稀土元素对镁合金强化的影响

稀土元素对镁合金强化的影响
稀土元素对镁合金强化的影响

稀土元素对镁合金强化的影响

前言:

非磁性金属镁位于化学元素周期表中第2族,原子序号l2,原子量24.32。镁合金密度小,是最轻的结构金属材料,比铝合金轻36%,比锌合金轻72%,是钢的1/4;其具有低密度、高比强度、高比刚度、高弹性模量和高阻尼性能;其比强度明显高于铝合金和钢,比刚度也接近于铝合金。除此之外,镁合金还具有优良的减震性、低温冲击韧性、和尺寸稳定性、导热性,它的电磁屏蔽能力强、易切削加工、易回收、表面处理性能好,在汽车、电器、交通、航空等领域有着广阔的应用前景,对环境也无污染,被誉为“21世纪绿色工程材料”。目前,镁合金主要形成了AZ(Mg-Al-Zn)、AM(Mg-Al-Mn)、AE(Mg-Al-RE)、AS(Mg-Al-Si)、ZK(Mg-Zn-Zr)和EK(Mg-RE-Zr)等系列。但镁合金的强度和塑性总体来说低于铝合金;此外,高温性能差也是限制镁合金应用的主要原因之一。所以提高镁合金的室温和高温强度是镁合金研究中要解决的首要问题。常常采用合金元素优化、热处理、形变强化、机械合金化以及一些先进的加工技术和手段来提高镁合金的常温和高温性能。在镁合金中加入微量稀土元素后,其组织性能也可以得到较大的改善和提高[1]。

1.镁合金的几种强化机制

1.1 固溶强化

固溶强化时溶质原子固溶入晶体的晶格中,由于溶质原子与基体原子的原子半径和弹性模量不同使晶格畸变,从而使合金得到强化。根据Hume-Rothery固溶度准则,溶质与基体原子的原子半径尺寸差大于15%,就不会形成浓度较大的固溶体。镁的原子半径为3.2人,符合上述尺寸的元素有Li、A1、Ti、Cr、Zn、Ge、Yt、Sn、Nb、Mo、Pd、Ag、Nd和Bi等。另一方面,相同电子价,相同晶体结构的元素相互之间的固溶度大,对于镁来说,符合条件的元素只有Cd和Zn。另外,低价金属容易使高价金属固溶,因为额外电子的加入提高了合金金属之间的结合能和结构的稳定性。

1.2 析出强化

当合金元素在基体中的固溶度随温度的降低而降低时,析出强化就成为了另一种强化方式。产生强化的机制是析出相阻碍位错运动和滑移,提高了强度。析出相的形状,尺寸,性能以及析出相和基体之间的界面关系是关键因素。为了增强镁合金的析出强化,选择合金元素应考率到以下几条标准:元素应该在高温下在镁中有足够的固溶度,且随温度的降低而降低,以提高合金的时效强化能力;析出相中应含有较多的镁,在提高析出相百分含量的同时减少所需的合金元素量。

1.3 弥散强化

弥散强化机制与析出强化机制相似,但与析出相不同的是弥散强化的颗粒在合金凝固过程中,一般熔点较高,而且不溶于镁基体,所以具有较好的热力学稳定性能[201.弥散强化合金的强度可以保持到大大超过一般的软化温度。在常温下,析出相和弥散颗粒都可以阻碍位错滑移,强化合金。在高温下,析出相可能逐渐粗化和软化,失去强化效果,而弥散相却

能依然阻碍位错滑移,保持了合金的高温强度。但是弥散颗粒应该与基体界面结合良好,否则合金在变形时基体与颗粒的界面会分离而形成裂纹,导致合金韧性下降。

1.4 细晶强化

晶界是滑移传递的主要障碍,晶界前方的应力集中使得更多的滑移系被激活,从而使合金的整体变形更加均匀,带来合金强度和韧性的提高。细晶强化对于密排六方结构的镁合金更为明显.合金的屈服应力与晶粒尺寸的关系可用关系式表示:1-2σ=σt+Kd

:'式中σt 和

K 是与材料相关的两个常数。σ为屈服强度,d 为晶粒直径。

2. 稀土元素在镁合金中应用的发展

稀土元素位于化学元素周期表中第3副族,其特殊位置决定了它具有特殊的物理化学性能,有高的化学活性、低电位和特殊电子壳层结构,几乎能与所有元素反应起作用。稀土元素由于具有独特的核外电子排布,在冶金、材料领域中具有其独特的作用,可以净化合金溶液、改善合金组织、提高合金室温及高温力学性能、增强合金耐蚀性能等。稀土元素在镁合金中的应用可分为两个方面,其一是改良镁合金性能的合金添加剂,细化晶粒、提高合金的高温强度;另一方面是主合金元素,与其它系镁合金相比,镁-稀土合金具有时效强化效应,室温和高温强度较高。稀土元素对镁合金高温性能提高的作用机制还表现在使晶界和相界扩散渗透性减小,相界的凝聚作用减慢,且第二相在整个持续时间内始终是位错运动的有效障碍;稀土元素还可以减少金属表面氧化物缺陷集中,改变其结晶晶格的参数,从而使合金具有优良的抗氧化性能。同时稀土镁合金具有镁合金固有的优点,如密度小、比强度高、具有金属光泽等。国内外的研究者在稀土镁合金的研究开发方面已经开展了大量的研究工作,已经开发出了一系列商业用稀土镁合金[8]。

早在20世纪30年代。人们就发现稀土对镁的强化作用,目前,已开发出一系列含稀土的镁合金。稀土元素具有净化合金、改善铸造性能、提高合金高温强度及抗高温蠕变性能的作用。由于稀土相具有较高的热力学稳定性和高温稳定性,在镁合金中加入稀土可明显改善合金的高温力学性能。20世纪90年代有研究指出,在Mg-Al 合金中加入1%左右的RE 会形成含RE 的化合物,如Al 14RE 、Al 11RE 3或A 12RE 相,而没有发现Mg-RE 相或Mg-RE-A1相化合物,说明在RE 加入量较少时,稀土与镁难以结合生成化合物,但由于RE 与Al 结合生成RE-A1化合物,减少了Al 形成低熔点相Mg 17Al 12的数量,有利于提高Mg-A1-RE 合金的蠕变性能,因此具有很高的热稳定性。对于Mg-RE 合金,钕(Nd)、铈(Ce)或富铈混合稀土能同时在高温及常温下强化镁合金,该系合金在200~250℃具有良好的抗蠕变性能。研究证明,Mg-RE 合金良好的抗蠕变能力主要是因为由时效而导致晶内的亚显微沉淀所致。

近年来研究较多的是WE52(5%Y-2%Nd-2%重稀土-0.4%Zr),该合金经固溶处理+时效后,常温强度与高温力学性能均良好。Smola 等人认为该系合金的时效按照Mg-Gd 系析出相序列进行:51()(019)()(,)X X cph D cbco Mg Y Nd fcc αβββ-''''→→→,其中β''相为六方结构的亚稳相,与基体保持共格关系;合金的高强度源于沿棱面析出的片状/ββ'''相,它们对基面滑移有着很强的阻碍作用。时效后,该合金的屈服强度与抗拉强度分别为l83MPa 和255MPa 左右。Wei L Y 等人对Mg-8%Zn-1.5%RE 铸态组织进行的研究表明,该合金具有明显的时效硬化特点,其中稀土具有推迟过时效的作用。另外,稀土元素具有细化晶粒的作用,如在Mg-Mn 系合金中添加0.15%~0.35%的铈(Ce),合金的晶粒细化,力学性能得到改

善。

稀土元素钇和钕在镁基体中有着较大的固溶度,因而Mg-Y系与Mg-Nd系合金时效过程中沿棱面析出的β'相有着较强的强化作用。在镁合金中加入钇、钕元素可促发晶内的孪晶,大大提高镁合金的断裂韧度。

余琨等人的研究表明,镁合金的高温性能按La、Ce、MM(富Ce的混合稀土)、Nd的序列提高。各种Mg-RE合金的相图很相似且共晶温度较高(552~593℃),在各相图中,α-Mg固溶体的溶解度在500℃以下变化不大,形成的第二相Mg12Ce、Mg12Nd等均为成分一定、晶格复杂的化合物,其高温性能稳定、热强度高,能大幅度提高镁合金的高温强度。Mg-RE合金结晶温度间隔小,形成的低熔点共晶体具有很好的流动性,缩松、热裂倾向减少,改善了镁合金的铸造性能。

3.稀土元素对镁合金的强化

3.1稀土元素在镁合金中的作用机理

多数镁合金属于密排六方结构,室温下的变形机理是基面上沿<1120>方向滑移和{1012}面上沿<1011>方向的孪生变形。这是因为六方晶系的对称性低,滑移系统少,在晶体取向不利于滑移时,孪生就成为变形的重要方式。但细晶结构有助于调节滑移和抑制孪晶,因此很多镁合金的力学性能能强烈地依赖晶粒尺寸。通过细化晶粒来改善金属及合金的性能,已为冶金及铸造行业所关注。合金的晶粒细化会使得材料的力学性能,特别是伸长率显著提高。另外,铸造性能如铸件冷隔、裂纹及宏观偏析等缺陷也明显缩小。

3.2稀土元素对镁合金力学性能的影响

Cahn和Ferro等人最早报道了提高抗拉强度的Mg-Ce合金。Peng等人对AM60B系合金的研究表明:其抗拉强度σb都随RE加入量的增加有较大的提高,但当RE加入量为0.4~1.2%时,合金的σb变化不大,而当RE加入量为1.6%时,其σb达到峰值(210~225MPa之间),并随着RE的进一步加入而急剧下降。随着RE加入量的增加,AM60B合金的塑性有所提高,但RE加入量为0.4~1.2%时延伸率变化不大,当RE含量高于1.6%时合金塑性下降。钍是提高镁合金高温性能最有效的合金元素,但钍的放射性限制了Mg-Th合金的应用。添加钪、钇对镁合金的有益影响是又一个非常重要的发现。北京航空材料研究院在MB15合金的基础上添加富钇混合稀土元素开发出了MB26稀土镁合金,与不含钇的MB15相比,具有更好的超塑性,最大延伸率达到1450%以上,流变应力仅为11MPa,而且最佳超塑性温度提高了100K左右,最佳应变速率提高了1个数量级[17]。

超过473K应用的镁合金主要是Mg-RE基合金。Drits等人开发了一系列耐热高强WE型镁合金。在Mg-Zn合金系中,由于稀土的加入改善了合金的铸造性能和蠕变抗力,因此开发处ZE型ZE41(Mg-1.75RE-4.5Zn-1.0Zr)和ZE33(Mg-3.5RE-3.0Zn-1.0Zr)镁合金,该合金具备较好的室温和高温综合性能。钇可以以含钇混合稀土的形式加入,该类合金良好的力学性能使其广泛应用于赛车及飞行器变速箱壳体上。在快速凝固AZ91的基础上,Dow Chemical和Allied Signal等开发了RSPAZ91+3%~5%RE、RSPZK60(Mg-Zn-Zr)+3%MM等合金,产生了弥散硬化效应,使Mg合金的抗腐蚀性能和蠕变性能大大提高。与AZ91合金相比,快速凝固合金的抗拉强度提高了40%~60%,屈服强度提高了50%~100%,压缩屈服强度提高了45%~230%,

伸长率最高可达22%。最近研究的含Sm,Gd及重稀土金属的镁合金也获得卓越的力学性能,但稀土含量需达10%以上,合金价格较为昂贵。

3.3 稀土元素对镁合金起强化作用的实例

3.3.1 稀土元素镧在镁合金强化中起到的作用

(1) 镧的加入对镁合金平均晶粒尺寸的影响

通过实验证实,合金中平均晶粒尺寸在加入La2(CO3)3使其达到某临界含量之前,是随着La2(CO3)3加入量的增加而急剧下降的。在此之后,继续加入La2(CO3)3合金的平均晶粒尺寸基本没有太大变化。在达到临界含量前,加入La2(CO3)3可以大大细化合金的晶粒尺寸,而之后再提高La2(CO3)3含量晶粒尺寸又有所变大。在相同的加入量及相同的工艺条件下,加入

La2(CO3)3的镁合金尺寸也明显小于未加入La2(CO3)3的合金。这是因为La2(CO3)3加入后,一方面其中的C原子与Al化合形成弥散的Al4C3质点充当了镁合金的异质晶核使得镁合金晶粒细化;另一方面由于镧的加入,镧与镁在晶界上形成化合物Mg12La,Mg12La是高熔点稳定化合物,可以阻止晶粒的进一步长大。

(2) 镧的加入对镁合金力学性能的影响

根据研究者的实验结果,由于La2(CO3)3的加入,镁合金的冲击韧性大幅度提高,当

La2(CO3)3加入量达到一临界值时,其冲击韧性提高了几倍;比在相同工艺条件下加入MgCO3的冲击韧性也明显提高。这是由于Mg12La在晶界上生成,对晶粒起到了钉扎作用,从而使合金的力学性能进一步提高。随La2(CO3)3加入量的增加冲击韧性先增大后减小,当La2(CO3)3加入量达到某临界值时,冲击韧性达到最大值。这是因为继续增大La2(CO3)3的含量,会使得硬而脆的Mg12La相增多,使冲击韧性有所降低。

(3) Mg12La的形成机理

下图为La-Mg的相图[12]。由相图可以看出,在富镁端存在若干相,对于La而言,其LaMg2 化合物为Laves相,属于MgCu2立方晶系,La/Mg的范围为5/24~1/12,相当于源自分数

图3-1 La-Mg的相图

82.76%~92.31%Mg。在富镁端,由于相数多,他们之间的包晶反应及固态相变多,所以在此段易生成亚稳态合金。最富镁化合物组分对于La为ReMg12。因为一般加入La的比例很小,La 加入量为0.7~7%,所以一般而言,La与Mg形成的化合物主要是Mg12La。

(4) 镧在镁合金中细化及强化机理分析

稀土可使镁合金晶粒细化,它主要是通过减小二次枝晶间距而使得晶粒变细。这与稀土在合金液中的行为很有关系。有文献指出,稀土对镁铝合金定向凝固过程的影响是使平面界面失稳,促进平面→胞状→树枝状凝固生长方式转变,并使合金的二次枝晶间距减小。

稀土之所以能提高镁合金的力学性能是因为稀土的加入会与镁形成一系列化合物

Mg x Re y,这些化合物一般在晶界上析出,它们在高温下比较稳定,不易析出长大,而且这些化合物还都有很高的热硬性,就是所谓的固溶强化。在晶界上生成的镁与镧的化合物可以使得镁合金的力学性能显著提高。

3.3.2 钇稀土在Mg-Zn-Zr合金中的强化作用

(1) 钇对合金组织的影响

在合金中加入元素钇,可以使得合金从液相凝固成固相过程中,得到了更多的凝结核,从而使合金的金相组织得到了细化,晶粒度变小。合金组织细化后,导致晶界表面积增加,在晶界相体积不变情况下,晶界只得变窄。在Mg-Zn-Zr合金中,合金主要生成相为MgZn和MgZn2,其余还有少量的锆-锌相。但合金加入钇后,合金中除了有上述相生成外,还有大量的钇-锌相和镁-钇相生成[2]。由于大量的钇-锌和镁-钇相生成,使得生成MgZn和MgZn2相的几率和它们长大的几率变小。含钇合金的析出相可以变得更多、更弥散、更细小。

(2) 钇稀土在Mg-Zn-Zr合金中的强化机理

钇元素的加入,可以提高合金的强度。从断裂力学的观点来看,金相组织越均匀,晶粒度越细小,合金的强度就会越好。如具有较小的晶粒度,较窄的晶界和较弥散、均匀的析出物,合金就会有较大抗拉强度。

由断裂力学可知,当塑性材料受力超过屈服应力后,就会产生大量的塑性变形,同时材料也要发生加工硬化(也称变形强化),这样就需要加大外力才能继续变形。另外,由于加工硬化,材料抵抗塑性变形能力(即材料强度)也随之增加,从而保持均匀拉伸。当外力达到某一临界值,这时加工硬化强度的提高小于局部区域截面积减小而引起的局部真应力的提高,这样,凝固将集中在某一区域,从而使该区域截面急剧下降,形成“缩颈”,产生应力集中,使材料破坏。

综上所述,提高合金基体屈服强度,对提高合金的宏观力学性能影响极大。挤压,弥散强化以及固溶强化都是提高合金强度的途径。含钇的合金经挤压后,会析出大量的细小弥散质点,使得基体得到强化,并在基体上可以观察到有亚晶粒形成,析出质点趋向沿亚晶界分布,因而有较好的抗拉性能。

合金塑性变形,实际上是大量的位错线滑移的结果。析出质点和亚晶界可以有效阻止位错运动,因而能使合金强度提高。另一方面,细小的稀土化合物质点沿亚晶界分布可阻止亚晶界滑移,对提高合金的高温强度,特别是断裂寿命是有效的。经挤压工艺挤压后的含钇合金,由于晶界相的碎化,并有弥散强化相和亚晶块的共同强化,因而有较高的抗拉性能。

4.稀土元素强化镁合金的应用前景

稀土镁合金的高强、耐热、耐蚀性能不仅可以进一步增加镁合金材料在汽车、通讯、电子等行业领域中的应用,还可以促进镁合金材料在新领域中的进一步开发,因此开发和研究稀土在镁合金中的应用具有十分重大的价值和广阔的前景。虽然近几年来研究者们在这方面取得了很大的成就,了解到了多种稀土对镁合金材料性能影响的规律,但还有许多未知的领域需要进一步探索和认识。如:(1) 以稀土元素为主的快速凝固镁合金在室温及高温下均具有优良的抗拉强度和耐蚀性,因此采用如喷射沉积技术对开发优质含稀土的镁合金有巨大的潜力。(2) 弥散析出高熔点镁的稀土化合物是耐热镁合金的主要发展途径,用较廉价的Nd

等代替昂贵的重稀土元素(Gd、Dy等)是主要的发展趋势。(3) 我国具有丰富的Mg、RE资源,应将镁合金防燃研究的重点放在添加稀土防止镁合金氧化燃烧方面,通过合金化的方法来达到镁合金阻燃的目的将是目前的主要发展方向。(4) 尽管目前稀土转化膜对镁合金表面只能提供短时的防护且耐蚀性能提高有限,但与镁合金表面自然氧化膜相比,稀土氧化膜的耐蚀性能显著;因此稀土转化膜工艺在镁合金表面中的应用值得深入研究[13]。

5.结束语

我国的镁资源十分丰富,储量居世界第一位。在辽宁、山西、宁夏、内蒙、河南等省区菱镁矿均有很大储量,仅辽宁大石桥一带的储量就占世界菱镁矿的60%以上,矿石品位高达40%。另外我国的稀土资源也很丰富,占世界已探明储量80%以上。因此我国具有研究开发高性能的稀土镁合金材料的独特优势。然而,我国镁、稀土长期处于初级应用阶段。所以,开发低成本、性能优异的新型稀土镁合金,有助于推动我国稀土镁合金材料领域的发展。然而镁合金在实际应用中,和铝合金相比,其强度偏低、耐腐蚀性能差从而限制了镁合金的广泛使用。目前,各国都展开了添加稀土元素以希望增强镁合金的综合性能,使镁合金能成为一种重要的轻量化结构材料。我国在稀土新材料的开发应用方面与日、美等发达国家相比还有相当大差距,许多材料的研究与开发处于跟踪模仿状态。所以我国也要加快这方面的研究以抢占具有独立知识产权的镁合金材料体系。

参考文献

[1] 范才河,陈刚,严红革,等.稀土在镁合金的研究现状及发展[J].材料导报,2005,19(7):

61

[2] 叶呈武,刘志义,张坤,等.稀土元素钇ZK31镁合金中的分布[J].铸造,2005,54(4):

356

[3] 李德辉,曾小勤,卢晨,等.高性能稀土镁合金确定进展[J].2005,19(8)

[4] 刘祚时,谢旭红.镁合金在汽车工业中的开发与应用[J].轻金属,1999,(1):55

[5] Satorl,Suzuki.M.Marayama.k.et a1.Cree Pstrength of binary magnesium alloys up to

0.61m[J].Engiseering Materials vols,2001,171,174:601-698

[6] SANCHEZ C,USSBAUM G,AzAVANT P,et a1.Elevated temperature behaviour of rapidly

solidified magnesium alloys fiontaining rare earths[J].Mater Sei Eng A,1996,221:48 [7] MAKOTO S M,SATOSHI H,JUNICHI K.Structures and mechanical properties of rapidly

solidified Mg—Ybased alloys[J].Mater Sei Eng,1997A,226:861

[8] 徐光完、稀土(下),北京:冶金工业出版社,1997

[9] Motegi T,Satio E,Obata K.Cast structures and grain refinement of superheat-treated Mg-AI

alloys[J].轻金属,1994,44(8)

[10] 刘红梅等,MgCO。对AZ91D镁合金的细化研究,铸造工程·造型材料,2002(4)

[11] 刘红梅,碳化物对镁、铝系合金细化及强化的研究,硕士论文,2001

[12] 虞觉奇,二元合金状态图集[M],上海:上海科学技术出版社,1983

[13] 余琨,黎文献,李松瑞,等.含稀土镁合金的研究与开发[J].特种铸造及有色合金,

2001,(1):41-42

[14] 关绍康,王迎新.汽车用高温镁合金的研究进展[J].汽车工艺与材料,2003,(4):6-7.

[15] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版

社.2002.28-69

[16] 肖晓玲,罗承萍,刘江文,等.AZ91镁铝合金中HCP/BCC相界面结构[J].中国有色金

属学报,2003,(23)2:25.29

[17] 刘斌,刘顺华,金文中,等.稀土在镁合金中的作用和影响[J].上海有色金属,2003,

24(1):27-31

稀土镁合金的研究现状及应用

稀土镁合金的研究现状及应用 杨素媛,张丽娟,张堡垒 (北京理工大学材料科学与工程学院,北京 100081) 摘 要:镁合金具有质轻、高比强度、高比刚度等优异性能。但其强度不高,高温性能较差,为了改善其性能,在熔炼过程中加入稀土制成具有高强、耐热、耐蚀等性能的稀土镁合金,大大增加了材料的抗拉强度、延展性及抗蠕变性能,从而使镁合金在航空航天、汽车工业及电子通讯行业得到了广泛应用。总结了稀土对镁合金的净化和阻燃作用,分析了稀土元素对合金组织和性能的影响,综述了稀土耐热镁合金、稀土高强镁合金、稀土阻燃镁合金的研究现状,并简述了稀土镁合金的应用及发展前景。 关键词:稀土镁合金;组织;力学性能;应用 中图分类号:TG146 2 文献标识码:A 文章编号:1004 0277(2008)04 0081 06 镁及镁合金是目前最轻的结构金属材料,具有高的比强度和比刚度,很好的抗磁性,高的电负性和导热性,良好的消震性和切削加工性能。但是镁合金的强度不高,特别是高温性能较差,大大限制了其应用。所以提高镁合金的室温强度和高温强度是镁合金研究中要解决的首要问题[1,2]。 大部分稀土元素与镁的原子尺寸半径相差在 15%范围内,在镁中有较大固溶度,具有良好的固溶强化、沉淀强化作用;可以有效地改善合金组织和微观结构、提高合金室温及高温力学性能、增强合金耐蚀性和耐热性等;稀土元素原子扩散能力差,对提高镁合金再结晶温度和减缓再结晶过程有显著作用;稀土元素还有很好的时效强化作用,可以析出非常稳定的弥散相粒子,从而能大幅度提高镁合金的高温强度和蠕变抗力。因此在镁合金领域开发出一系列含稀土的镁合金,使它们具有高强、耐热、耐蚀等性能,将有效地拓展镁合金的应用领域。 1 稀土在镁合金中的作用 1 1 稀土对镁合金熔体的净化作用 稀土对镁合金熔体有很好的净化作用,具有除氢净化及除氧化夹杂物的作用。 在熔炼过程中,由于镁的化学性质非常活泼,易与水气发生反应使镁合金具有较强的析氢倾向。在镁合金液有较大的溶解度的氢,会导致铸件产生气孔、针孔及缩松等铸造缺陷。在镁合金熔炼过程中加入稀土,稀土元素与水气和镁液中的氢反应,生成高熔点的稀土氢化物和稀土氧化物,比重较轻的稀土氢化物和稀土氧化物上浮成固体渣,从而达到除氢的目的[3]。 镁与氧结合形成稳定的MgO,是镁合金中形成氧化夹杂物的主要原因。夹杂物使合金的力学性能和耐蚀性能降低,且易使合金产生疲劳裂纹等[4]。由于稀土元素与氧的亲和力更大,因此在镁溶液中加入稀土元素,稀土将优先与氧结合而生成稀土氧化物,从而达到去除氧化物夹杂的作用。 1 2 稀土的阻燃作用 由于镁与氧极易发生反应,因此镁合金在熔炼和浇注过程中易氧化燃烧。镁与氧反应生成的表面MgO膜,致密度系数 Mg<1,疏松多孔,不能有效阻止氧穿透该氧化膜;且MgO的导热系数小,不利于热量的扩散,会加剧镁的氧化和燃烧。稀土元素加入镁合金后,与氧发生反应或与MgO中氧发生置换反应生成稀土氧化物RE2O3,该稀土氧化物的致密度系数 >1,能够有效阻止氧穿透氧化膜与镁发生反应。 第29卷第4期2008年8月 稀 土 Chinese Rare Earths Vol 29,No 4 August2008 收稿日期:2008 02 22 作者简介:杨素媛(1966 ),女,内蒙古锡林浩特人,硕士,教授,研究方向:金属材料。

高锰钢分类及简介

高锰钢分类及简介 一、高锰钢分类及简介 、高锰钢的来源1年英国人哈德菲尔德1883 1882年第一次获得奥氏体组织的高锰钢,

取得了高锰钢专利。高锰钢依其用途的不同可分为两大Hadfield)A.(R.类:、耐磨钢2%,大部1.500.90%~10%~15%,碳含量较高,一般为这类钢含锰 )%:.0%以上。其化学成分为(分在10 15.1.50Mn10.0~ C0.90~这类高锰钢的用量最多,常用来制作30~1.0 S ≤0.05 P≤0.10 Si0. 挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组 成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的保温消除铸态组织,~1100℃,即将钢加热到热处理方法是固溶处理,1050得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。%0.2340~470MPa ζ15%~85热处理后力学性能为:σb615~1275MPa σ 225 ~/cm2 HBl80%ψ15%~45 aKl96~294J高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符 合检验标准时,仍可使用。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变 强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。~,高

冲击载荷时,可以达到HB500低冲击载荷时,可以达到HB300~400。高硬度的 硬化层~20mm800。随冲击载荷的不同,表面硬化层深度可达10可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。%~1(C 1.10中国常用的高锰钢的牌 号及其适用范围是:ZGMn13— 用于普通件,%)%~ZGMn13—2(C1.001.40用于低冲击件,1.50%)用%~1.20)用于复杂件,%~3(C0.901.30%)ZGMn13-4(C0.90%—ZGMn13 14.0%~%。11.04于高冲击件。以上种牌号钢的锰含量均为在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交 割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬 化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易马氏 体的形成和形变孪晶的产生创造了条件。常出现堆垛层错,从而为ε规成分的 高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。马氏体和形 变孪晶的出现使钢难以变形,尤其是后者的作用更大。上述ε各种因素都使 高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。 高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻 14()()℃),钢的压方法加工。高锰钢的铸造性能较好。钢的熔点低(约为50℃),钢的导热性低,因此钢水流动性约为液、固相线温度间隔较小,(2的5倍,为 碳素钢好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.倍,故铸造时体

稀土永磁材料的研究进展 应用物理学专业毕业设计 毕业论文

稀土永磁材料的研究进展应用物理学专业毕业设计毕业论文

内蒙古科技大学本科毕业论文 题目:稀土永磁材料的研究进展学生姓名: 学院:物理科学与技术学院 学号: 专业:应用物理学 班级: 指导教师: 二〇一一年六月

摘要 稀土永磁材料在国民经济中占有重要的地位。本文从稀土永磁材料特点出发,介绍了稀土永磁材料发的相关发展应用,并进行了钕铁硼永磁体的粘结研究。 关键词:稀土永磁;粘结 Abstract Lanthanon permanent magnet is of importance in the country economy. In this paper, from characteristic of lanthanon permanent magnet, application and development are introduced, and stick investigation of NdFeB have been discussed. Keywords: Lanthanon permanent magnet; stick

目录 引言_______________________________________________________________ 5 1.稀土永磁材料的概要介绍 ____________________________________________ 5 2.十七种稀土元素 ____________________________________________________ 6 3.钕铁硼NdFeB_____________________________________________________ 6 4.日美等国的相关发展状况和我国稀土永磁材料发展展望 __________________ 7 4.1日美等国的相关发展状况______________________________________________ 7 4.2我国稀土永磁材料发展及展望__________________________________________ 8 5.钕铁硼永磁体的粘结研究 ____________________________________________ 8 5.1按要求配量__________________________________________________________ 9 5.2预估方案____________________________________________________________ 9 5.3检查效果,确认并验证最佳方案_______________________________________ 10结语______________________________________________________________ 11

稀土镁合金的研究现状

稀土镁合金的研究现状 摘要:镁合金是目前最轻的结构金属材料,稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。本文介绍了稀土镁合金的研究现状以及压铸和快速成型稀土镁合金。 关键词:稀土镁合金;压铸;快速成型 Abstract :Magnesium alloys are the most light structure metal materials ,the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced in the paper and pressure casting and rapid prototyping the rare earth magnesium alloys were introduced. Key words: Rare-earth Magnesium Alloys; Pressure Casting; Rapid Prototyping 镁合金是最轻的工程结构材料,具有密度小、比强度和比刚度高、导热导电性好、

阻尼减震性能高、电磁屏蔽性好、良好的铸造性能、易于加工成型、废料容易回收等一系列优点,因此,目前被广泛应用于汽车、电子、航空航天等诸多领域,具有极为广阔的应用前景。稀土元素由于具有独特的核外电子排布,表现出独特的性质,对0、S和其他非金属元素有较强的亲和力,在冶金过程中可以净化合金熔体、改善合金组织、提高合金室温力学性能、增强合金耐腐蚀性能等。近年来,根据对材料的性能要求而研制开发了一系列含稀土的高强、耐热、抗蠕变、阻燃等镁合金,稀土作为主要的合金元素或微合金化元素在镁合金研究领域发挥愈来愈重要的作用[1]。 1稀土在镁中的性质 1.1 稀土镁合金与氢和氧的相互作用 由于镁与氧极易发生反应,因此镁合金在熔炼和浇注过程中易氧化燃烧。镁与氧反应生成的表面MgO膜,致密度系数αMg<1,疏松多孔,不能有效阻止氧穿透该氧化膜;且MgO的导热系数小,不利于热量的扩散,会加剧镁的氧化和燃烧。稀土元素加入镁合金后,与氧发生反应或与MgO中氧发生置换反应生成稀土氧化物RE203,该稀土氧化物的致密度系数a>1,能够有效阻止氧穿透氧化膜与镁发生反应。 在镁合金中,已知Mg-Be,Mg-Ca,Mg-Ce-La合金系的氧化速度都比纯镁小,稀土对改善镁合金熔体的氧化性质有益。 氢在镁中有较大的溶解度,比其在铝中高1~2个数量级,在液态镁中,随温度升高,压力增大,氢的溶解度也增大。氢的主要来源是潮湿的气氛,在熔炼过程中与空气中的水反应: Mg(l)+H2O(g) →MgO(s)+2[H] 氢和镁不形成化合物,在镁中呈间隙式固溶体存在,含氢量过高会使镁合金出现显微气孔。稀土对除去镁合金中的氢有明显作用。在加入稀土后,稀土与氢反应生成REH2相; [RE]+2[H] →REH2 同时,稀土与MgO发生反应: 2 [RE]+3MgO →RE2O3+ 3Mg 此反应有较强的驱动力,因此可生成稀土氢化物和氧化物而达到合金溶液除氢的效果。特别对于含锆的镁合金,由于[H]与Zr生成稳定的化合物ZrH2,使锆在镁合金中溶

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点与抗拉强度升高,但塑性与冲击性降低,当碳量0、23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0、20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性与时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂与脱氧剂,所以镇静钢含有0、15-0、30%的硅。如果钢中含硅量超过0、50-0、60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点与抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1、0-1、2%的硅,强度可提高15-20%。硅与钼、钨、铬等结合,有提高抗腐蚀性与抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰就是良好的脱氧剂与脱硫剂,一般钢中含锰0、30-0、50%。在碳素钢中加入0、70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度与硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷就是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0、045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也就是有害元素。使钢产生热脆性,降低钢的延展性与韧性,在锻造与轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0、055%,优质钢要求小于0、040%。在钢中加入0、08-0、20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢与工具钢中,铬能显著提高强度、硬度与耐磨性,但同时降低塑性与韧性。铬又能提高钢的抗氧化性与耐腐蚀性,因而就是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性与韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈与耐热能力。但由于镍就是较稀缺的资源,故应尽量采用其她合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性与热强性能,在高温时保持足够的强度与抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛就是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性与冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒就是钢的优良脱氧剂。钢中加0、5%的钒可细化组织晶粒,提高强度与韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,就是贵生的合金元素。钨与碳形成碳化钨有很高的硬度与耐磨性。在工具钢加钨,可显著提高红硬性与热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒与降低钢的过热敏感性及回火脆性,提高强度,但塑性与韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴就是稀有的贵重金属,多用于特殊钢与合金中,如热强钢与磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度与韧性,特别就是大气腐蚀性能。缺点就是在热加工时容易产生热脆,铜含量超过0、5%塑性显著降低。当铜含量小于0、50%对焊接性无影响。 15、铝(Al):铝就是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性与抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能与耐高温腐蚀的能力。铝的缺点就是影响钢的热加工性能、焊接性能与切削加

稀土功能材料研究现状

稀土功能材料研究现状 摘要:稀土元素被誉为二十一世纪新材料的宝库,因其在电、光、磁等方面具有独特性质,故在功能材料领域获得了广泛的应用。文章介绍了稀土磁性材料、稀土发光材料、稀土催化材料、稀土贮氢材料、稀土超导材料的研究及其应用进展。 关键词:稀土、功能材料、研究现状 引言 功能材料是以物理性能为主的工程材料的统称,即指在电、磁、声、光、热等方面具有特殊性质,或在其作用下表现出特殊功能的材料[1]。它是现代高新技术的先导和基础,对它的研究、开发和应用将促进国家的科技发展水平,提高国家的综合经济实力和在高科技领域的竞争力。 被称为新材料“宝库”的稀土元素具有独特的4f电子结构,大的原子磁距,很强的自旋轨道藕合等特性,与其它元素形成稀土配合物时,配位数可在3—12之间变化,并且稀土化合物的晶体结构也是多样化的。稀土元素具有独特的光学、电学及磁学物理化学性质,使其在功能材料领域获得了广泛的应用。因此,无论是稀土金属还是其化合物都有良好的应用价值。本文着重介绍了在工农业生产和科学技术领域中有广泛应用的不同类型的稀土材料。 1、传统领域中的稀土材料 1.1稀土在农轻工中的应用 早在20世纪五六十年代,稀土就在农业、纺织业、石油化工业等传统领域得到了广泛的应用。稀土在农业的应用时我国科学独立自主开发的成果,先后被列入国家“六五”和“七五”科技攻关计划。稀土元素作为微量元素用于农业主要有2个优点:一是作为植物的生长、生理调节剂,使农作物具有高产量、优品质和抗逆性3大特性;二是稀土属低毒、非致癌物质、合理使用稀土对人畜无害,对环境无污染[2]。如添加稀土元素的硝酸盐化合物作为微量元素化合物施用于农作物可

镁合金研究现状及发展趋势

镁合金研究现状及发展趋势 摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。 关键词:镁合金;高强高韧;成型技术;应用 1.引言 镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。 目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。

图1 镁合金的研发方向[5] Fig. 1 Directions of Mg alloy development 2.镁合金的特点及分类 通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。 2.1镁合金的优点[6 ~ 8] 1)密度小、质量轻。镁合金是目前工业应用中最轻的金属结构材料,根据合金成分的不同,其密度通常在1.75-2.10g/cm3范围内,约为铝的2/3,钢的1/4。 2)比强度、比刚度高。镁合金的比强度高于铝合金和钢铁,但略低于比强度最高的纤维增强塑料。其比刚度与铝合金和钢铁相当,但却远高于纤维增强塑料。镁合金材料与其他相关材料的物理性能和力学性能分析比较如表1所示。 表1 镁合金和相关材料的物理和力学性能比较 Tab. 1 The comparison of physical and mechanical properties between magnesium alloy and other materials [9] 材料抗拉强度/Mpa 屈服强度/Mpa 延伸率/% 弹性模量/Gpa 比强度镁合金AZ31 251 154 13.8 45 141 镁合金AZ91 275 145 13.8 45 151 镁合金AM60 240 140 15 45 134 铝合金380 315 160 3 71 106 碳钢517 140 22 200 80 塑料ABS 35 - 40 2.1 41 塑料PC 104 - 3 6.7 102 3)吸震阻尼性能好。镁合金与铝合金、钢、铁相比具有较低的弹性模量,在同样受力条件下,可消耗更大的变形功,具有降噪、减振功能,可承受较大的冲击震动负荷。镁合金具有极好的滞弹吸震能力,其抗冲击性是铝合金的10倍,塑料的20倍。 4)良好的铸造性能。镁与铁的反应低,熔炼时可用铁坩埚,熔融镁对坩埚的侵蚀小,压铸时对压铸模的侵蚀小,与铝合金压铸相比,压铸模使用寿命可提高2-3倍,通常可维持20万次以上。镁合金的比热和结晶潜热小,所以流动性

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

高锰钢

高锰钢 高锰钢(high manganese steel) 含锰量在10%以上的合金钢。1882年第一次获得奥氏体组织的高锰钢,1883 年英国人哈德菲尔德(R.A.Hadfield)取得了高锰钢专利。高锰钢依其用途的不同可分为两大类: (1)耐磨钢。这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470 MPa ζ15%~85%ψ15%~45%aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.3 0%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从而为ε马氏体的形成和形变孪晶的产生创造了条件。常规成分的高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。ε马氏体和形变孪晶的出现使钢难以变形,尤其是后者的作用更大。上述各种因素都使高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

关于高锰钢的若干问题

关于高锰钢的若干问题通常高锰钢含13%Mn,已有百余年历史,至今尚有一些问题在这里讨论一下,可能对读者有所裨益。 1 常用高锰钢 1.1 国内近20年来,由于过去滥用高锰钢,在一些原不该用高锰钢的场合也用了。后来人们用其它材料代替了高锰钢,取得了很大成绩。但这并不是说高锰钢的用途越来越小,不值得重视了。其实不然,高锰钢仍拥有巨大市场,其中绝大多数是Mn13,其次则是含铬的Mn13Cr2。此外,还有加入其它合金元素的高锰钢(见表1)[1]。 表1 高锰钢的典型成分 Tab.1 Typical composition of high manganese steel %

1.2 加入各种合金元素后的力学性能,如图1至图4[1]所示,从中可以看到几 个问题: (1) 薄断面(25 mm)的性能均优于厚断面(150 mm),这是由于厚断面中碳的偏析比较严重所致[2],这也是在对待厚断面高锰钢件时应该十分注意的一个问 题。 (2) 通常高锰钢的σs只有350 MPa左右,使高锰钢件在服役中易于产生流变,流变使生产操作十分不便,而且甚至会产生严重的后果。加入Cr、Mo、Ni 等元素可以提高σb,但主要的着眼点却在于提高σs(图1、2),其中含Cr或Mo 的高锰钢可达σs 410 MPa,那种高屈服点的高锰钢σs可达660 MPa。有人以为加Cr可以提高耐磨寿命,但实践并未观察到这一现象。 (3) 加Mo可以提高σs,而不牺牲韧性,这点优于加铬。加Mo可提高铸态高锰钢的力学性能(δ>20%,αK(夏氏)>53 J/cm2),因此有些铸件若不适宜进行热处理,可以采用这种措施。由于Mo与C易于结合,使C在钢中的溶解减慢,推迟碳化物的析出[3],并指出加入1.0%Mo可基本上消除铸态碳化物,韧性得以提高。Mo的这一特点就赋予高锰钢一些方便之处,也就是在铸造、切割、焊补时不易产生裂纹(指碳低时)。Mo既然能抑制淬火时碳化物的析出,因此适用于厚壁铸件及高碳铸件。经弥散硬化处理的含Mo Mn13可以提高寿命。 (4) 由图3和图4中的韧性指标可以看出中锰钢的δ和αK最低。这种合金在国外开始于60年代初,本来认为它容易加工硬化,能提高使用寿命,但实际上几十年来却得不到推广应用,问题是生产中或使用中均易发生开裂之故[2]。国内也有报道[4],为提高中、低冲击工况下的耐磨性,人们开发了中、低锰钢,

轻合金技术新进展

轻合金技术新进展 铝、镁、钛等金属的密度小,分别为2.7g/cm3、1.7g/cm3、和4.5g/cm3、,因此,这几种金属通常被称为轻金属,其相应的铝合金、镁合金、钛合金则称为轻合金[1,2]。铝合金具有比重小、导热性好、易于成形、价格低廉等优点,已广泛应用于航空航天、交通运输、轻工建材等部门,是轻合金中应用最广、用量最多的合金[3~5]。镁合金具有比重小,比强度、比刚度高,阻尼性、切削加工性、导热性好,电磁屏蔽能力强,尺寸稳定,资源丰富,易回收,无污染等优点,因此,在汽车工业、通信电子工业和航空航天工业等领域正得到日益广泛的应用,近年来全世界镁合金产量的年增长率高达20%,显示出了极为广泛的应用前景[1,15]。钛合金比重小、耐蚀性好、耐热性高、比刚度和比强度高,是航天航空、石油化工、生物医学等领域的理想材料;同时,钛的无磁性、钛铌合金的超导性、钛铁合金的储氢能力等特性,使得钛合金在尖端科学和高技术方面发挥着重要作用[1,32]。 本文简要综述目前国内外在轻合金方面的研究开发、应用现状及最新进展,分析了我国在轻合金材料发展及其应用方面存在的问题,提出了今后一段时间我国在轻合金材料研究、开发与应用方面的对策。 -、铝合金 1.铝合金的发展 铝合金是一种较年轻的金属材料,在20世纪初才开始工业应用。第二次世界大战期间,铝材主要用于制造军用飞机。战后,由于军事工业对铝材的需求量骤减,铝工业界便着手开发民用铝合金,使其应用范围由航空工业扩展到建筑业、容器包装业、交通运输业、电力和电子工业、机械制造业和石油化工等国民经济各部门,应用到人们的日常生活当中。现在,铝材的用量之多,范围之广,仅次于钢铁,成为第二大金属材料。铝材应用的迅速发展是世界铝工业界不断开发新的铝合金材料的结果[3~5]。表1列出了铝合金的特性及主要应用领域[2]。 铝合金的发展可追溯到1906年时效强化现象在柏林被Alfred Wilm偶然发现,硬铝 Duralumin、随之研制成功并用于飞机结构件上[7]。在此基础上随后开发出的Al-Cu-Mg系合金,如2014和2024,其抗拉强度为350~480MPa',至今仍在使用。第二次世界大战期间,由于军用航空材料的需要,抗拉强度超过500MP'的Al-Zn_Mg_Cu.合金发展起来,其中最

稀土镁合金的研究进展及应用

稀土镁合金的研究现状及应用 张晓 (中北大学材料科学与工程学院,山西太原030051) 摘要:镁合金具有许多优异的性能,如高比强度、高比刚度等。但它强度不高,高温抗蠕变性能差。稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。本文介绍了国内外稀土镁合金的研究现状,并展望了稀土镁合金的应用前景。 关键词:镁合金;稀土;现状 Study Situation And Application Of Rare-earth Magnesium Alloys Zhang Xiao (North University Of China School Of Material Science And Engineering, Taiyuan Shanxi 030051) Abstract: Magnesium Alloy has many inherent advantages of Magnesium Alloy, such as high specific strength,high specific stiffness and so on. But it is not high strength and high temperature creep resistance is poor.the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced at home and abroad in the paper and the prospect of application in Rare-earth alloys Magnesium Alloy was looked. Key words: Magnesium Alloy; Rare-earth; situation

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削

永磁材料长期稳定性研究进展

永磁材料长期稳定性研究进展Ξ 刘国征1,2,3,夏宁2,赵明静1,刘小鱼1,鲁富强2,李波3,喻小军3 (11包头稀土研究院,内蒙古 包头 014030; 21稀土冶金及功能材料国家工程研究中心,内蒙古 包头 014030; 31钢铁研究总院,北京 100083) 摘 要:永磁材料的长期稳定性对永磁应用器件的长期可靠使用是极为重要的。本文介绍了永磁材料长期稳定的理论模型的发展和在不同永磁材料中的应用,总结了温度、耐蚀性、镀层防护、永磁体的L/D因素等对烧结钐钴稀土永磁材料短期和长期稳定性的影响,讨论了烧结钕铁硼永磁材料的热稳定性、耐蚀性差的缺点,科技人员近年来所进行的研究和改善的途径,提出解决烧结钕铁硼永磁材料的长期稳定性应用应采取的途径。 关键词:长期稳定性;钐钴永磁材料;钕铁硼永磁材料;永磁应用器件 中图分类号:O482152 文献标识码:A 文章编号:100420277(2010)022******* 钕铁硼稀土永磁材料因有最高的磁性能而广泛地应用于电机、家用电器、计算机、医疗器械等行业。近年来,随着军工、节能环保等新能源领域风力发电机、混合动力汽车的发展,对所使用的稀土永磁材料的磁性能、使用温度和稳定性都提出了更高的要求,而永磁材料的稳定性变得更为重要。 永磁材料磁性能的稳定性是永磁材料的重要参数,主要是指永磁材料充磁后,内外因素的影响使磁性能改变的程度[1~3]。通常用磁性能的变化率来表示其稳定性。常见引起磁性能变化的因素有:温度、时间、电磁场、辐射、机械震动与冲击、化学作用等。对于钕铁硼永磁材料来说,由于居里温度低、热稳定性差、耐蚀性不好已普遍共知,对此已有众多研究人员进行了研究,通过添加元素C o提高了居里温度[4,5],添加Dy、Tb、Al、G a、Nb、Cu等元素提高了内禀矫顽力,大大改善了烧结钕铁硼永磁材料的热稳定性[6~9],通过添加元素[10]和提高磁体密度、采用防腐镀层[11]等方法,使烧结钕铁硼的耐蚀性得到很大改善,提高了磁体的化学稳定性,基本满足了各类应用器件的一般需求。但随着风力发电机、混合动力汽车和军工装备应用的发展,要求永磁体要具有高可靠性、长寿命,即在20年内磁体的磁通或剩磁损失在0%~10%这一范围内。这一类磁体应用的环境条件较复杂,既有四季气候温度、湿度变化,又承受振动、冲击及内外退磁场带来的影响。因此永磁材料的长期稳定性已成为永磁材料研究和该应用领域极为关心的参数。而对于烧结钕铁硼永磁体的时间稳定性或长期稳定性的研究一直不够深入,是当今关注的重点。本文重点综述永磁材料长期稳定性的研究和理论研究状况,影响永磁材料长期稳定性的因素以及相对准确预测永磁材料长时间稳定性的方法。 1 永磁材料长期稳定性理论模型研究永磁材料的剩磁随时间变化而降低的现象早已被人所共知。对于永磁材料,在其内部的磁畴和磁区域的排列状态随时经受着来自内部和外部因素的扰动而重新排列达到低能状态,因此而引起剩磁的降低。早在1949年,为了解释这一现象,Street R[12]以及Neel Louis[13]提出了假设并建立了理论模型。Neel Louis假定在磁体的局部区域存在磁场而影响了磁体的磁状态。这些磁场可为热扰动、机械振动、外磁场以及地球磁场等产生。在稳定的环境下,这些磁场随着时间随机性产生,使磁体内部状态不断 第31卷第2期2010年4月 稀 土 Chinese Rare Earths V ol131,N o12 April2010 Ξ收稿日期:2010201207 基金项目:国家自然科学基金项目资助(50761001) 作者简介:刘国征(19622),男,内蒙古赤峰人,博士研究生,正高级工程师,主要从事磁性材料研究。

相关文档
最新文档