−>0∴>>,∴−>0,−<0,∴由3(−p3≥0可得≥0,由3(−p3≥0可得≤0,∴=0,∴−−−=0,∴−−=0,∴=−,∴3+3+3−3B=−3+3=0.【点睛】此题考查了二次根式成立的条件与不等式组解集的求解方法,代数式求值问题,找到x,y,z的关系是求解本题的关键.【变式1-3】(2023秋·上海静安·八年级上海市民办扬波中学校考期中)已知s s是两两不相等的实数,且满足−+−=−−−,则32+B−22−B+52的值为.【答案】17【分析】根据被开方数是非负数,确定出=0,=−,代入原式即可解决问题.【详解】解:∵,,是两两不相等的实数且满足o−p+o−p=−−−,又∵−≥0−≥0o−p≥0o−p≥0,∴=0,=−,≠0,≠0,∴原式=32−2−22+2+52=17.故答案为:17【点睛】本题考查二次根式的性质、解题的关键是根据条件确定出=0,=−,记住二次根式的被开方数是非负数这个隐含条件,属于中考常考题型.【题型2复合二次根式的化简】【例2】(2023春·内蒙古巴彦淖尔·八年级统考期中)像4−23,48−45…这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平方式进行化简,如:4−23=3−23+1=(3)2−2×3×1+12=(3−1)2=3−1.再如:5+26=3+26+2=(3)2+23×2+(2)2=(3+2)2=3+2请用上述方法探索并解决下列问题:(1)化简:12+235;(2)化简:17−415;(3)若+65=(+5p2,且a,m,n为正整数,求a的值.【答案】(1)5+7(2)23−5(3)14或46【分析】(1)利用题中复合二次根式借助构造完全平方式的新方法求解;(2)利用题中复合二次根式借助构造完全平方式的新方法求解;(3)利用完全平方公式,结合整除的意义求解.【详解】(1)12+235=52+2×5×7+72=(7+5)2=5+7(2)17−415=12−415+5=232−2×23×5+52=23−52=23−5(3)∵+65=2+52+5,∴=2+52,6=2B,∴B=3又∵、、n为正整数,∴=1,=3,或者=3,=1,∴当=1,=3时,=46;当=3,=1时,=14.∴a的值为:14或46.【点睛】此题考查活用完全平方公式,把数分解成完全平方式,进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值.【变式2-1】(2023秋·上海·八年级期中)当=4−)A.1B.3C.2D.3【答案】A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式=−将=4代入得,原式===−1−11+=33=1.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.【变式2-2】(2023春·广东韶关·八年级校考期中)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=1+22,善于思考的小明进行了以下探索:设+2=+22(其中a、b、m、n均为正整数),则有+2=2+22B+22,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分+2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若+6=+62,用含m、n的式子分别表示a、b,得:a =,b=;(2)若+43=+32,且a、m、n均为正整数,求a的值;(3)化简:7−21+80.【答案】(1)m2+6n2,2mn;(2)a=13或7;(3)5﹣1.【分析】(1)利用完全平方公式展开得到+62=2+26B+62,再利用对应值相等即可用m、n表示出a、b;(2)直接利用完全平方公式,变形后得到对应值相等,即可求出答案;(3)直接利用完全平方公式,变形化简即可.【详解】解:(1)∵+6=+62=2+26B+62,∴a=m2+6n2,b=2mn.故答案为:m2+6n2,2mn;(2)∵+43=+32=2+23B+32,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3)∵21+80=20+45+1=25+12=25+1,则7−21+80=7−25+1=6−25=5−12=5−1.【点睛】本题考查了二次根式性质和完全平方式的内容,考生须先弄清材料中解题的方法,同时熟练掌握和灵活运用二次根式的相关运算法则以及二次根式的化简公式是解题的关键.【变式2-3】(2023春·江苏·八年级期末)阅读材料:康康在学习二次根式后、发现一些含根号的式子可以写成另一个式子的平方,如:3+22=1+22,善于思考的康康进行了以下探索:设+2=+22(其中、、m、n均为正整数),则有+2=2+22+2B2(有理数和无理数分别对应相等),∴=2+22,=2B,这样康康就找到了一种把式子+2化为平方式的方法.请你仿照康康的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若+3=+32,用含、的式子分别表示a、b,得:=________,=________;(2)若7−43=−32,且、均为正整数,试化简:7−43;(3)化简:7+21−80.【答案】(1)2+32,2B(2)2−32(3)1+5【分析】(1)根据完全平方公式进行计算进行求解;(2)将7−43变为22−2×2×3+32即可求解;(3)将7+21−80化为1+52进行求解即可.【详解】(1)解:∵+32=2+23B+32=2+32+23B,∴=2+32,=2B,故答案为:2+32,2B;(2)∵7−43=4−2×2×3+3=22−2×2×3+32=2−32,∴7−43=2−32;(3)7+21−80=7+1−45+20=7+1−252=7+25−1=6+25=1+25+5=1+52=1+5.【点睛】此题考查了二次根式的化简能力,关键是能准确理解并运用相关知识进行求解.【题型3二次根式的运算与求值技巧】【例3】(2023·八年级单元测试)若=2+4++1的值.【答案】2.【分析】已知条件比较复杂,将已知条件变形得出所求式子的结构求值即可.【详解】∵+=,∴2+=∴2=−−2++1=∴4++1=∵>0,∴a2+a4+a+1=−a+3=2.【点睛】本题考查了二次根式的化简求值,式子较复杂需要先化简条件.【变式3-1】(2023秋·四川成都·八年级校考阶段练习)若实数x,y满足(x﹣2−2016)(y﹣2−2016)=2016.(1)求x,y之间的数量关系;(2)求3x2﹣2y2+3x﹣3y﹣2017的值.【答案】(1)x=y;(2)-1.【分析】(1)将式子变形后,再分母有理化得①式:x﹣2−2016=y+2−2016,同理得②式:x+2−2016=y﹣2−2016,将两式相加可得结论;(2)将x=y代入①式得:x2=2016,再代入原式结合x2=2016,计算即可.【详解】解:(1)∵(x﹣2−2016)(﹣2−2016)=2016,∴x﹣2−2016=K−2016−−2016y+2−2016①,同理得:x+2−2016=y﹣2−2016②,①+②得:2x=2y,∴x=y,(2)把x=y代入①得:x-2−2016=x+2−2016,∴x2=2016,则3x2-2y2+3x-3y-2017,=3x2-2x2+3x-3x-2017,=x2-2017,=2016-2017,=-1.【点睛】本题考查了二次根式的性质与化简,掌握分母有理化的方法是解题的关键.(2023春·四川绵阳·八年级东辰国际学校校考阶段练习)若x,y是实数,且y=4−1+1−4+【变式3-2】13,求(23x9+4B)﹣(3+25B)的值.【答案】18﹣【分析】首先根据二次根式有意义求出x、y的值,再化简后面的代数式,最后代入求值即可.【详解】解:∵x,y是实数,且y=4−1+1−4+13,∴4x﹣1≥0且1﹣4x≥0,解得:x=14,∴y=13,∴23x9+4B)﹣(3+25B)的值.=2x+2B﹣x﹣5B=x﹣3B=18−【点睛】本题主要考查含字母的二次根式化简求值,需要注意利用二次根式有意义的情况求未知数的值.【变式3-3】(2023春·浙江·八年级专题练习)当=43−1997−19942019的值为(). A.1B.−1C.22002D.−22001【答案】B【分析】由原式得2−12=1994,得42−4r1=1994,原式变形后再将42−4r1=1994代和可得出答案.【详解】∵=∴2−12=1994,即42−4−1993=0,∴43−1997−1994=42−4−1993+42−4−1993−1=−1.∴原式=−12019=−1.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.【题型4二次根式中的新定义问题】【例4】(2023春·重庆江津·八年级校联考期中)对于任意非负数、,若定义新运算:n=−o≥p+o<p,在下列说法中:①27∯12=3;②11∯2+12∯3+⋯+12022∯2023=2023∯1;③(np(np=|−U;④若2∯(2−4+4)=2,则的取值范围为0≤≤1,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】利用新运算的定义对每个结论进行逐一判断即可得出结论.【详解】解:①∵27>12,∴27∯12=27−12=33−23=3,∴++...+②等式的左边==232+20232022=2−1+3−2+...+2023−2022 =2023−1.等式的右边=2023−1=2023−1.∴等式成立,∴②的说法正确;③当≥时,左边=(−p(+p=(−p(+p=(p2−(p2=−=|−U=右边,当<时,左边=(+p(−p=(p2−(p2=−=|−U=右边,综上,③的说法正确;④2∯(2−4+4)=2−(−2)2=−(−2)=−+2=2,由题意可知:2≥2−4+4,∴≥1,∴④的说法不正确.综上,说法正确的有①②③,故选:C.【点睛】本题主要考查了实数的运算,二次根式的性质,分母有理化,本题是新定义型,理解新定义的规定,并熟练应用是解题的关键.【变式4-1】(2023春·北京海淀·八年级人大附中校考期中)定义:对非负实数“四舍五入”到个位的值记为(p,即:当为非负整数时,如果−12≤<+12,则(p=.如:(0)=(0.48)=0,(0.64)=(1.49)=1,(4)=(3.68)=4,⋯试解决下列问题:①(3)=;②(32+3)=;⋯=.【答案】2320172018【详解】1、(3)=(1.732)=2;2、根据题意,先推导出o2+p(1)∵2+<2++14=,∴2+<+12,(2)再比较2+与−12的大小关系,①当n=0时,2+>−12;②当为正整数时,∵2+−−=2−14>0,∴2+>−,∴2+>−12,综合(1)、(2)可得:−12<2+<+12,∴(2+p=,∴(32+3)=3.3、∵(2+p⋯+=11×2+12×3+13−4+⋯+12017×2018=1−12+12−13+13−14+⋯+12017−12018=1−12018=20172018.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,−12< 2+<+12,从而得到(2+p=;(2)解题③的要点是:当n为正整数时,1or1)=1−1r1.【变式4-2】(2023春·八年级单元测试)将n个0或2排列在一起组成一个数组,记为=1,2,⋯,,其中1,2,…,取0或2,称A是一个n元完美数组(≥2且n为整数).例如:0,2,2,2都是2元完美数组,2,0,0,0,2,0,0,2都是4元完美数组.定义以下两个新运算:新运算1:对于∗=+−−,新运算2:对于任意两个n元完美数组=1,2,⋯,和=1,2,⋯,,⊕=21∗1+2∗2+⋯+∗.例如:对于3元完美数组=2,2,2和=0,0,2,有⊕=12×(0+0+22)=2.(1)①在3,2,2,0,2,2,0中是2元完美数组的有______;②设=2,0,2,=2,0,0,则⊕=______;(2)已知完美数组=2,2,2,0,求出所有4元完美数组N,使得⊕=22;(3)现有m个不同的2022元完美数组,m是正整数,且对于其中任意的两个完美数组C,D满足⊕=0,则m的最大可能值是______.【答案】(1)①2,0;②2(2)=2,2,0,2或2,0,2,2或0,2,2,2或2,2,0,0或2,0,2,0或0,2,2,0.(3)2023【分析】(1)①根据定义直接判定即可;②根据定义直接计算即可;(2)由定义可知当=时,∗=2,当≠时,∗=0,当∗=22或0,再由此求解即可;(3)根据题意可知C、D中对应的元都不相等,m的最大值为2023,当C确定后,D中的对应元与C中的不同即可.【详解】(1)解:①∵3,2中有3,∴3,2不是2元完美数组;∵2,0中只有2和0,且有2个数,∴2,0是2元完美数组;∵2,2,0中有3个数,∴2,2,0不是2元完美数组;故答案为:2,0.②⊕=22+0∗0+2∗0=22+2−2+0+0−0−+2+0−=12×22=2.故答案为:2.(2)解:∵∗=+−−,∴当=时,∗=2,当≠时,∗=0,当∗=2时,∗=22或0,∵⊕=22,∴1∗1+2∗2+3∗3+4∗4=42,∵=2,2,2,0,∴=2,2,0,2或2,0,2,2或0,2,2,2或2,2,0,0或2,0,2,0或0,2,2,0.(3)解:∵⊕=0,∴C、D中对应的元都不相等或C、D中对应的元都相等且为0,∵C、D是不同的两个完美数组,∴C、D中对应的元都不相等,∴m的最大值为2023,当C确定后,D中的对应元与C中的不同.故答案为:2023.【点睛】本题主要考查了新定义运算,弄清定义,熟练掌握绝对值的运算,能够通过所给的运算关系,得到一般规律是解题的关键.【变式4-3】(2023春·广东广州·八年级广州市第十六中学校考期中)定义:我们将+与−称为一对“对偶式”.因为+−=2−2=−,可以有效的去掉根号,所以有一些题可以通过构造“对偶式”来解决.例如:已知18−−11−=1,求18−+11−的值,可以这样解答:因为18−−11−×18−+11−=18−2−11−2=18−−11+=7,所以18−+11−=7.(1)已知:20−+4−=8,求:①20−−4−=________;②结合已知条件和第①问的结果,解方程:20−+4−=8;(2)代数式10−+−2中的取值范围是________,最大值是________,最小值是_________;(3)+⋯【答案】(1)①2;②=−5(2)2≤≤10,10,2(3)12−【分析】(1)仿照题意,进行计算即可得到答案;(2)根据二次根式有意义的条件列出不等式组,解不等式组即可得到答案;(3)利用原题的过程,对原式进行变形后,即可得到答案.【详解】(1)解:①∵20−+4−20−−4−=20−2−4−2=20−−4+= 16,∴20−−4−=2;故答案为:2②由①得20−−4−=2,已知20−+4−=8,两式相加得到,220−=10,即20−=5,则20−=25,解得=−5,经检验,=−5满足题意,即方程20−+4−=8的解是=−5;(2)解:由二根式有意义的条件得到10−≥0−2≥0,解得2≤≤10,即的取值范围是2≤≤10,x的最大值是10,x的最小值是2;故答案为:2≤≤10,10,2++⋯+(3+⋯+=++⋯+2023−2021202320212023+20212023−2021=35375+20232021−⋯+−==21−12023=12−20234046【点睛】此题考查了二次根式的性质和混合运算,熟练掌握二次根式的运算法则和灵活变形是解题的关键.【题型5利用分母有理化求值】【例5】(2023春·广东惠州·八年级校考期中)阅读下列材料,然后回答问题.==23−13−1==3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算.(1)+++(2)已知m是正整数,=r1+=r1−++3B=2021,求m.(3)已知15+2−26−2=1,则15+2+26−2的值为?【答案】(2)504(3)9【分析】(1)将各部分分子变为2,再根据分母有理化去分母后可相互消掉可得结果;(2)、互为倒数,分母有理化后可得+的值,代入所求式子即可;(3)设=15+2,=26−2,则2+2=41,利用已知等式导出2B=40,根据完全平方公式计算出+即为所求.+【详解】(1=+5375+⋯20192017+5−3+7−5+⋯+2019−2017==1=(2)∵=r1+=r1−∴=(+1−p2,=(+1+p2,B=1,∴+=(+1−p2+(+1+p2=4+2,∴++3B=2021,∴4+2+3=2021,∴=504;(3)设=15+2,=26−2,则2+2=41,∴15+2−26−2=1,∴−=1,∴(−p2=1,∴2+2−2B=1,∴2B=40,∵(+p2=2+2+2B=41+40=81,∴+=±9.(−9舍去),∴15+2+26−2=9.【点睛】本题考查了分母有理化的技巧,利用完全平方公式和平方差公式设未知数整体代入是常用的方法.【变式5-1】(2023秋·山西临汾·八年级校联考期末)阅读下列解题过程:==5−452−42=5−4==6−562−52=6−5请回答下列问题:(1=______;(2+(3)12−11和13−12的值哪个较大,请说明理由.【答案】(1)+1−;(2)2021−1;(3)12−11>13−12,见解析【分析】(1)把分子分母都乘以(5+2),然后利用平方差公式计算;(2)先分母有理化,然后合并即可;(3)由(1)的方法可得,12−11=13−12=,根据12+11<13+12可得>【详解】解:(1==+1−;(21++2+3+3+4+⋅⋅⋅+2019+2020=2−1+3−2+4−3+⋅⋅⋅+2020−2019+2021−2020=2−1+3−2+4−3+⋅⋅⋅+2020−2019+2021−2020=2021−1(3)由(1)的方法可得,12−11=13−12=13+12∵12+11<13+12>即,12−11>13−12.【点睛】本题考查了分母有理化和二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.【变式5-2】(2023春·黑龙江牡丹江·八年级校考期中)(1)观察下列各式的特点:2−1>3−2,3−2>2−3,2−3>5−2,5−2>6−5,…根据以上规律可知:2021−2020______2022−2021(填“>”“<”或“=”).(2)观察下列式子的化简过程:=2−1,==3−2,==4−3,…n≥2,且n是正整数)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:−+−3−5+4【答案】(1)>;(2)见解析;(3)2−101+9【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2)把分子分母同时乘以−−1,然后化简即可得到答案;=2−1=3−2,…=101−100分别把绝对值(3)根据(2里面的式子化简计算即可.【详解】解:(1)∵2−1>3−2,3−2>4−3,4−3>5−4,5−4>6−5,…,∴+1−>+2−+1,∴2021−2020>2022−2021,故答案为:>;(2r K1K=−−1;(3)原式=|(2−1)−(3−2)|+|(3−2)−(4−3)|++…+|(100−99)−(101−100)| =(2−1)−(3−2)+(3−2)−(4−3)+…+(100−99)−(101−100)=(2−1)−(101−100)=2−1−101+10=2−101+9.【点睛】此题主要考查了分母有理化,关键是注意观察题目所给的例题,找出其中的规律,然后再进行计算.【变式5-3】(2023春·北京西城·八年级北京市第十三中学分校校考期中)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做“分子有理化”,与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式,比如:=7−6=分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较7−6和6−5的大小.可以先将它们分子有理化如下:7−6=7+66−5=6+5因为7+6>6+5,所以7−6<6−5.再例如:求=+2−−2的最大值.做法如下:解:由+2≥0,−2≥0可知≥2,而=+2−−2=当=2时,分母+2+−2有最小值2,所以y的最大值是2.解决下述问题:(1)比较32−4和23−10的大小;(2)求=1−+1+−的最大值和最小值.【答案】(1)32−4<23−10;(2)的最大值为2,最小值为2−1.【分析】(1)利用分子有理化得到32−4=23−10=然后比较32+4和23+10的大小即可得到32−4与23−10的大小;(2)利用二次根式有意义的条件得到0⩽N1,而=1−=01+r1,1−有最大值1得到所以的最大值;利用当=1有最小值2−1,1−有最小值0得到的最小值.【详解】解:(1)32−4==23−10=3+10=而32>23,4>10,∴32+4>23+10,∴32−4<23−10;(2)由1−O0,1+O0,O0得0⩽N1,=1−+1+−J1−+∴当=0时,1++有最小值,则1,此时1−有最大值1,所以的最大值为2;当=1时,1++有最大值,有最小值2−1,此时1−有最小值0,所以的最小值为2−1.【点睛】本题考查了非常重要的一种数学思想:类比思想.解决本题关键是要读懂例题,然后根据例题提供的知识点和方法解决问题.同时要注意所解决的问题在方法上类似,但在细节上有所区别.【题型6二次根式中的阅读理解类问题】【例6】(2023春·湖北随州·八年级统考期末)阅读材料:基本不等式B≤r2(>0,>0)当且仅当a=b 时,等号成立,其中我们把r2叫做正数a,b的算术平均数,B叫做正数a,b的几何平均数,它是解决最大(小)值问题的有力工具,例如:在x>0的条件下,当x为何值时,+1有最小值?最小值是多少?解:∵x>0,1>0,∴x+12+1≥2,当且仅当=1时,即x=1时,有+1有最小值为2.请根据阅读材料解答下列问题:(1)填空:当>0时,设=+4,则当且仅当=____时,y有最____值为_______;(2)若>0,函数=2+1,当x为何值时,函数有最值?并求出其最值.【答案】(1)2,小,4;(2y有最小值22【分析】(1)根据基本不等式即可求得y的最小值,及此时x的取值;(2)根据基本不等式即可求得y的最小值,及此时x的取值.【详解】(1)∵x>0∴=r42≥∴y=+4≥4当且仅当=4即x=2时,y有最小值4.故答案为:2,小,4(2)∵x>0∴2r12≥2×∴y=2+1≥22当且仅当2=1即x y有最小值22.【点睛】本题属于阅读材料题目,考查了学生对材料的阅读理解能力和应用能力,考查了解方程,不等式的性质等知识,关键是读懂材料并能应用材料的知识解决问题.【变式6-1】(2023春·安徽六安·八年级校考期中)阅读材料,并解决下列问题.在比较同号两数的大小时,通常可以比较两个数的商与1的大小来判断这两个数的大小,如当s都是正数时,①若>1,则>;②若=1,则=;③<1,则<.我们将这种比较大小的方法叫做“作商法”.(1)请用上述方法比较57与75的大小;(2)r3为正整数)的大小关系,并证明你的结论.【答案】(1)57<75【分析】(1)由5<7,得到=5<1,即可得到答案;(2÷r3=r22−1r2+22−1<+22即可得到结论.【详解】(1)解:∵5<7,5=<1,∴57<75;(2r2÷===+2−+2∵+221<+22,÷1,<【点睛】此题考查了二次根式的运算的应用,熟练掌握二次根式的运算法则是解题的关键.【变式6-2】(2023秋·陕西榆林·八年级统考期中)阅读并回答下面问题:计算:2+3+12+2−3−12.设=2+3,=2−3.原式=+12+−12=2+2+1+2−2+1=2+2+2−+2.因为=2+3,=2−3,所以2+2=10,−=23.原式=10+2×23+2=12+43.(1)填空:①3+53−5=__________;②3+52+3−52=__________.(2)请仿照上面的方法计算:3+5+22+3−5−22.【答案】(1)①−2②16(2)24+85【分析】(1)①运用平方差公式解答;②运用完全平方公式解答;(2)设=3+5,=3−5,原式化为+22+−22,运用完全平方公式展开,根据阅读材料说明的方法解答.【详解】(1)①原式=32−52=3−5=−2;②原式=3+5+3−52−23+53−5=232−2×−2=16;故答案为:①−2;②16(2)设=3+5,=3−5,原式=+22+−22,=2+4+4+2−4+4,=2+2+4−+8,因为2+2=16,−=25,所以原式=16+4×25+8=24+85.【点睛】本题主要考查了复杂二次根式的乘法与平方和的简化计算,解决问题的关键是熟练掌握平方差公式和完全平方公式.【变式6-3】(2023春·贵州遵义·八年级统考期末)在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:1−32−1−.解:隐含条件1−3≥0,,解得≤13,∴1−>0,∴原式=1−3−1−=1−3−1+=−2.(1)试化简:(−3)2−(2−p2;(2)已知a、b满足(2−p2=+3,−+1=−+1,求B的值.【答案】(1)1(2)B=±14【分析】(1)由二次根式有意义的条件可得2−≥0,解得≤2,再化简二次根式,再合并即可;(2)根据二次根式的非负性先求解≥−3,由−+1=−+1,可得−+1=0或−+1=1,再分−3≤≤2,>2两种情况讨论求解即可.【详解】(1)∵2−≥0,则≤2,∴−3<0∴−32−2−2=−3−2−=3−−2+=1(2)∵2−2=+3,−+1=−+1,∴2−=+3≥0,∴≥−3,−+1≥0,∴当−3≤≤2时,则2−=+3,解得:=−12,∵−+1=−+1,∴−+1=0或−+1=1,解得:=12或=−12,∴B=−14或B=14,当>2时,则−2=+3无解,舍去,综上:B=−14或B=14【点睛】本题考查二次根式的性质与化简等知识点,能熟记二次根式的性质是解此题的关键.【题型7二次根式的规律探究】【例7】(2023春·安徽滁州·八年级校联考期末)(1)初步感知,在④的横线上直接写出计算结果:①13=1;②13+23=3;③13+23+33=6;④13+23+33+43=__________;…(2)深入探究,观察下列等式:①1+2=(1+2)×22;②1+2+3=(1+3)×32;③1+2+3+4=(1+4)×42;…根据以上等式的规律,在下列横线上填写适当内容:1+2+3+⋯++(+1)=__________.(3)拓展应用,通过以上初步感知与深入探究,计算:①13+23+33+…+993+1003;②113+123+133+…+193+203.【答案】(1)10;(2)(r2)(r1)2;(3)①5050;②41075【分析】(1)观察可得,每个式子的结果都等于被开放数中所有加数的底数之和;(2)所有自然数相加的和等于首项+尾项的和再乘以自然数的个数,最后除以2即可;(3)利用(1)(2)中的规律综合运用即可求解.【详解】解:(1)10;(2)(r2)(r1)2;(3)①原式=1+2+3+4+5+⋯+99+100=(1+100)×1002=5050;②原式=13+23+33+⋯+183+193+203−13+23+33+⋯+103=202×2124−102×1124=400×4414−100×1214=44100−3025=41075.【点睛】主要考查了二次根式的基本性质与化简、探寻数列规律、整式的加减,掌握这三个知识点的应用,其中探求规律是解题关键【变式7-1】(2023春·湖北随州·八年级统考期末)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n-3)个数是(用含n的代数式表示)().A.2−1B.2−2C.2−3D.2−4【答案】C【分析】观察数阵排列,可发现各数的被开方数是从1开始的连续自然数,行数中的数字个数是行数的2倍,求出n-1行的数字个数,再加上从左向右的第n-3个数,就得到所求数的被开方数,再写成算术平方根的形式即可.【详解】由图中规律知,前(n-1)行的数据个数为2+4+6+…+2(n-1)=n(n-1),∴第n(n是整数,且n≥4)行从左向右数第(n-3)个数的被开方数是:n(n-1)+n-3=n2-3,∴第n(n是整数,且n≥4)行从左向右数第(n-3)个数是:2−3故选:C.【点睛】本题考查了数字规律的知识;解题的关键是熟练掌握数字规律、二次根式的性质,从而完成求解.【变式7-2】(2023春·湖北随州·八年级统考期末)观察下列各式:1+112+122=1+11×2,1+122+132=1+12×3,1+132+142=1+13×4,……请利用你所发现的规律,计算1+112+122+1+122+132+1+132+142+…+1+120202+120212,其结果为.【答案】202020202021【分析】根据已知等式将各式分别化简,得到1+11×2+1+12×3+1+13×4+…+1+12020×2021,再将等式写成1×2020+(11×2+12×3+13×4+…+12020×2021)进行计算得到答案.【详解】∵1+112+122=1+11×2,1+122+132=1+12×3,1+132+142=1+13×4,……,∴1+112+122+1+122+132+1+132+142+…+1+120202+120212=1+11×2+1+12×3+1+13×4+…+1+12020×2021=1×2020+(11×2+12×3+13×4+…+12020×2021)=2020+(1-12+12-13+13-14+⋯+12020−12021)=2020+1-12021=202020202021,故答案为:202020202021.【点睛】此题考查运算类规律,有理数的混合运算,根据已知等式得到计算的规律,由此将各代数式化简,再根据特殊公式法进行计算得到答案,正确分析得到等式的计算规律是解题的关键.【变式7-3】(2023春·广西南宁·八年级南宁二中校联考期末)====按此规律,请表示出第2021个式子.【详解】∵第1=第2第3=第4∴第n当n=2021=【点睛】本题考查的是找规律,找出式子与序号的关系是解决本题的关键.【题型8二次根式的实际应用】【例8】(2023春·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)我国南宋时期数学家泰九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记=rr2,则其面积−−−.这个公式也被称为海伦-秦九韶公式.(1)当三角形的三边=3,=5,=6时,请你利用公式计算出三角形的面积;(2)一个三角形的三边长依次为5、6,7,请求出三角形的面积;(3)若=8,=4,求此时三角形面积的最大值.【答案】(1)2142(3)82【分析】(1)直接利用已知得出的值,再利用三角形面积公式得出答案;(2)将=−−−变形为=(3)根据公式计算出+=12,再表示成=12−,代入公式即可求出解..【详解】(1)解:∵=3,=5,=6,则:=rr2=3+5+62=7,∴=−−−=7×7−3×7−5×7−6=56=214;(2)=−−−======则三边长依次为5、6,7,代入====262(3)∵=rr2,=8,=4,∴+=12,则=12−,∴=−−−=88−48−8−=42×8−8−12+=42×8−−4=42×4−−62,∴当=6时,有最大值,为=82.【点睛】本题主要考查了二次根式的应用,乘法公式的应用,解答本题的关键是明确题意,求出相应的三角形的面积.【变式8-1】(2023春·陕西安康·八年级统考阶段练习)某居民小区有块形状为长方形ABCD的绿地,长BC 为72米,宽AB为32米,现要在长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为8+1米,宽为8−1米.(1)求长方形BB的周长;(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?【答案】(1)长方形BB的周长为202米(2)购买地砖需要花费204元【分析】(1)根据长方形的周长公式进行计算即可求解;(2)先求得长方形的面积,根据面积乘以6即可求解.【详解】(1)解:72+32×2=62+42×2=102×2=202(米).答:长方形BB的周长为202米.(2)72×32−2×8+1×8−1=62×42−2×8−1=48−14=34(平方米).6×34=204(元).答:购买地砖需要花费204元.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.【变式8-2】(2023秋·四川资阳·八年级校考阶段练习)在日常生活中,有时并不要求某个量的准确值,而只需求出它的整数部分.如今天是星期一,还有55天中考,问中考前还有多少个星期一、容易知557=767,但答案并不是将小数部分四舍五入得到8,而是767的整数部分7,所以有7个星期一、为了解决某些实际问题,我们定义一种运算——取一个实数的整数部分,即取出不超过实数x的最大整数.在数轴上就是取出实数x对应的点左边最接近的整数点(包括x本身),简称取整,记为[p.这里[p=−,[p+=,其中[p是一个整数,0≤<1,a称为实数x的小数部分,记作,所以有=[p+{}.例如,[−14.3]=−15,{2.45}=0.45.关于取整运算有部分性质如下:①−1<[p⩽②若n为整数,则[+p=[p+请根据以上材料,解决问题:(1)[10]=___________;若=[−p,={−},则2+B=___________;(2)记=⋯+[p;(3)解方程:[3r49]=6K73.【答案】(1)3,4(2)43(3)=53或=76【分析】(1)根据定义直接求解即可;(2)先进行分母有理化,再求和即可;(3)根据题意可得3r49−1<6K73≤3r49,求出的取值范围可得−335<6−7≤15,再由6K73是整数,可求的值.【详解】(1)解:∵3<[10]<4,∴[10]=3,∵−3<−<−4,∴=[−p=−4,={−}=4−,∴2+B=o+p=−4×−=4,故答案为:3,4;(2)=2+1+3++3+⋯2022+2021=2−1+3−2+2−3+…+2022−2021=2022−1,∵44<2022<45,∴43<2022−1<44,∴[p=43;(3)∵−1<[p≤,∴3r49−1<[3r49]≤3r49,∴3r49−1<6K73≤3r49,解得1615<≤53,∴−35<6−7≤3,∵6K73是整数,∴6−7=0或6−7=3解得=76或=53【点睛】本题考查了二次根式的混合运算,弄清定义,熟练掌握不等式的基本性质,分母有理数化,准确熟练地进行计算是解题的关键.【变式8-3】(2023春·江苏·八年级专题练习)甲容器中装有浓度为a的果汁40kg,乙容器中装有浓度为b 的果汁90kg,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后=90m即可.【详解】解:根据题意,甲容器中纯果汁含量为40akg,乙容器中纯果汁含量为90bkg,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,40=整理得,610a-610b=5ma-5mb,∴610(a-b)=5m(a-b),∴m【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.。

二次根式的加减(知识点及常考题型精讲)课件2024-2025学年鲁教版(五四制)八年级数学下册

二次根式的加减(知识点及常考题型精讲)课件2024-2025学年鲁教版(五四制)八年级数学下册

×
(2)如果两个正方形的面积分别是 18 和 8 ,那么大正方形的边
长比小正方形的边长大多少?
− = − = ( − ) =
几个二次根式化简成最简二次根式后,如果它们的被开方
数相同,那么这几个二次根式是同类二次根式.
练习:下列二次根式中,哪些是同类二次根式?
, ,

() −
+

= + + −
= − +
= +
=
练习 计算:
解:
(1)( − ) − ( + ��)= − − −
=− −
(2) − (
(3)


+


=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= + −
=
例 计算:


解:
− (
+ )




=




= − −
=−
练习 计算:
(1)



= − = −


(2) − (
= −


+




)

=

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

人教版八年级数学下册专题01 二次根式的有关概念和性质 题型归纳 (解析版)

专题01 二次根式的有关概念和性质【思维导图】◎考点题型1 求二次根式的值例.(2022·浙江·九年级专题练习)当0x =时, )A .4B .2CD .0【答案】B 【解析】 【分析】把0x = 【详解】解:把0x =2= 故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.变式1.(2020·山东定陶·八年级期末)当 x =-3 时, )A .3B .-3C .±3D 【答案】A【分析】把x =-3代入二次根式进行化简即可求解. 【详解】解:当x =-3时3=. 故选A. 【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键. 变式2.(2020·北京·一模)如果31a ,那么代数式21(1)11aa a +÷--的值为( )A .3BCD 2【答案】B 【解析】 【分析】先根据分式的混合运算法则化简原式,再把a 的值代入化简后的式子计算即可. 【详解】 解:原式=()()111a a a a a ÷--+=()()1111a a a a a a-+⨯=+-;当31a时,原式11+=故选:B . 【点睛】本题考查了分式的化简求值,属于常考题型,熟练掌握分式的混合运算法则是解题关键.变式3.(2020·湖北鄂城· )A B .2 C .22 D .2±【答案】B 【解析】 【分析】根据乘方和开方的运算法则进行计算即可. 【详解】2=故答案为:B .本题考查了开方和乘方的运算问题,掌握乘方和开方的运算法则是解题的关键.◎考点题型2 求二次根式中的参数例.(山东阳谷·,则正整数n的最小值是()A.2B.4C.6D.8【答案】C【解析】【分析】,=则6n是完全平方数,满足条件的最小正整数n为6.【详解】解:24n=,∴,即6n是完全平方数;∴n的最小正整数值为6.故选:C.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答变式1.(全国·,最小的正整数n是()A.6B.3C.4D.2【答案】B【解析】【分析】根据题意,算数平方根是正整数,可得被开方数是能开方的正整数.【详解】是正整数,所以n 的最小正整数是3,故选:B.【点睛】本题主要考查了二次根式的定义,利用开方运算是解答本题的关键.变式2.(2020·四川三台·,则正整数n 的最小值是( ) A .2 B .3C .4D .6【答案】B 【解析】 【分析】,然后再判断n 的最小正整数值. 【详解】=,,则也是整数; ∴n 的最小正整数值是3; 故选B . 【点睛】变式3.(2020·江西南丰·20b -=,则2019()a b +的值是( ). A .1 B .-1C .2019D .-2019【答案】B 【解析】 【分析】利用非负数的性质列出方程组,求出方程组的解得到a 与b 的值,代入原式计算即可求出值. 【详解】20b -=,∴3020a b +=⎧⎨-=⎩, ∴32a b =-⎧⎨=⎩, ∴20192019()(32)1a b +=-+=-, 故选择:B. 【点睛】此题考查了非负数的性质及二元一次方程组,熟练掌握几个非负数的和为零,则每一个非负数都为零是解本题的关键.◎考点题型3 二次根式有意义的条件例.(2022·河北·在实数范围内有意义,则x 的值可能为( ) A .0 B .﹣2 C .﹣1 D .1【答案】D 【解析】 【分析】,可列不等式组10,10x x 得到不等式组的解集,再逐一分析各选项即可. 【详解】解: , 1010x x ①②由①得:1,x ≥ 由②得:1,x ≠- 所以:1,x ≥故A,B,C 不符合题意,D 符合题意, 故选D 【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.变式1.(2022·湖南岳阳·,则实数x 的取值范围是( ) A .1x ≥- B .0x ≠C .1≥xD .0x >【答案】C 【解析】 【分析】根据二次根式的被开方数为非负数解答.解:由题意得10x -≥, 解得1≥x , 故选:C . 【点睛】此题考查了二次根式的非负数,解题的关键是熟练掌握二次根式的双重非负性列式进行解答.变式2.(2022·福建惠安·有意义,则x 的取值范围为( ) A .1x ≥- B .1x >- C .1≥x D .1x ≤【答案】A 【解析】 【分析】根据二次根式有意义的条件分析即可. 【详解】, ∴10x +≥ 解得1x ≥- 故选A 【点睛】本题考查了二次根式有意义的条件,理解被开方数为非负数是解题的关键.变式3中x 的取值范围是( ) A .x >2 B .x ≥﹣2C .x ≠2D .x ≥﹣2且x ≠2【答案】D 【解析】 【分析】根据二次根式及分式有意义的条件可直接进行求解. 【详解】 解:由题意得:20x +≥且20x -≠,解得:2x ≥-且2x ≠; 故选D .本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.◎考点题型4 利用二次根式的性质化简例.(2022·贵州松桃·八年级期末)下列各式中正确的是( )A 2=-B 2=±C .22= D .(22=-【答案】C 【解析】 【分析】根据二次根式的性质即可依次判断. 【详解】A. 2,故错误;B. 2=,故错误;C.22=,正确;D. (22=,故错误;故选C . 【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的性质.变式1.(2022·江苏·2x =-成立,则x 的取值范围是( ) A .2x ≤ B .2x ≥C .02x ≤≤D .任意实数【答案】A 【解析】 【分析】根据实数的性质及去绝对值的方法即可求解. 【详解】22x x =-=-∴x -2≤0故选A . 【点睛】此题主要考查实数的性质,解题的关键是熟知平方根的性质及去绝对值的方法. 变式2.(上海奉贤·七年级期末)下列计算错误的是( )A 2=-B 2C 2D .2(2=【答案】A 【解析】 【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可. 【详解】解:A 2,故此选项计算错误,符合题意;B 2=,故此选项计算正确,不合题意;C 2=,故此选项计算正确,不合题意;D .2(2=,故此选项计算正确,不合题意; 故选:A . 【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.变式3.(2022·2的结果是( ) A .61x -- B .1-C .61x +D .1【答案】D 【解析】 【分析】x 的取值范围,,利用二次根式的性质去根号,然后合并同类项即可. 【详解】0x ≥∴31=+x故原式化简为:3131x x +-=. 故选:D . 【点睛】本题主要是考查了去二次根号以及二次根式的基本性质,熟练掌握二次根式的性质,求解该题的关键.◎考点题型5 复合二次根式的化简例.(浙江滨江·八年级期中)对式子,使根号外不含字母m ,正确的结果是( )A B .C .D 【答案】C 【解析】 【分析】直接利用二次根式的性质化简求出答案. 【详解】解:由题意可得:30m -≥,∴0m ≤∴=故选:C 【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.变式1.(河南原阳· )AB C .D .【答案】D 【解析】 【分析】根据二次根式成立的条件确定x 的取值,从而利用二次根式的性质进行化简. 【详解】解:由题意可得:x <0∴(11x x x⋅=⋅-故选:D . 【点睛】本题考查二次根式的化简,理解二次根式成立的条件及二次根式的性质正确化简计算是解题关键.变式2.(湖北鄂州·八年级期末)把(2-x) 2-x )适当变形后移入根号内,得( )AB C . D .【答案】D 【解析】 【分析】由题意易得x>2,然后根据二次根式的性质可进行求解. 【详解】 解:由题意得: 102x >-,解得:x>2,∴(2x -= 故选D . 【点睛】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.变式3.(2018·全国·2得( ) A .2 B .﹣4x+4C .xD .5x ﹣2【答案】C 【解析】 【分析】根据二次函数的性质求解可得答案. 【详解】解:1-3x≥0,x≤13,∴2x-1≤1-3<0,∴原式-(1-3x)=1-2x-1+3x=x, 故选C. 【点睛】主要考查了根据二次根式的意义及化简.:当a >0时=a;当a<0时,=-a.二次根式2=a,(a≥0).。

初二二次根式经典题型

初二二次根式经典题型一、二次根式的概念与性质相关题型1. 题型:判断二次根式- 题目:下列各式中,哪些是二次根式?- √( - 5),√(a)(a≥0),sqrt[3]{8},√(frac{1){3}},√(x^2)+1。

- 解析:- 二次根式的定义是形如√(a)(a≥0)的式子。

对于√( - 5),被开方数 - 5<0,不满足二次根式定义中被开方数是非负数的条件,所以它不是二次根式。

- √(a)(a≥0)符合二次根式的定义,是二次根式。

- sqrt[3]{8}是三次根式,不是二次根式,因为二次根式的根指数是2。

- √(frac{1){3}},被开方数(1)/(3)>0,满足二次根式的定义,是二次根式。

- √(x^2)+1,因为x^2≥0,所以x^2+1>0,满足二次根式的定义,是二次根式。

2. 题型:二次根式有意义的条件- 题目:当x取何值时,二次根式√(x - 2)有意义?- 解析:- 二次根式有意义的条件是被开方数大于等于0。

- 对于√(x - 2),令x - 2≥0,解得x≥2。

所以当x≥2时,二次根式√(x - 2)有意义。

3. 题型:二次根式的性质运用- 题目:化简√(( - 3)^2)。

- 解析:- 根据二次根式的性质√(a^2)=| a|。

- 对于√(( - 3)^2),这里a = - 3,则√(( - 3)^2)=| - 3|=3。

二、二次根式的运算相关题型1. 题型:二次根式的乘法- 题目:计算√(3)×√(6)。

- 解析:- 根据二次根式乘法法则√(a)×√(b)=√(ab)(a≥0,b≥0)。

- 对于√(3)×√(6),则√(3)×√(6)=√(3×6)=√(18)=√(9×2)=3√(2)。

2. 题型:二次根式的除法- 题目:计算(√(24))/(√(6))。

- 解析:- 根据二次根式除法法则(√(a))/(√(b))=√(frac{a){b}}(a≥0,b>0)。

初二下册二次根式专题(所有题型)

二次根式专题题型一:二次根式的概念【例题1】当为实数时,下列各式,,,属于二次根式的有________个.【练一练】1. 下列式子中二次根式的个数有 ( ) (1);(2);(3);(4);(5);(6)(x >1)A .2个B .3个C .4个D .5个 2. 下列各式①;②;③;④;⑤,其中二次根式的个数有 ( )A .1个B .2个C .3个D .4个题型二:二次根式的意义(取值范围)【例题2】x 取何值时,下列函数在实数范围内有意义? (1) (2)y=-;【练一练】 1. 若使二次根式有意义,则x 的取值范围是 ;2. 使式子x211-有意义的x 的取值范围为______________________; 3. 代数式x -9有意义时,实数x 的取值范围是__________________;4. 函数xx y 2+=的自变量x 的取值范围是_____________________; 5. 函数21-+=x x y 中,自变量x 的取值范围是___________________; 6. 若式子12112+-+-x x 在实数范围内有意义,则x 满足的条件是______________________.x ()2223,1,,,,x x x x x --y =2+x x 23-题型三:二次根式的性质()0()(22≥==a a a a a ,) 【例题2】 1. 计算下列各式:(1)(3)(4)2. 已知a ,b ,c 在数轴上如图所示,化简:.3. 已知a 、b 都是实数,且b ,化简•+1的结果是多少?【练一练】 1. =________. 若,则______.若=0,则=__________.2.若,则____________;若,则______________.3.已知,求的值为____________.4.若,则化简的结果是__________.5.已知c b a ,,为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .2-2)252(-2)2(2a a ---22x x -+-2(1)1x x--6. 已知实数x ,y 满足,求代数式的值.7.实数a 、b 、c 在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣2b|.8.已知a,b,c 在数轴上的位置如右图所示,化简:题型四:二次根式的乘除;;;【例题3】(1) ×(2)× (3) (4)(5) (5). (6)b ba b a x xb a -÷+⋅-54336222222013()x y +【练一练】(1) 21521)74181(2133÷-⨯ (2)·(-)÷(m >0,n >0)(3)-3÷()×(a >0). (4)243)2()()(a a a -÷-⋅-题型四:最简二次根式【例题4】1. 下列各式中,哪些是最简二次根式?哪些不是?请说明理由. (1);(2);(3);(4);(5);(6);(7).2. 已知0<<,a b3. 的整数部分是a ,小数部分是b ,求22a ab b -+的值.【练一练】 1. 化简:(1)= .(2)111a a +=_________,(3)2411a a a+=___________.2.=_______________.3. 若9,4312a b ab a b ---和求的值.4. 2的整数部分为a ,小数部分为,b 求2222444a ba ab b -++的值.5. 若m m m m -⋅+=-+213)2)(13(成立,化简216942-++++-m m m m .题型五:同类二次根式【例题5】(1)如果最简二次根式与是同类二次根式,那么x的值是()A.-1B.0C.1D.2(2)如果两个最简二次根式和是同类二次根式,那么a、b的值是()A.a=2,b=1B.a=1,b=2C. a=1,b=-1D. a=1,b=1(3)如果两个最简二次根式和是同类二次根式,那么a、b的值是()A.a=2,b=1B.a=1,b=2C. a=1,b=-1D. a=1,b=1(4)若最简二次根式与是同类二次根式,则a= .【练一练】1.下列二次根式,不能与合并的是()A. B .C . D.2.下列各组二次根式中是同类二次根式的是()A.B. C. D.3. 与不是同类二次根式的是()A. B. C. D.4.化简基础训练:__________;__________;__________;__________;__________;__________;__________;__________;5. 当_________.7.若最简二次根式与是同类二次根式,则.6无法合并,这种说法是__________的(填“正确”或“错误”).113a=题型六:二次根式的混合运算【例题6】 1. 计算:(1)(2)2.已知x y ==求22x xy y -+的值.3. 计算:已知2310,x x -+=.【练一练】 1.(1)如果+=0,那么= (2)=_________. 2. 当_________. 3. 计算(1) (2)﹣a2+3a ﹣.)753)(753(-++-101100103103)()(-+a =4. 已知x=,y=,求的值.5.若x,y为实数,且y=++.求﹣的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学下册:二次根式常考10大题型
考点
二次根式
1.二次根式的有关概念
(1)二次根式:
该式子称作二次根式。

注意被开方数a只能是非负数。

并且根式也是非负数。

(2)最简二次根式:被开方数不含分母,不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。

(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。

2.二次根式的性质
3.二次根式的运算
(1)二次根式的加减:先把二次根式化为最简二次根式,再合并同类二次根式。

(2)二次根式的乘除:

(3)二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

二次根式的运算结果一定要化成最简二次根式。

常考的10个类型题
点评:关于二次根式的根号内外的“移进”和“移出”,关键是要抓住二次根式的被开方数是非负数这个特点,先确定字母的隐含的取值范围,
再结合
进行“移进”和“移出”的变形化简;这类题在考试中常出现在考题的填空和选择题中,是正确率比较低的热点考题
高频考点,这个知识点容易与其它知识点联姻构成有一定含金量的综合题,而双重非负数性在其中扮演的往往是关键角色,上面的几道例题就是要抓住算术平方根及其被开方数都是非负数的破题;
比如很多同学对于例3这类题不知从何入手,但只要抓住本题是二次根式构建的,从被开方数是非负数这点入手,就可以隐藏在其中的a 的值挖出来,从而使问题得以解
故④正确;根据垂直平分线的判定并结合图象可知EF是线段BC的垂直平分线,⑤正确故选①④⑤
点评:几何的相关计算中往往要通过二次根式的计算或化简来解决不在少数,是中考和各类考试的热点考题;这类题型把二次根式的计算或化简和勾股定理即其它几何知识很好结合在一起考察,是数形结合等思想方法较好体现。

这类题型还很容易与函数及其图象结合在一起。

end。

相关文档
最新文档