河流水质模型
河流水质数学模型

2、2011年十大水系水质类别比例
长江、黄河、珠江、松花江、淮河、海河、辽河、浙闽片河流、西南 诸河与内陆诸河十大水系监测得469个国控断面中Ⅰ~Ⅲ类、Ⅳ~Ⅴ类 与劣Ⅴ类水质断面比例分别为61、0%、25、3%与13、7%。主要污 染指标为化学需氧量、五日生化需氧量与总磷。
3、 河流中有机污染物得相关情况
L0kd
2、3 S-P模型得修正模型
1925年,Street-Phelps提出BOD-DO偶合模型以后,水质模型得研究在很长 一段时间里进展缓慢。到了20世纪60年代,由于环境污染得加剧,水质问题引起 人们得关注,水质模型得研究也获得了快速发展。20世纪60~80年代就是水质 模型得快速发展时期。
2、2不考虑弥散作用得稳态解 当不考虑弥散作用,即弥散系数ks=0时,(1)式变化为
u C x
K1C
解上述方程得
K1 x
C C0e u
二维模型:如果模拟得河流水面较宽(超过200m),则按一维模型 计算结果可能误差较大,因此需采用二维模型计算。
3、二维情况下河流水环境容量模型
一个均匀河段得起始断面,从排污口连续稳定得向河流排
ksy
2C y 2
Байду номын сангаас
K1C
三、河流水质模型
(一)一维河流水质模型 1、河段划分 2、单一河段水质模型 3、多河段水质模型
(二)二维河流水质模型 4、正交曲线坐标系统 5、断面累积流量曲线 6、BOD模型 7、DO有限单元模型
1、河段划分
河流作为地球上分布最广泛得一种水体,其最显
著得特点就就是其在三维空间尺度上存在着巨大 得差异,并且其沿程得水文条件一般变化都较大。
B
ks
) e(kd ks )t
河道全过程水动力、水质模型

河道全过程水动力、水质模型
首先,让我们来看看水动力模型。
水动力模型通常用来模拟河
道中水流的速度、流量、水位、流态等动态变化。
这些模型可以基
于雷诺方程、纳维-斯托克斯方程等流体力学原理,结合地形、河道
断面特征、边界条件等参数,来模拟河流中水流的运动。
通过水动
力模型,我们可以预测洪水、河道泥沙输移、水力结构物对水流的
影响等,为水利工程设计和水资源管理提供重要参考。
其次,水质模型则是用来模拟河道中水质的变化过程。
这些模
型可以基于质量守恒方程、溶解氧平衡方程、营养盐循环方程等水
质反应动力学原理,结合污染物输入、河流混合、水生态系统作用
等因素,来模拟河流中水质的时空分布变化。
通过水质模型,我们
可以预测污染物扩散、水生态系统健康状况、水质改善措施效果等,为环境监测和水环境管理提供重要支持。
综合考虑水动力和水质模型,我们可以全面理解河道系统中水
流运动和水质变化的复杂过程。
这些模型的建立需要依靠大量的实
测数据和对河道系统的深入理解,同时也需要不断验证和修正,以
提高模型的可靠性和适用性。
在实际应用中,水动力和水质模型常
常结合使用,为河道管理、水资源保护和环境保护决策提供科学依据。
希望这些信息能够对你有所帮助。
河流水质模型

[exp(
1x)
exp(
2 x)]
1
ux 2DL
(1
1
4DL
K1
/
u
2 x
)
2
ux 2DL
(1
1
4DL
K
2/uFra bibliotek2 x
)
李光炽
水质模型
当忽略弥散项时有如下形式的解:
L L0 exp( K1x / ux )
O
Os
(Os
O0
)
exp(
K2
x
/
ux
)
K1L0 K1 K2
[exp(
K1x
/
ux
)
exp(
李光炽
水质模型
对于稳态情形
ux
L x
DL
2L x 2
K1L
O
2O
ux x DL x 2 K1L K 2 (Os O)
边界条件
x x
0, L L0 ,O O0 , L 0,O Os
李光炽
水质模型
解为
L L0 exp( 1x)
O
Os
(Os
O0
) exp(
2 x)
K 1 L0 K1 K2
均匀混合模型适用于均匀河段,要求x足够
小,否则会造成较大误差。
李光炽
水质模型
5.3 一维BOD-DO水质模型
BOD-DO模型的基本假定是:
(1) BOD的降解符合一级动力学反应规律;即 在任何时候反应速率都和剩余的有机物数量 成正比。以L表示BOD浓度,则 r K1L 。 (2) 水体中溶解氧DO的减少只是由于BOD降解 所引起的,而且与BOD的降解有相同的速率。
S-P水环境模型

水质完全混合数学表达式:
式中:Qp—污水排放量,m3/s;cP—污染物排放浓度,mg/L;
DP—污水中溶解氧亏量,mg/L;Qh—上游来水流量,m3/s;
ch—上游来水污染物浓度,mg/L;Dh—上游来水中溶解氧亏量,mg/L;
2.S-P模型
S-P模型的基本方程为:
DO=DOf-D
式中:c—河流的BOD沿程浓度,mg/L;co—计算初始断面的BOD浓度,mg/L;
k1—河流的BOD衰减(耗氧)速度常数,1/d;x—河流的沿程距离,m;
u—河流断面平均流速,m/s;D—河流的亏氧量,mg/L;
DO—计算初始断面的亏氧量,mg/L;DO—河流的溶解氧g/L;k2—河流的复氧速度常数,1/d;
T—河水的温度,℃。
3.S-P模型的临界点
根据S-P模型绘制的溶解氧沿程变化曲线称为氧垂曲线,如图所示。氧垂曲线的最低点C称为临界氧亏点,临界氧亏点的亏氧量称为最大亏氧量Dc。沿河水流动方向,最大亏氧量Dc和临界氧亏点距污水排放口的距离xc:
第2章 河流水质模型1

• 忽略弥散所用,可得 L L Streeter-Phelps模式 u K1L
x t O O u K1L K 2 (Os O ) x t D D u K1L K 2 D x t
C0
C2 Δx
C3
C4 Δx
Ci
C0 k1V 1 Q
i
C0 k1 x 1 u
i
C1
C2
C3
C4
C5
图6-2 由多个零维静态单元河段组成的顺直河流水质模型
2.一维水质模型
一维河流静态水质模型基本方程
dC d C ux Dx KC 2 dx dx
K1 Lx 1 (1 x ) Lx u K1 K2 Dx 1 Lx x (1 x ) D x u u
例题2
• 一个改扩建工程拟向河流排放废水,废水量q= 0.15m3/s,苯酚浓度为30μg/L,河流流量Q= 5.5m3/s,流速u=0.3m/s,苯酚背景浓度为 0.5 μg /L,苯酚的降解(衰减)系数K=0.2d-1,纵向分 散系数Dx=10m2/s,横向剪切分散系数Dy=1 m2/s ,河道宽100m。求排放点下游10km处的苯酚浓度
这两个方程式是耦合的。当边界条件
时,S-P模式的解析解为:
L L0 , x 0 O O0 , x 0
L L0e k1x /u k1L0 k2 x / u k1 x / u k2 x / u (e e ) D D0e k2 k1
1. 均匀流场中的扩散方程
C 2C C Dx ux 2 t x x
河流一维稳态水质模型公式

河流一维稳态水质模型公式
(原创实用版)
目录
1.河流一维稳态水质模型的概念
2.河流一维稳态水质模型的公式
3.公式的应用和意义
正文
一、河流一维稳态水质模型的概念
河流一维稳态水质模型是一种描述河流水质变化的数学模型,其中“一维”表示河流在水平方向上是均匀的,而“稳态”则表示河流的水质在时间上是稳定的,即不随时间变化。
这种模型通常用于研究河流污染物的输移和变化规律,为水环境保护和污染治理提供理论依据。
二、河流一维稳态水质模型的公式
河流一维稳态水质模型的公式主要包括以下几个部分:
1.污染物的输移方程:这一部分描述了污染物在河流中的输移过程,通常采用对流扩散方程来表示。
2.污染物的降解方程:这一部分描述了污染物在河流中的降解过程,通常采用一阶动力学方程来表示。
3.污染物的来源和汇函数:这一部分描述了污染物的来源和汇过程,通常采用恒定源和线性汇函数来表示。
综合以上三个部分,可以得到河流一维稳态水质模型的完整公式体系。
三、公式的应用和意义
河流一维稳态水质模型的公式在实际应用中具有重要的意义。
通过这个公式,可以预测和模拟河流中的水质状况,为水环境保护和污染治理提
供科学依据。
3 河流水质模型

c t
0
,因此得到
数学模型
2 c c ux Kc 0 D x 2 x x c x x c0 0 c x 0
运用数学物理方程的求解方法,可以求得其解析解:
污染源
u x
Dx
K
x 0 c c0
0
x
图2.1 河流中一维扩散示例图
由式(2.27)和(2.28)可得到断面任一点浓度与断面 平均浓度的比值:
c c 1 4 {exp( y
2 2
4 B
) exp[
(B y) 4 B
2
2
] exp[
(B y) 4 B
2
2
]} ( 2 . 29 )
式中 :
Dxx uxB
2
根据定义,当污染物达到岸边时,c
t0 c max
1
c max
2
t1
t2
x m 2 x
c max
n
tn
x0
x1
xm
x m 2 x
xn
x
图2.6扩散过程态图
例题1:一项扩建工程向河流排放废水,废水量
为 Q2=0.15m3/s ,主要污染物苯酚浓度为30 ug/L , 河流量 Q1=5.5 m3/s,流速0.3m/s,纵向弥散系数为 Dx=10m2/s 。苯酚在原河流中监测浓度为 0.5 ug/L, 它的降解系数K=0.2d-1(如图)。求:下游10km处苯 酚浓度 ? 解: (1)计算起始处完全混合后的初始浓度
0 . 0137
x 0 . 0137 u x B Dy
2
c
0 . 05
可以求出
河流水质预报模型及其应用

河流水质预报模型及其应用近年来,随着人类经济活动的增长,水环境受到了越来越严重的破坏。
其中,河流水质的恶化引起了不少人的关注。
为了及时研判河流水质情况,提高水环境保护的效率,河流水质预报模型应运而生。
一、河流水质预报模型的定义河流水质预报模型是指根据环境地貌、水质指标、水流条件和降雨量等因素,对河流水质进行预测、估算和分析的一种数学模型。
采用数学统计方法分析、处理河流水文、水文化学数据,对未来一段时期河流水质变化趋势进行预测,建立可靠的河流水质预报模型。
二、河流水质预报模型的应用河流水质预报模型被广泛应用于生态环境监测、水资源管理、水环境保护规划等领域。
国内外环保、水利、农林渔业等部门都在使用河流水质预报模型。
生态环境监测河流水质预报模型为水质监测提供了科学的依据和方法。
通过对监测数据的采集、整理和分析,建立模型,预测河流水质的变化趋势。
并根据预测结果制定监测计划,及时预警,保护生态环境。
水资源管理河流水质预报模型可在水资源的合理利用及保护方面起到积极的作用。
预报模型能对水质影响因素进行模拟和分析,对于水量调度、水体治理和防洪抗旱等方面制定合理的管理措施,提高水资源的利用效率。
水环境保护规划河流水质预报模型可对水环境保护规划起到指导作用。
对监测数据进行分析,建立模型,预测河流水质变化趋势,调整规划和控制措施,减少水污染对环境的损害。
三、河流水质预报模型的建立方法建立河流水质预报模型需要从以下方面考虑:1、数据的准确性:建立数学模型是以数据为基础,因此,数据的准确性和可靠性是建立模型的关键。
2、建模方法的选取:传统的建模方法是以统计分析为主,往往需要较多的数据进行分析和处理。
近年来,计算机模拟方法日益成熟,其优点是可以在较短时间内进行多方位的敏感性分析。
3、模型参数的确定:模型参数的确定需要依据实地资料,结合实际情况进行逐步试算、校正和反复验证。
4、模型效果的验证:模型效果的验证需要对预测误差、稳定性、可信度等方面进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水质模型
第四步:模型的验证,应用所建立的模型, 模拟实际已发生过的过程。如果计算结果和 实测结果相比较,达到预期的精度,则认为 所建立的模型具有预测的能力,是成功的。 应用于参数估值的实测数据与应用于模型检 验的实测数据应是相互独立的。为了建立具 有预测能力的模型,我们通常用另一套观测 而获得的数据来检验所建立的模型。如果检 验结果具有良好的一致性,认为模型具有预 测的功能,否则应对模型参数和模型结构进 行修正,直至得到满意的模拟结果。
李光炽
水质模型
二、建立水质模型的步骤
第一步:确定模型的结构,这是一个对实际 水环境问题加以抽象和概化的过程。这一步 包括有关变量的选择,分析这些变量如何变 化以及相互作用,形成模型的结构概念,选 择适当的数学表述形式,确定初始条件和边 界条件。一个模型只需能表现其特性的有关 变量,模型只是真实事件的一个近似表达而 并不是完全真实。为了解数学方程,一定要 使所建立的模型尽发电厂有热水排 入河流,它将对水生生态系统产生什么样的 影响? (4)含高浓度的磷的废物排入某一湖泊,使湖 泊(或水库)产生富营养化,必须除去多少磷才 能使湖泊不产生富营养化? (5)国家需要建立一个核能基地,在什么情况 下对人类环境产生什么程度的影响。
李光炽
李光炽
水质模型
(3)按模型变量的多寡,即按模型所表述的水 质组分的数目,可有单组分水质模型和多组 分模型。当模型变量为BOD或COD时,有时 称有机污染水质模型。当模型变量为BOD和 DO时,称BOD-DO耦合模型。当模型变量扩 大到水生生物时,称水生生态模型。生态模 型是一个非常综合的模型,它不仅包括化学、 生物的过程,而且亦包括水质输运以及各种 水质因素的变化过程。模型变量及其数目的 选择,主要取决于模型应用的目的以及对于 实际资料和实测数据拥有的程度。
水质模型
二、 分类 按不同的观察角度可有如下不同的水质模型 分类: (1)按水质组分的空间分布特性,可分为一维、 二维和三维模型。沿某一坐标方向,水质组 分有变化,而沿其他坐标方向浓度梯度为零, 称为一维模型。二维模型和三维模型则分别 是沿两个坐标方向和三个坐标方向浓度梯度 均不为零的情况。
李光炽
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD— DO模型的多维参数估值,将水质模型扩展为 六个线性系统模型。发展河流、河口、湖泊 及海湾的水质模拟,方法从一维发展到二维。
李光炽
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
李光炽
水质模型
1.2 水质模型的发展及建立步骤
李光炽
水质模型
第四阶段(1975年以后):发展了多种相互作用 系统,涉及到与有毒物质的相互作用。空间 尺度发展到了三维。目前对环境的污染问题 的研究,已发展到将地面水、地下水的水质 水量与大气污染相互结合,建立综合模型的 研究阶段。同时,由于水环境问题的复杂性 和不确定性,在水质预测中,已经开始水质 的非确定性模拟与预测,为水质控制与规划, 提供更为丰富的信息。
李光炽
水质模型
第三阶段(1970—1975年):研究发展了相互 作用的非线性系统水质模型,涉及到营养物 质磷、氮的循环系统,浮游植物和浮游动物 系统,以及生物生长率同这些营养物质、阳 光、温度的关系,浮游植物与浮游动物生长 率之间的关系。其相互关系都是非线性的, 一般只能用数值法求解,空间上用一维及二 维方法进行模拟。
李光炽
水质模型
第二步:分析模型的性质,它包括模型的平 衡性,稳定性和灵敏性研究。灵敏性是指模 型中参数的变化对模型所产生的影响。如果 其研究结果不令人满意,则回到第一步重新 选择变量。 第三步:确定模型的参数,亦称参数估值。一 个数学模型通常含有参数。这些参数必须用 有关数据来确定。如果参数估值不理想,则 必须重新考虑模型的结构等等。如果所选择 的两个模型具有同等程度的可靠性,则宁可 选择参数较少的那一个模型。
(2)按水质组分的时间变化的特性,可分为稳 态模型和动态模型。水质组分不随时间变化 时为稳态模型,反之则为动态模型。当水流 运动为非恒定状态时,水质组分是随时间变 化的;而当水流运动为恒定状态时,水质组 分则可能是不随时间变化的,也可能是随时 间变化的。在水污染控制规划中,常应用相 应于一定设计条件下的稳态模型,而当分析 污染事故,预测水质时。常应用动态模型。
水质模型
当三个坐标方向浓度梯度均为零,水质组分 处于均匀混合状态时,称为均匀混合模型或 零维模型,亦称黑箱模型,它经常是一种概 化复杂问题的手段,着眼于建立输入与输出 的关系,而忽略水质组分在空间分布上的差 异。模型维数的选择主要取决于模型应用的 目的和条件,并不是维数越多就越好。
李光炽
水质模型
李光炽
水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
水质模型
河流行为研究体系
(1)现场观测和数据的收集; (2)现场结果的分析;(3)野外实验; (4)在流体的化学和物理分析; (5)实验室模拟(包括化学的、物理的和水 力学的模拟等等); (6)计算机的数学模拟; (7)综合分析研究。
李光炽
水质模型
水质模型
是一个用于描述物质在水环境中的混合、输 运过程的数学方程,描述水体中污染物与时 间、空间的定量关系;它通常涉及到解基本 方程的技术,而其结果的可靠性不会超过所 使用的方程的可靠性。在一个综合的河流水 质模型中,有许多影响河流水质的因素,如 物理的、化学的、水力学的、生物学以及气 象学的因素。