专题1:函数与导数、不等式

合集下载

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。

高三数学函数与导数压轴题训练——函数不等式问题

高三数学函数与导数压轴题训练——函数不等式问题

高三数学函数与导数压轴题训练——函数不等式问题在近几年的高考试题中,出现了一类抽象函数与导数交汇的重要题型,这类问题由于比较抽象,很多学生解题时,突破不了由抽象而造成的解题障碍.实际上,根据所解不等式,联想导数的运算法则,构造适当的辅助函数,然后利用导数判断其单调性是解决此类问题的通法.[典例]设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)[思路点拨]观察xf′(x)-f(x)<0这个式子的特征,不难想到商的求导公式,尝试构造函数F(x)=f(x)x求解.[方法演示]法一:构造抽象函数求解设F(x)=f(x)x.因为f(x)是奇函数,故F(x)是偶函数,F′(x)=xf′(x)-f(x)x2,易知当x>0时,F′(x)<0,所以函数F(x)在(0,+∞)上单调递减.又f(-1)=0,则f(1)=0,于是F(-1)=F(1)=0,f(x)=xF(x),解不等式f(x)>0,即找到x与F(x)的符号相同的区间,易知当x∈(-∞,-1)∪(0,1)时,f(x)>0,故选A.法二:构造具体函数求解设f(x)是多项式函数,因为f(x)是奇函数,所以它只含x的奇次项.又f(1)=-f(-1)=0,所以f(x)能被x2-1整除.因此可取f(x)=x-x3,检验知f(x)满足题设条件.解不等式f(x)>0,得x∈(-∞,-1)∪(0,1),故选A.答案:A[解题师说]抽象函数的导数问题在高考中常考常新,可谓变化多端,解决此类问题的关键是构造函数,常见的构造函数方法有如下几种:(1)利用和、差函数求导法则构造函数①对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);②对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(2)利用积、商函数求导法则构造函数①对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); ②对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0). (3)利用积、商函数求导法则的特殊情况构造函数①对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); ②对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )x(x ≠0); ③对于不等式xf ′(x )+nf (x )>0(或<0),构造函数F (x )=x n f (x ); ④对于不等式xf ′(x )-nf (x )>0(或<0),构造函数F (x )=f (x )x n (x ≠0); ⑤对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ); ⑥对于不等式f ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )e x; ⑦对于不等式f (x )+f ′(x )tan x >0(或<0),构造函数F (x )=sin xf (x ); ⑧对于不等式f (x )-f ′(x )tan x >0(或<0),构造函数F (x )=f (x )sin x (sin x ≠0);⑨对于不等式f ′(x )-f (x )tan x >0(或<0),构造函数F (x )=cos xf (x ); ⑩对于不等式f ′(x )+f (x )tan x >0(或<0),构造函数F (x )=f (x )cos x (cos x ≠0).⑪(理)对于不等式f ′(x )+kf (x )>0(或<0),构造函数F (x )=e kx f (x ); ⑫(理)对于不等式f ′(x )-kf (x )>0(或<0),构造函数F (x )=f (x )e kx ;[应用体验]1.定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.解析:构造函数g (x )=f (x )-x +12, 则g ′(x )=f ′(x )-12<0,∴g (x )在定义域上是减函数. 又g (1)=f (1)-1=0,∴原不等式可化为g (lg x )>g (1), ∴lg x <1,解得0<x <10.∴原不等式的解集为{x |0<x <10}. 答案:(0,10)2.已知定义在⎝⎛⎭⎫0,π2内的函数f (x )的导函数为f ′(x ),且对任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则不等式f (x )<2f ⎝⎛⎭⎫π6sin x 的解集为__________.解析:构造函数g (x )=f (x )sin x ,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x <0,∴g (x )在⎝⎛⎭⎫0,π2内为减函数. 由f (x )<2f ⎝⎛⎭⎫π6sin x , 得f (x )sin x <2f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π6sin π6, 即g (x )<g ⎝⎛⎭⎫π6,∴π6<x <π2, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x π6<x <π2.答案:⎝⎛⎭⎫π6,π2一、选择题1.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得-3<x <-2或2<x <3.2.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集为( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)f (x 2-1),所以x +1<x 2-1,解得x >2.3.已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集为( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)解析:选D 因为g (x )=x 2f (x ),所以g ′(x )=x 2f ′(x )+2xf (x )=x [xf ′(x )+2f (x )].由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1),得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,所以x ∈(-1,0)∪(0,1). 4.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析:选D 设F (x )=f (x )g (x ),当x <0时, ∵F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, ∴F (x )在(-∞,0)上为增函数.又∵F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ), 故F (x )为R 上的奇函数.∴F (x )在(0,+∞)上也为增函数. 由g (-3)=0,得F (-3)=F (3)=0.画出函数F (x )的大致图象如图所示, ∴F (x )<0的解集为{x |x <-3或0<x <3}.5.已知函数f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对于任意正数a ,b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )解析:选C ∵xf ′(x )+f (x )≤0,且x >0,f (x )≥0. ∴f ′(x )≤-f (x )x ,即f (x )在(0,+∞)上是减函数.又0<a <b ,∴af (b )<bf (a ),当f (x )=0时,符合题意,则af (b )=bf (a ),故af (b )≤bf (a ).6.设函数f (x )在R 上的导函数为f ′(x ),2f (x )+xf ′(x )>x 2,则下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2], 当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2, 令x =0,则f (0)>0,故可排除B 、D.如果f (x )=x 2+0.1,已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不恒成立,故排除C ,选A.7.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则不等式f(x)>2x+4的解集为()A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析:选B令m(x)=f(x)-(2x+4),则m′(x)=f′(x)-2>0,∴函数m(x)在R上为单调递增函数.又∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).8.设函数f(x),g(x)在区间[a,b]上连续,在区间(a,b)上可导,且f′(x)<g′(x),则当x∈(a,b)时必有()A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)<g(x)+f(a)D.f(x)+g(b)<g(x)+f(b)解析:选C令函数h(x)=f(x)-g(x).因为f′(x)<g′(x),故h′(x)=[f(x)-g(x)]′=f′(x)-g′(x)<0,即函数h(x)在区间[a,b]上单调递减.所以x∈(a,b)时必有h(b)<h(x)<h(a),即f(b)-g(b)<f(x)-g(x)<f(a)-g(a),移项整理得,f(x)+g(a)<g(x)+f(a),f(x)+g(b)>g(x)+f(b),故选项C正确.9.函数f(x)是定义在R上的偶函数,f(-2)=0,且x>0时,f(x)+xf′(x)>0,则不等式xf(x)≥0的解集是()A.[-2,0]B.[0,2]C.[-2,2]D.[-2,0]∪[2,+∞)解析:选D因为x>0时,f(x)+xf′(x)>0,故构造函数y=xf(x),则该函数在(0,+∞)上单调递增.又因为f(x)为偶函数,故y=xf(x)为奇函数.结合f(-2)=0,画出函数y=xf(x)的大致图象如图所示.所以不等式xf(x)≥0的解集为[-2,0]∪[2,+∞).10.函数f (x )是定义在R 上的奇函数,f (3)=0,且x <0时,xf ′(x )<f (x ),则不等式f (x )≥0的解集为( )A .(-∞,0)B .[-3,0]∪[3,+∞)C .[-3,3]D .[0,3]解析:选B 令F (x )=f (x )x ,因为f (x )为定义在R 上的奇函数,所以F (x )为偶函数,当x <0时,F ′(x )=xf ′(x )-f (x )x 2<0,故f (x )在(-∞,0)上为减函数,在(0,+∞)上为增函数. 结合f (3)=0,画出函数F (x )=f (x )x 的大致图象如图所示.所以不等式f (x )≥0的解集为[-3,0]∪[3,+∞).11.函数f (x )是定义在R 上的可导函数,且f (x )>f ′(x )对任意x ∈R 都成立,则下列不等式中成立的是( )A .f (2 018)>e 2 018f (0),f (2 018)>e f (2 017)B .f (2 018)>e 2 018f (0),f (2 018)<e f (2 017)C .f (2 018)<e 2 018f (0),f (2 018)>e f (2 017)D .f (2 018)<e 2 018f (0),f (2 018)<e f (2 017) 解析:选D 令函数g (x )=f (x )e x .由f (x )>f ′(x ),得f ′(x )-f (x )<0,所以g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x <0,即函数g (x )=f (x )e x 在R 上单调递减.所以f (2 018)e 2 018<f (2 017)e 2 017<f (0)e0,即有f (2 018)<e f (2 017),f (2 018)<e 2 018f (0).12.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 令g (x )=f (x )-kx +1, 则g (0)=f (0)+1=0,g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k ·1k -1+1 =f ⎝ ⎛⎭⎪⎫1k -1-1k -1. ∵g ′(x )=f ′(x )-k >0, ∴g (x )在[0,+∞)上为增函数. 又∵k >1,∴1k -1>0,∴g ⎝ ⎛⎭⎪⎫1k -1>g (0)=0, ∴f ⎝ ⎛⎭⎪⎫1k -1-1k -1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>1k -1.二、填空题13.设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1f (x 2-1)的解集为________.解析:令g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )>0,∴g (x )是R 上的增函数.又f (x +1)>x -1f (x 2-1)可等价转化为x +1f (x +1)>x 2-1f (x 2-1),即g (x +1)>g (x 2-1),所以⎩⎪⎨⎪⎧x +1>x 2-1,x -1≥0,解得1≤x <2,∴原不等式的解集为{x |1≤x <2}.答案:[1,2)14.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2·f (x +2 018)-4f (-2)>0的解集为________.解析:令g (x )=x 2f (x ),则g ′(x )=2xf (x )+x 2f ′(x ). 结合条件2f (x )+xf ′(x )>x 2,将条件两边同时乘以x , 得2xf (x )+x 2f ′(x )<x 3<0,即g ′(x )<0, ∴g (x )在(-∞,0)上是减函数, 又g (-2)=4f (-2),∴由(x +2 018)2f (x +2 018)-4f (-2)>0, 即g (x +2 018)>g (-2),得x +2 018<-2,解得x <-2 020, ∴原不等式的解集为(-∞,-2 020). 答案:(-∞,-2 020)15.已知定义在R 上的可导函数y =f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且y =f (x +1)为偶函数.f (2)=1,则不等式f (x )<e x 的解集为________.解析:令h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x <0,∴h (x )在R 上是减函数,又y =f (x +1)是偶函数, ∴y =f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=1.由f (x )<e x ,得f (x )e x <1,又h (0)=f (0)e 0=1,∴h (x )<h (0),∴x >0,故原不等式的解集为{x |x >0}. 答案:(0,+∞)16.设f (x )是R 上的奇函数,且f (-1)=0,当x >0时,(x 2+1)f ′(x )-2xf (x )<0,则不等式f (x )>0的解集为______.解析:令g (x )=f (x )x 2+1,则g ′(x )=(x 2+1)f ′(x )-2xf (x )(x 2+1)2.因为当x >0时,(x 2+1)f ′(x )-2xf (x )<0,所以g ′(x )<0,所以g (x )在[0,+∞)上单调递减. 又f (x )=g (x )(x 2+1),所以f(x)在[0,+∞)上单调递减.又f(x)是R上的奇函数,f(-1)=0,所以f(1)=0.当x>0时,f(x)>0=f(1)⇒0<x<1;当x<0时,f(x)>0=f(-1)⇒x<-1.综上,可得不等式f(x)>0的解集为(-∞,-1)∪(0,1).答案:(-∞,-1)∪(0,1)。

高考数学二轮复习专题一函数与导数不等式第3讲导数与函数的单调性极值最值问题练习

高考数学二轮复习专题一函数与导数不等式第3讲导数与函数的单调性极值最值问题练习

【2019最新】精选高考数学二轮复习专题一函数与导数不等式第3讲导数与函数的单调性极值最值问题练习一、选择题1.已知定义在R上的函数f(x),其导函数f′(x)的大致图象所示,则下列叙述正确的是( )A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(c)C.f(c)>f(b)>f(a)D.f(c)>f(b)>f(d)解析由f′(x)的图象知,x∈[a,c]时,f′(x)≥0,f(x)为增函数,∵c>b>a,∴f(c)>f(b)>f(a).答案C2.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)解析由于f′(x)=k-,f(x)=kx-ln x在区间(1,+∞)上单调递增⇔f′(x)=k-≥0在(1,+∞)上恒成立,由于k≥,而0<<1,所以k≥1.即k的取值范围为[1,+∞).答案D3.(2016·湖州模拟)函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是( ) A.[0,1) B.(-1,1) C.D.(0,1)解析 f′(x)=3x2-3a =3(x2-a).当a≤0时,f′(x)>0, ∴f(x)在(0,1)内单调递增,无最小值. 当a >0时,f′(x)=3(x -)(x +).当x∈(-∞,-)和(,+∞)时,f(x)单调递增; 当x∈(-,)时,f(x)单调递减,所以当<1,即0<a <1时,f(x)在(0,1)内有最小值. 答案 D4.已知函数f(x)=x3+ax2+bx -a2-7a 在x =1处取得极大值10,则的值为( ) A.- B.-2 C.-2或-D.2或-23解析 由题意知f′(x)=3x2+2ax +b ,f′(1)=0,f(1)=10,即解得或⎩⎪⎨⎪⎧a =-6,b =9,经检验满足题意,故=-. 答案 A5.已知函数f(x)=x3+ax2+3x +1有两个极值点,则实数a 的取值范围是( ) A.(,+∞) B.(-∞,-)C.(-,)D.(-∞,-)∪(,+∞)解析 f′(x)=x2+2ax +3.由题意知方程f′(x)=0有两个不相等的实数根,所以Δ=4a2-12>0, 解得a >或a <-. 答案 D 二、填空题6.已知函数f(x)=4ln x +ax2-6x +b(a ,b 为常数),且x =2为f(x)的一个极值点,则a 的值为________.解析 由题意知,函数f(x)的定义域为(0,+∞), ∵f ′(x)=+2ax -6,∴f ′(2)=2+4a -6=0,即a =1. 答案 17.已知函数f(x)=mx2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是____________.解析 f′(x)=mx +-2≥0对一切x >0恒成立, ∴m ≥-+.令g(x)=-+,则当=1时,函数g(x)取最大值1.故m≥1. 答案 [1,+∞)8.(2016·北京卷)设函数f(x)=⎩⎪⎨⎪⎧x3-3x ,x≤a,-2x ,x >a.(1)若a =0,则f(x)的最大值为________;(2)若f(x)无最大值,则实数a 的取值范围是________. 解析 (1)当a =0时,f(x)=⎩⎪⎨⎪⎧x3-3x ,x≤0,-2x ,x >0.若x≤0,f′(x)=3x2-3=3(x2-1).由f′(x)>0得x <-1,由f′(x)<0得-1<x≤0.精品∴f(x)在(-∞,-1)上单调递增;在(-1,0]上单调递减,∴f(x)最大值为f(-1)=2. 若x >0,f(x)=-2x 单调递减,所以f(x)<f(0)=0. 所以f(x)最大值为2.(2)函数y =x3-3x 与y =-2x 的图象如图. 由(1)知,当a≥-1时,f(x)取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2. 所以a <-1.答案 (1)2 (2)(-∞,-1) 三、解答题9.(2016·北京卷)设函数f(x)=xea -x +bx ,曲线y =f(x)在点(2,f(2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值; (2)求f(x)的单调区间. 解 (1)f(x)的定义域为R.∵f ′(x)=ea -x -xea -x +b =(1-x)ea -x +b.依题设,即⎩⎪⎨⎪⎧2ea -2+2b =2e +2,-ea -2+b =e -1.解得a =2,b =e.(2)由(1)知f(x)=xe2-x +ex ,由f′(x)=e2-x(1-x +ex -1)及e2-x >0知,f ′(x)与1-x +ex -1同号.令g(x)=1-x +ex -1,则g′(x)=-1+ex -1.所以,当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调递减; 当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增. 故g(1)=1是g(x)在区间(-∞,+∞)上的最小值, 从而g(x)>0,x∈(-∞,+∞),综上可知,f′(x)>0,x∈(-∞,+∞). 故f(x)的单调递增区间为(-∞,+∞).10.设函数f(x)=-k(k 为常数,e =2.718 28…是自然对数的底数). (1)当k≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f(x)的定义域为(0,+∞).f ′(x)=-k ⎝ ⎛⎭⎪⎫-2x2+1x =-=.由k≤0可得ex -kx >0,所以当x∈(0,2)时,f′(x)<0,函数y =f(x)单调递减,x ∈(2,+∞)时,f ′(x)>0,函数y =f(x)单调递增.所以f(x)的单调递减区间为(0,2],单调递增区间为[2,+∞). (2)由(1)知,k≤0时,函数f(x)在(0,2)内单调递减, 故f(x)在(0,2)内不存在极值点;当k >0时,设函数g(x)=ex -kx ,x∈[0,+∞). 因为g′(x)=ex -k =ex -eln k , 当0<k≤1时,当x∈(0,2)时,g′(x)=ex -k >0,y =g(x)单调递增. 故f(x)在(0,2)内不存在两个极值点;当k >1时,得x∈(0,ln k)时,g′(x)<0,函数y =g(x)单调递减.x ∈(ln k ,+∞)时,g ′(x)>0,函数y =g(x)单调递增.所以函数y=g(x)的最小值为g(ln k)=k(1-ln k).函数f(x)在(0,2)内存在两个极值点当且仅当解得e<k<,综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.11.(2016·南昌模拟)设函数f(x)=x3-kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.解f′(x)=3x2-2kx+1.(1)当k=1时,f′(x)=3x2-2x+1,Δ=4-12=-8<0,所以f′(x)>0恒成立,故f(x)在R上单调递增.故函数f(x)的单调增区间为(-∞,+∞),无单调减区间.(2)当k<0时,f′(x)=3x2-2kx+1,f′(x)的图象开口向上,对称轴为x=,且过点(0,1).当Δ=4k2-12=4(k+)(k-)≤0,即-≤k<0时,f′(x)≥0,f(x)在[k,-k]上单调递增.从而当x=k时,f(x)取得最小值m=f(k)=k.当x=-k时,f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.当Δ=4k2-12=4(k+)(k-)>0,即k<-时,令f′(x)=3x2-2kx+1=0,解得x1=,x2=,注意到k<x2<x1<0,(注:可用根与系数的关系判断,由x1·x2=,x1+x2=>k,从而k<x2<x1<0;或者由对称结合图象判断)所以m=min{f(k),f(x1)},M=max{f(-k),f(x2)}.因为f(x1)-f(k)=x-kx+x1-k=(x1-k)(x+1)>0,所以f(x)的最小值m=f(k)=k.因为f(x2)-f(-k)=x-kx+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,所以f(x)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时,f(x)在[k,-k]上的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k.。

导数与不等式证明

导数与不等式证明

导数与不等式证明导数是微积分中的重要概念,它描述了函数在某一点的变化率。

而不等式是数学中常用的一种关系,用于比较两个数或表达变量之间的大小关系。

本文将探讨导数与不等式之间的关系,并通过具体的例子来证明与应用。

一、导数的定义与性质首先,我们回顾导数的定义:对于函数f(x),在点x处的导数可以表示为lim(h->0)(f(x+h)-f(x))/h。

简单来说,导数就是函数在某一点的斜率。

导数具有以下性质:1. 导数存在性:如果函数在某一点可导,则该点的导数存在。

2. 导数与函数图像:导数可以帮助我们理解函数图像的特性,如切线与曲线的关系、函数的增减性等。

3. 导数的计算:可以通过求导法则,例如常数法则、幂函数法则、链式法则等,来计算导数。

二、不等式的基本性质接下来,我们简要介绍不等式的基本性质。

不等式常见的有大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等。

对于不等式的证明,通常有以下方法:1. 同向性:如果a>b,那么对于任意正数c,ac>bc。

这个性质可以用于不等式的乘法性质证明。

2. 等价性:如果两个不等式的左边和右边分别相等,则两个不等式等价。

这个性质可以用于不等式的代换和变形。

三、导数与不等式之间的关系导数在不等式的证明中具有重要作用。

通过对比函数在不同区间的导数值以及函数图像的特征,可以得出不等式的结论。

下面通过两个具体的例子来说明导数与不等式之间的关系。

例1:证明函数f(x)=x²在区间(0,∞)上是递增的。

解:首先计算f(x)=x²的导数:f'(x)=2x。

由于导数描述了函数的变化率,当导数大于0时,函数是递增的。

因此,我们需要证明2x>0在区间(0,∞)上成立。

由于x大于0,所以2x大于0,即导数大于0,因此函数f(x)=x²在区间(0,∞)上是递增的。

例2:证明函数f(x)=eˣ在任意区间上是递增的。

导数与不等式问题专题

导数与不等式问题专题

(2016·无锡高三期末)已知函数f(x)=ln x+(a>0).当a=2时,函数f(x)=ln x+,所以f′(x)=-=(2)由题意知ln x+a+e-2≥a恒成立.导数与不等式问题高考定位导数经常作为高考的压轴题,能力要求非常高.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题、利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.真题感悟a+e-2x(1)当a=2时,求出函数f(x)的单调区间;(2)若不等式f(x)≥a对于x>0的一切值恒成立,求实数a的取值范围.解(1)由题意知函数f(x)的定义域为(0,+∞).ex1e x-ex x2x2,所以当x∈(0,e)时,f′(x)<0,函数f(x)在(0,e)上单调递减;当x∈(e,+∞)时,f′(x)>0,函数f(x)在(e,+∞)上单调递增.x等价于x ln x+a+e-2-ax≥0在(0,+∞)上恒成立.令g(x)=x ln x+a+e-2-ax,则g′(x)=ln x+1-a,令g′(x)=0,得x=e a-1.列表如下:X(0,e a-1)e a-1(e a-1,+∞)g′(x) g(x)-0极小值+所以g(x)的最小值为g(e a-1)=(a-1)e a-1+a+e-2-a e a-1=a+e-2-e a-1,令t(x)=x+e-2-e x-1(x>0),则t′(x)=1-e x-1,令t′(x)=0,得x=1.所以当 a ∈(0,1)时,g (x )的最小值为 t (a )>t (0)=e -2- = >列表如下:xt ′(x )t (x )(0,1)+ 1极大值(1,+∞)-1 e (e -2)-1e e0,符合题意;当 a ∈[1,+∞)时,g (x )的最小值为 t (a )=a +e -2-e a -1≥0=t (2),所以 a ∈[1,2].综上所述,a ∈(0,2].考 点 整 合1.解决函数的实际应用题,首先考虑题目考查的函数模型,并要注意定义域,其解题步骤是: (1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题; (2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式; (3)解函数模型:利用数学方法得出函数模型的数学结果; (4)实际问题作答:将数学问题的结果转化成实际问题作出解答 .2.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围. 一般地,f (x )≥a 恒成立,只需 f (x ) ≥a 即可;f (x )≤a 恒成立,只需 f (x ) ≤a minmax即可.(2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值 (最值),伴有对参数的分类讨论,然后构建不等式求解.3.常见构造辅助函数的四种方法(1)直接构造法:证明不等式 f (x )>g (x )(f (x )<g (x ))的问题转化为证明 f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数 h (x )=f (x )-g (x ).(2) 构造“形似”函数:稍作变形后构造 .对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子的结构,根据“相同而 g ′(x )=a - ,g ′(1)=a -1,得 a =1.若 a =1,则 g ′(x )=1- .结构”构造辅助函数.(3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.(4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造 f (x )和 g (x ),利用其最值求解.4.不等式的恒成立与能成立问题(1)f (x )>g (x )对一切 x ∈[a ,b ]恒成立⇔[a ,b ]是 f (x )>g (x )的解集的子集⇔[f (x )-g (x )] >0(x ∈[a ,b ]).min(2)f (x )>g (x )对 x ∈[a ,b ]能成立⇔[a ,b ]与 f (x )>g (x )的解集的交集不是空集⇔[f (x )-g (x )] >0(x ∈[a ,b ]).max(3)对∀x ,x ∈[a ,b ]使得 f (x )≤g (x )⇔f (x ) ≤g (x ) .1212maxmin(4)对∀x ∈[a ,b ],∃x ∈[a ,b ]使得 f (x )≥g (x )⇔f (x ) ≥g (x ) .1212minmin热点一 利用导数证明不等式【例 1】 (2017·全国Ⅱ卷)已知函数 f (x )=ax 2-ax -x ln x ,且 f (x )≥0.(1)求 a ;(2)证明:f (x )存在唯一的极大值点 x ,且 e -2<f (x )<2-2.(1)解 f (x )的定义域为(0,+∞),设 g (x )=ax -a -ln x ,则 f (x )=xg (x ),f (x )≥0 等价于 g (x )≥0,因为 g (1)=0,g (x )≥0,故 g ′(1)=0,1x1x当 0<x <1 时,g ′(x )<0,g (x )单调递减;当 x >1 时,g ′(x )>0,g (x )单调递增,设 h (x )=2x -2-ln x ,则 h ′(x )=2- .当 x ∈ 0, ⎪时,h ′(x )<0;当 x ∈ ,+∞⎪时,h ′(x )>0.0, ⎪上单调递减,所以 h (x )在 又 h (e )>0,h ⎪<0,h (1)=0,-2所以 h (x )在 0, ⎪有唯一零点 x ,在⎢ ,+∞⎪有唯一零点 1,且当 x ∈(0,x ) 由 x ∈(0,1)得 f (x )< .⎝2⎭ ⎝ ⎣2 ⎭1⎫ 2⎭ 1⎫所以 x =1 是 g (x )的极小值点,故 g (x )≥g (1)=0.综上,a =1.(2)证明 由(1)知 f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x ,1x⎛ ⎛1 ⎫⎝ ⎝2 ⎭⎛ 1⎫⎝ 2⎭⎛1 ⎫在 ,+∞⎪上单调递增.⎛1⎫⎝2⎭⎛ ⎡1 ⎫0 0时,h (x )>0;当 x ∈(x ,1)时,h (x )<0;当 x ∈(1,+∞)时,h (x )>0.因为 f ′(x )=h (x ),所以 x =x 是 f (x )的唯一极大值点.由 f ′(x )=0 得 ln x =2(x -1),故 f (x )=x (1-x ).10 0 4因为 x =x 是 f (x )在(0,1)的最大值点,由 e -1∈(0,1),f ′(e -1)≠0 得 f (x )>f (e -1)=e -2.所以 e -2<f (x )<2-2.探究提高 (1)证明 f (x )≥g (x )或 f (x )≤g (x ),可通过构造函数 h (x )=f (x )-g (x ),将上述不等式转化为求证 h (x )≥0 或 h (x )≤0,从而利用求 h (x )的最小值或最大值来证明不等式.或者,利用 f (x ) ≥g (x ) 或 f (x ) ≤g (x ) 来minmax max min证明不等式.(2)在证明不等式时,如果不等式较为复杂,则可以通过不等式的性质把原不等式变换为简单的不等式,再进行证明 .【训练 1】 设函数 f (x )=a e x ln x + ,曲线 y =f (x )在点(1,f (1))处的f ′(x )=a e x ln x + e x - x (2)证明 由(1)知,f (x )=e x ln x +e x -1, 从而f (x )>1 等价于 x ln x >x e -x - .所以当 x ∈ 0, ⎪时,g ′(x )<0; 当 x ∈ ,+∞⎪时,g ′(x )>0. 故 g (x )在 0, ⎪上单调递减,在 ,+∞⎪上单调递增, 从而 g (x )在(0,+∞)上的最小值为 g ⎪=- . 设函数 h (x )=x e -x - ,则 h ′(x )=e -x (1-x ).从而 h (x )在(0,+∞)上的最大值为 h (1)=- .1⎫b e x -1x切线方程为 y =e(x -1)+2.(1)求 a ,b ;(2)证明:f (x )>1.(1)解 函数 f (x )的定义域为(0,+∞),a b x x2e bx -1+ e x -1.由题意可得 f (1)=2,f ′(1)=e.故 a =1,b =2.2x2e设函数 g (x )=x ln x ,则 g ′(x )=1+ln x .⎛ 1⎫⎝e ⎭⎛1 ⎫ ⎝e ⎭⎛ ⎛1 ⎫⎝ e ⎭ ⎝e ⎭⎛1⎫1 ⎝e ⎭ e2 e所以当 x ∈(0,1)时,h ′(x )>0;当 x ∈(1,+∞)时,h ′(x )<0.故 h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,1e【例2】(2017·南京、盐城模拟)已知函数f(x)=ax(2)若对任意的x∈(0,2),都有f(x)<成立,求实数k的取值范围.解(1)由题意得f′(x)=a(1-x)(2)由题知f(x)=<不等式整理可得k<+x2-2x,令g(x)=+x2-2x,e x所以g′(x)=e x(x-1)+2(x-1)=(x-1)2+2⎪=0,解得x=1,当x∈综上,当x>0时,g(x)>h(x),即f(x)>1.热点二利用导数解决不等式恒成立问题e x在x=0处的切线方程为y=x.(1)求实数a的值;1k+2x-x2e x,因为函数在x=0处的切线方程为y=x,所以f′(0)=1,解得a=1.x1e x k+2x-x2对任意x∈(0,2)都成立,所以k+2x-x2>0,即k>x2-2x对任意x∈(0,2)都成立,从而k≥0.e xx xx2⎛e x⎫⎝x⎭(1,2)时,g′(x)>0,函数g(x)在(1,2)上单调递增,同理可得函数g(x)在(0,1)上单调递减.所以k<g(x)=g(1)=e-1,min综上所述,实数k的取值范围是[0,e-1).探究提高(1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.【训练2】(2014·江苏卷)已知函数f(x)=e x+e-x,其中e是自然对数的底=-1t -1因为 t -1+ 1(t -1)· 13 因此实数 m 的取值范围是(-∞,- ].数.(1)证明:f (x )是 R 上的偶函数;(2)若关于 x 的不等式 mf (x )≤e -x +m -1 在(0,+∞)上恒成立,求实数 m 的取值范围;(3)已知正数 a 满足:存在 x ∈[1,+∞),使得 f (x )<a (-x 3+3x )成立.试比0 0 0较e a -1 与 a e -1 的大小,并证明你的结论.(1)证明 因为对任意 x ∈R,都有 f (-x )=e -x +e -(-x)=e -x +e x =f (x ),所以f (x )是 R 上的偶函数.(2)解 由条件知 m (e x +e -x -1)≤e -x -1 在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤- t -1t 2-t +11t -1+ +1对任意 t >1 成立.t -1 +1≥2t -1+1=3,所以-t -1+ 11t -1+11≥- ,当且仅当 t =2,即 x =ln 2 时等号成立. 1 31(3)解令函数 g (x )=e x +e x -a (-x 3+3x ),1则 g ′(x )=e x-e x +3a (x 2-1).1当 x ≥1 时,e x -e x >0,x 2-1≥0,①当 a ∈ ,e ⎪⊆(1,e)时,h (a )<0,综上所述,当 a ∈ ,e ⎪时,e a -1<a e -1;故 e +e -1-2a <0,即 a > .则 h ′(x )=1-e -1【例 3】 (2017·南通模拟)已知函数 f (x )=x -(a +1)ln x - (a ∈R),g (x )a又 a >0,故 g ′(x )>0.所以 g (x )是[1,+∞)上的单调增函数,因此 g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在 x ∈[1,+∞),使 e x +e -x -a (-x 3+3x )<0 成立,当且仅当最小值g (1)<0.e +e -12令函数 h (x )=x -(e -1)ln x -1,x .令 h ′(x )=0,得 x =e -1,当 x ∈(0,e -1)时,h ′(x )<0,故 h (x )是(0,e -1)上的单调减函数;当 x ∈(e-1,+∞)时,h ′(x )>0,故 h (x )是(e -1,+∞)上的单调增函数.所以 h (x )在(0,+∞)上的最小值是 h (e -1).注意到 h (1)=h (e)=0,所以当 x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0.当 x ∈(e-1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以 h (x )<0 对任意的 x ∈(1,e)成立.⎛e +e -1 ⎫⎝ 2 ⎭即 a -1<(e -1)ln a ,从而 e a -1<a e -1;②当 a =e 时,e a -1=a e -1;③当 a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即 a -1>(e -1)ln a ,故 e a -1>a e -1.⎛e +e -1 ⎫⎝ 2 ⎭当 a =e 时,e a -1=a e -1;当 a ∈(e ,+∞)时,e a -1>a e -1.热点三 利用导数解决能成立问题x= x 2+e x -x e x .=f (e)=e -(a +1)- .当 a ≥e 时,f (x ) =e -(a +1)- .f (x ) =f (e)=e -(a +1)- .g ′(x )=(1-e x )x .g (x ) =g (0)=1,所以 e -(a +1)- <1,即 a > ,12(1)当 x ∈[1,e]时,求 f (x )的最小值;(2)当 a <1 时,若存在 x ∈[e,e 2],使得对任意的 x ∈[-2,0],f (x )<g (x )1212恒成立,求 a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x2 .① 若 a ≤1,当 x ∈[1,e]时,f ′(x )≥0,则 f (x )在[1,e]上为增函数,f (x ) =f (1)=1-a .min② 若 1<a <e ,当 x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数;当 x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数.所以 f (x ) =f (a )=a -(a +1)ln a -1.min③ 若 a ≥e ,当 x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数,f (x )minae综上,当 a ≤1 时,f (x ) =1-a ;min当 1<a <e 时,f (x ) =a -(a +1)ln a -1;minamin e(2)由题意知:f (x )(x ∈[e,e 2])的最小值小于 g (x )(x ∈[-2,0])的最小值.由(1)知 f (x )在[e ,e 2]上单调递增,amine当 x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,aminee 2-2ee +1所以 a 的取值范围为 (2)确定 a 的所有可能取值,使得 f (x )> -e 1-x 在区间(1,+∞)内恒成立(e =2a ⎭ ⎝ e +1⎭ 解 (1)f ′(x )=2ax - =1 2ax 2-1(x >0).⎝ 2a ⎭⎛e 2-2e ⎫,1⎪.探究提高 存在性问题和恒成立问题的区别与联系存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若 g (x )≤m 恒成立,则 g (x ) ≤m ;若 g (x )≥m 恒成立,则 g (x ) ≥m ;若 g (x )≤m 有解,则maxming (x ) ≤m ;若 g (x )≥m 有解,则 g (x ) ≥m .minmax【训练 3】 (2016·四川卷)设函数 f (x )=ax 2-a -ln x ,其中 a ∈R.(1)讨论 f (x )的单调性;1x2.718…为自然对数的底数 ).xx当 a ≤0 时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当 a >0 时,由 f ′(x )=0,有 x =1. 2a⎛1 ⎫ 此时,当 x ∈ 0, ⎪时,f ′(x )<0,f (x )单调递减;⎝⎛ 1 ⎫当 x ∈,+∞⎪时,f ′(x )>0,f (x )单调递增.1 1(2)令 g (x )=x -e x -1,s (x )=e x -1-x .则 s ′(x )=e x -1-1.而当 x >1 时,s ′(x )>0,所以 s (x )在区间(1,+∞)内单调递增.又由 s (1)=0,有 s (x )>0,从而当 x >1 时,g (x )>0.当 a ≤0,x >1 时,f (x )=a (x 2-1)-ln x <0.故当 f (x )>g (x )在区间(1,+∞)内恒成立时,必有 a >0.1 1当 0<a < 时, >1.2 2a2a ⎭ 当 a ≥ 时,令 h (x )=f (x )-g (x )(x ≥1).综上,a ∈⎢ ,+∞⎪.2a ⎭⎝ 当 x >1 时,h ′(x )=2ax - + -e 1-x >x - + - = > >0.⎛ 1 ⎫ ⎛ 1 ⎫由(1)有 f ⎪<f (1)=0,而g ⎪>0, ⎝所以此时 f (x )>g (x )在区间(1,+∞)内不恒成立.121 1 1 1 1 x 3-2x +1 x 2-2x +1x x 2x x 2 x x 2 x 2因此,h (x )在区间(1,+∞)上单调递增.又因为 h (1)=0,所以当 x >1 时,h (x )=f (x )-g (x )>0,即 f (x )>g (x )恒成立.⎡1 ⎫⎣2 ⎭1.不等式恒成立、能成立问题常用解法有:(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如 a >f (x ) 或 a <f (x ) .maxmin(2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论 .(3)数形结合.2.利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数 h (x ).(3)利用导数研究 h (x )的单调性或最值.(4)根据单调性及最值,得到所证不等式 .3.导数在综合应用中转化与化归思想的常见类型(1)把不等式恒成立问题转化为求函数的最值问题;(2)把证明不等式问题转化为函数的单调性问题;(3)把方程解的问题转化为函数的零点问题 .-⎪=0,则不等式f(x)<0的解集为________.解析如图所示,根据图象得不等式f(x)<0的解集为 -∞,-⎪∪ 0,⎪.2⎭⎝2⎭解析条件可转化为a≤2ln x+x+恒成立.设f(x)=2ln x+x+,3则f′(x)=(x+3)(x-1)解析∵2(x-a)<1,∴a>x-x . 2一、填空题1.设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且f(0)=0,f ⎛1⎫⎝2⎭⎛1⎫⎛1⎫⎝2⎭⎝2⎭⎛1⎫⎛1⎫答案 -∞,-⎪∪ 0,⎪⎝2.(2017·苏北四市调研)若不等式2x ln x≥-x2+ax-3恒成立,则实数a的取值范围为________.3xxx2(x>0).当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增,所以f(x)=f(1)=4.所以a≤4.min答案(-∞,4]3.若存在正数x使2x(x-a)<1成立,则a的取值范围是________.1x1令f(x)=x-2x,∴f′(x)=1+2-x ln2>0.当 x ∈(0,2]时,原不等式即 a < -1,解析 令 F (x )=f (x ),因为 f (x )为奇函数,所以 F (x )为偶函数,由于 F ′(x )=x f ′(x )-f (x )f (x ), 在 (0 ,+∞)上单调递减,根据对称性, F (x ) = 在 (-∞, 0) 上单调递令 g (x )= -1,e x则 g ′(x )=e x (x -1)∴f (x )在(0,+∞)上单调递增,∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞).答案 (-1,+∞)4.(2015·全国Ⅱ卷改编 )设函数 f ′(x )是奇函数 f (x )(x ∈R)的导函数,f (-1)=0,当 x >0 时,xf ′(x )-f (x )<0,则使得 f (x )>0 成立的 x 的取值范围是________.xx 2xf (x )x增,又 f (-1)=0,f (1)=0,数形结合可知,使得 f (x )>0 成立的 x 的取值范围是(-∞,-1)∪(0,1).答案 (-∞,-1)∪(0,1)5.已知不等式 e x -x >ax 的解集为 P ,若[0,2] P ,则实数 a 的取值范围是________.解析 由题意知不等式 e x -x >ax 在 x ∈[0,2]上恒成立.当 x =0 时,显然对任意实数 a ,该不等式都成立.e xxxx 2,当 0<x <1 时,g ′(x )<0,g (x )单调递减,当 1<x <2 时,g ′(x )>0,g (x )单调递增,6.设函数 f (x )= 3sinπx.若存在 f (x )的极值点 x 满足 x 2+[f (x )]2<m 2,解析∵f (x )= 3sin πx即[f (x )]2=3.又|x |≥|m| ∴x 2+[f (x )]2≥ +3, ∴ +3<m 2,令 h (x )=ln x -x 2,有 h ′(x )= -2x .∵x >1,∴ -2x <0,∴h (x )在(1,+∞)上为减函数,8.(2017·泰州模拟 )已知函数 f (x )= x 3-x 2-3x + ,直线 l :9x +2y +c =故 g (x )在(0,2]上的最小值为 g (1)=e -1,故 a 的取值范围为(-∞,e -1).答案 (-∞,e -1)m则 m 的取值范围是________.m 的极值为± 3,0 0 2,m 20 4m 24解得 m >2 或 m <-2.答案 (-∞,-2)∪(2,+∞)7.已知函数 f (x )=ln x -a ,若 f (x )<x 2 在(1,+∞)上恒成立,则实数 a 的取值范围是________.解析 ∵函数 f (x )=ln x -a ,且 f (x )<x 2 在(1,+∞)上恒成立,∴a >ln x-x 2,x ∈(1,+∞).1x1x∴当 x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1.答案 [-1,+∞)1 43 30,若当 x ∈[-2,2]时,函数 y =f (x )的图象恒在直线 l 下方,则 c 的取值范3x -x 2+ x + ,设 g (x )= x 3-x 2+ x + ,则 g ′(x )=x 2-2x + ,则 g ′(x )>0 恒成立,所以 g (x )在[-2,2]上单调递解析 根据题意知 x 3-x 2-3x + <- x - 在 x ∈[-2,2]上恒成立,则- >(2)证明当 x ∈(1,+∞)时,1<x -1<x ;(1)解 由 f (x )=ln x -x +1(x >0),得 f ′(x )= -1.x x ln x围是________.1 4 9 c c3 3 2 2 21 3 43 2 31 3 43 2 332增,所以 g (x ) =g (2)=3,则 c <-6.max答案 (-∞,-6)二、解答题9.(2016·全国Ⅲ卷)设函数 f (x )=ln x -x +1.(1)讨论函数 f (x )的单调性;ln x(3)设 c >1,证明当 x ∈(0,1)时,1+(c -1)x >c x .1x令 f ′(x )=0,解得 x =1.当 0<x <1 时,f ′(x )>0,f (x )单调递增.当 x >1 时,f ′(x )<0,f (x )单调递减.因此 f (x )在(0,1)上是增函数,在 x ∈(1,+∞)上为减函数.(2)证明 由(1)知,函数 f (x )在 x =1 处取得最大值 f (1)=0.∴当 x ≠1 时,ln x <x -1.1 1 x -1故当 x ∈(1,+∞)时,ln x <x -1,ln < -1,即 1< <x .(3)证明 由题设 c >1,设 g (x )=1+(c -1)x -c x ,则 g ′(x )=c -1-c x ln c .ln cln c由(2)知 1< c -1<c ,故 0<x <1.(1)解 易知 f ′(x )=-x -(1-a )(2)证明 a =0,则 f (x )= .- = .c -1 ln令 g ′(x )=0,解得 x = .当 x <x 时,g ′(x )>0,g (x )单调递增;当 x >x 时,g ′(x )<0,g (x )单调递减.ln c又 g (0)=g (1)=0,故当 0<x <1 时,g (x )>0.∴当 x ∈(0,1)时,1+(c -1)x >c x .10.(2017·衡水中学质检 )已知函数 f (x )=x +aex .(1)若 f (x )在区间(-∞,2)上为单调递增函数,求实数 a 的取值范围;(2)若 a =0,x <1,设直线 y =g (x )为函数 f (x )的图象在 x =x 处的切线,求证:f (x )≤g (x ).ex,由已知得 f ′(x )≥0 对 x ∈(-∞,2)恒成立,故 x ≤1-a 对 x ∈(-∞,2)恒成立,∴1-a ≥2,∴a ≤-1.即实数 a 的取值范围为(-∞,-1].xe x函数 f (x )的图象在 x =x 处的切线方程为 y =g (x )=f ′(x )(x -x )+f (x ).令 h (x )=f (x )-g (x )=f (x )-f ′(x )(x -x )-f (x ),x ∈R,则 h ′(x )=f ′(x )-f ′(x )= 0 1-x 1-xe x e x(1-x )e x -(1-x )e x0 0 e x +x解f′(x)=+2x-a.(2)当0<a≤2时,f′(x)=+2x-a=12x2-ax+1⎛a⎫2a24⎭8=.因为0<a≤2,所以1->0,而x>0,即f′(x)=2x2-ax+1不等式1-a>m ln a恒成立,即m<1-a恒成立.设φ(x)=(1-x)e x-(1-x)e x,x∈R,00则φ′(x)=-e x-(1-x)e x,∵x<1,∴φ′(x)<0,000∴φ(x)在R上单调递减,而φ(x)=0,∴当x<x时,φ(x)>0,当x>x时,φ(x)<0,00∴当x<x时,h′(x)>0,当x>x时,h′(x)<0,00∴h(x)在区间(-∞,x)上为增函数,在区间(x,+∞)上为减函数,00∴x∈R时,h(x)≤h(x)=0,∴f(x)≤g(x).11.(2017·南通调研)已知函数f(x)=ln x+x2-ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x∈[1,2],不等式f(x)>m ln a恒成立,求实00数m的取值范围.1x(1)由已知得:f′(1)=0,所以1+2-a=0,所以a=3,经验证符合题意.x x2 x-⎪+1-⎝xa28x>0,故f(x)在(0,+∞)上是增函数.(3)当a∈(1,2)时,由(2)知,f(x)在[1,2]上的最小值为f(1)=1-a,故问题等价于:对任意的a∈(1,2),ln a记g(a)=(1<a<2),则g′(a)=.所以g(a)=1-a在a∈(1,2)上单调递减,1-a-a ln a-1+aln a a(ln a)2令M(a)=-a ln a-1+a,则M′(a)=-ln a<0,所以M(a)在(1,2)上单调递减,所以M(a)<M(1)=0,故g′(a)<0,ln a所以m≤g(2)=1-2ln2=-log e,2即实数m的取值范围为(-∞,-log e].2。

导数与不等式高三数学(新高考)一轮复习课件PPT


解:(1)f′(x)=ex-2x, 则 f′(1)=e-2,f(1)=e-1, 所以曲线 f(x)在 x=1 处的切线方程为 y=(e-2)x+1. (2)证明:设 g(x)=f(x)-(e-2)x-1=ex-x2-(e-2)x-1(x>0), 则 g′(x)=ex-2x-(e-2), 设 m(x)=ex-2x-(e-2)(x>0),则 m′(x)=ex-2, 易得 g′(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增, 又 g′(0)=3-e>0,g′(1)=0, 由 0<ln 2<1,则 g′(ln 2)<0, 所以存在 x0∈(0,ln 2),使得 g′(x0)=0, 所以当 x∈(0,x0)∪(1,+∞)时,g′(x)>0; 当 x∈(x0,1)时,g′(x)<0.
微点 2 分拆函数法 [例 3] 已知函数 f(x)=eln x-ax(a∈R). (1)讨论 f(x)的单调性; (2)当 a=e 时,证明:xf(x)-ex+2ex≤0.
导数与不等式高三数学(新高考)一 轮复习 课件PPT 【PPT 实用课 件】
解:(1)f′(x)=ex-a(x>0), ①若 a≤0,则 f′(x)>0,f(x)在(0,+∞)上单调递增; ②若 a>0,则当 0<x<ae时,f′(x)>0,当 x>ae时,f′(x)<0, 故 f(x)在0,ae上单调递增,在ae,+∞上单调递减.
T 实用课 件】
类题通法 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左 减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即 可得证.
导数与不等式高三数学(新高考)一 轮复习 课件PPT 【PPT 实用课 件】

一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题

专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)构造函数法解决导数不等式问题①构造()()n F x x f x =或()()n f x F x x=(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x=型⑤根据不等式(求解目标)构造具体函数①构造()()n F x x f x =或()()nf x F x x =(n Z ∈,且0n ≠)型1.(2022·安徽师范大学附属中学高二期中)已知定义在R 上的函数()f x 满足()()0xf x f x '+>,且(2)3f =,则()e e 6xxf >的解集为()A .(ln 2,)+∞B .(0,)+∞C .(1,)+∞D .(0,1)【答案】A令()()F x xf x =,可得()()()0F x xf x f x ''=+>,所以()F x 在R 上是增函数,可得(e )e (e )x x x F f =,(2)3f =,(2)2(2)6F f ==,由(e )6ex x f >,可得(e )(2)xF F >,可得:e 2x >,所以ln 2x >,所以不等式的解集为:(ln 2,)+∞,故选:A .2.(2022·河北·沧县中学高二阶段练习)已知定义在()(),00,∞-+∞U 上的偶函数()f x ,在0x >时满足:()()0xf x f x '+>,且()10f =,则()0f x >的解集为()A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()0,1D .()1,+∞【答案】A 令()()F x xf x =,所以()()()()()F x x f x xf x F x -=--=-=-所以()F x 是奇函数,在0x >时,()()()0F x xf x f x ''+=>,则在0x >时,()F x 单调递增,由()10f =,可得(1)1(1)0F f =⨯=,(1)(1)0F F -=-=,所求()()0F x f x x =>,等价于()00F x x >⎧⎨>⎩或()00F x x <⎧⎨<⎩,解得1x >或1x <-,所以解集为:()(),11,-∞-⋃+∞.故选:A .3.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)已知()'f x 是偶函数()()R f x x ∈的导函数,(1)1f =.若0x >时,3()()0f x xf x '+>,则使得不等式3(2022)(2022)1x f x -->成立的x 的取值范围是()A .(2021,)+∞B .(,2021)-∞C .(2023,)+∞D .(,2023)-∞【答案】C构造函数()()3g x x f x =,其中R x ∈,则()()()()()33g x x f x x f x g x -=--=-=-,所以,函数()g x 为R 上的奇函数,当0x >时,()()()()()232330g x x f x x f x x f x xf x '''=+=>⎡⎤⎣⎦+,所以,函数()g x 在()0,∞+上为增函数,因为()11f =,则()()111g f ==,由()()3202220221x f x -->得()()20221g x g ->,可得20221x ->,解得2023x >.故选:C4.(2022·河北·邢台市第二中学高二阶段练习)定义在()0,8上的函数()f x 的导函数为()f x ¢,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为()A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 设()()2f xg x x=,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A5.(2022·福建省德化第一中学高二阶段练习)若()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()30f -=,则不等式()0xf x >的解集为()A .()()3,00,3-B .()(),33,-∞-+∞C .()(),30,3-∞-⋃D .()()3,03,-⋃+∞【答案】C设()()g x xf x =,则()g x 的定义域为R而()()()()g x xf x xf x g x -=--=-=-,故()g x 为R 上的奇函数,且()()()g x f x xf x ''=+,当0x <时,因为()()0f x xf x '+<,故()0g x ¢<,故()g x 在(),0-∞上为减函数,故()g x 为()0,+∞上的减函数,而()30f -=,故()30g -=,所以()30g =又()0xf x >即为()0g x >,故()00x g x <⎧⎪⎨>⎪⎩或()00x g x >⎧⎪⎨>⎪⎩,故()()03x g x g <⎧⎪⎨>-⎪⎩或()()03x g x g >⎧⎪⎨>⎪⎩,故3x <-或03x <<,故选:C.6.(2022·宁夏吴忠·高二期中(理))()f x 是定义在R 上的奇函数,且()20f =,当0x >时,有()()20xf x f x x '-<恒成立,则()0f x x>的解集为()A .()()2,02,-+∞B .()(),22,-∞+∞C .()()2,00,2-D .()(),20,2-∞- 【答案】C 设函数()()f x g x x=,则()()()2xf x f x g x x'-'=,由题知,当0x >时,()0g x ¢<,∴()()f x g x x=在()0,+∞上单调递减,∵函数()f x 是定义在R 上的奇函数,()()f x f x ∴-=-∴()()()()f x f x g x g x x x---===--,∴函数()g x 是定义在R 上的偶函数,∴()g x 的单调递增区间为(),0-∞,∵()20f =,∴()(2)202f g ==,()20g -=∴当2x <-或2x >时,()0g x <,当20x -<<或02x <<时,()0g x >,∴()()0f x g x x=>的解集为()()2,00,2- .故选:C.7.(2022·西藏·拉萨中学高三阶段练习(文))设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 设()()f x F x x =,则()()()2xf x f x F x x '-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.8.(2022·全国·高三专题练习)已知函数()f x 的定义域为()(),00,∞-+∞U ,图象关于y 轴对称,且当0x <时,()()f x f x x'>恒成立,设1a >,则()411af a a ++,(,()411a a f a ⎛⎫+⎪+⎝⎭的大小关系为()A .()(()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭B .()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭C .(()()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭D .(()()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭【答案】B解:∵当0x <时,()()f x f x x'>恒成立,∴()()xf x f x '<,∴()()0xf x f x '-<,令()()f x g x x =,∴()()()2xf x f x g x x'-'=,∴()0g x '<,∴()g x 在(),0∞-上单调递减,∵()()f x f x -=,∴()()g x g x -=-,∴()g x 为奇函数,在()0,∞+上单调递减.∵比较()411af a a ++,(,()411a a f a ⎛⎫+ ⎪+⎝⎭的大小,∴()()41411af a ag a a +=++,((4ag =,()441411a a a f ag a a ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭∵1a >,∴)2110a +->,∴1a +>4411a aa a <++.∴411a a a +>>+,∴()(411a g a g g a ⎛⎫+<< ⎪+⎝⎭,∴()(441441a ag a ag ag a ⎛⎫+<< ⎪+⎝⎭,即()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭.故选:B .9.(2022·四川雅安·三模(理))定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则()A .2(e)(2)4ef f >B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f ->【答案】D令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xfx x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确.故选:D.②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型1.(2022·广东·深圳市南山外国语学校(集团)高级中学高二期中)设定义在R 上的函数()f x 的导函数为()f x ',已知()()f x f x '<,且()12e f =,则满足不等式()2e af a <的实数a 的取值范围为()A .()0,∞+B .(),0∞-C .()1,+∞D .(),1-∞【答案】C设()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x ''--'==,因为()()f x f x '<,e 0x >,所以()0g x '<,()g x 是减函数,(1)2e (1)2e ef g ===,不等式()2e af a <化为()2e af a <,即()(1)g a g <,所以1a >.故选:C .2.(2022·安徽省芜湖市教育局模拟预测(文))已知定义在R 上的函数()f x 满足()()20f x f x '->,则下列大小关系正确的是()A .()()2312e 1e 2f f f ⎛⎫>> ⎪⎝⎭B .()()231e 12e 2f f f ⎛⎫>> ⎪⎝⎭C .()()231e 1e 22f f f ⎛⎫>> ⎪⎝⎭D .()()3212e e 12f f f ⎛⎫>> ⎪⎝⎭【答案】A 构造函数()()2e x f x g x =,其中R x ∈,则()()()220e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,所以,()()1122g g g ⎛⎫<< ⎪⎝⎭,即()()241122e e ef f f ⎛⎫⎪⎝⎭<<,因此,()()321e e 122ff f ⎛⎫<< ⎪⎝⎭.故选:A.3.(2022·江西·南昌市八一中学三模(文))记定义在R 上的可导函数()f x 的导函数为()f x ',且()()0f x f x '->,()11f =,则不等式()1e xf x ->的解集为______.【答案】()1,+∞设()()xf xg x =e,()()()()()()20x xxx f x f x f x f x g x ''--'==>e e e e ,所以函数()g x 单调递增,且()()111e ef g ==,不等式()()()()11>e 1e e x x f x f x g x g -⇔>⇔>,所以1x >.故答案为:()1,+∞.4.(2022·甘肃·玉门油田第一中学高二期中(理))已知定义在R 上的可导函数()f x 的导函数为()f x ¢,满足()()f x f x '<,且()3f x +为偶函数,()61f =,则不等式()e xf x >的解集为______.【答案】(),0-∞设()()exf xg x =,则()()()exf x f xg x '-'=,又()()f x f x '<,所以()0g x ¢<,即()g x 在R 上是减函数,因为()3f x +为偶函数,所以()3f x +图象关于y 轴对称,而()3f x +向右平移3个单位可得()f x ,所以()f x 对称轴为3x =,则()()061f f ==,所以()()0001e f g ==,不等式()e xf x >等价于()()()10e xf xg x g =>=,故0x <,所以不等式()e xf x >的解集为(),0-∞.故答案为:(),0-∞5.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.【答案】(),0∞-因为()()3f x f x '+<,所以()()3x xe f x f x e '+<⎡⎤⎣⎦,令()()3x F x e f x =-⎡⎤⎣⎦,则()()()3x x F x e f x e f x ''=-+⎡⎤⎣⎦,()()30x e f x f x '=+-<⎡⎤⎣⎦,所以()F x 是减函数,又()()00030F e f =-=⎡⎤⎣⎦,()3f x >即()30f x ->,()30x e f x ->⎡⎤⎣⎦,所以()()0F x F >,所以0x <,则()3f x >的解集为(),0∞-故答案为:(),0∞-6.(2022·全国·高三专题练习)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【答案】1,3⎛+∞⎫⎪⎝⎭构造()3()x f x F e x =,则()3363()3()()3()x x x xe f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()x f x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.故答案为:1,3⎛+∞⎫⎪⎝⎭③构造()()sin F x f x x =或()()sin f x F x x=型1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则()A3546f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C3546f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】B因为任意()()()0,,sin cos x f x x f x x <'∈π恒成立,即任意()()()0,,sin cos 0x f x x f x x '∈-<π恒成立,所以()()()()2sin cos 0sin sin f x f x x f x xx x ''⎡⎤-=<⎢⎥⎣⎦,()0,x π∈所以()sin f x x在()0,π上单调递减,因为56π34>π,所以536453sin sin 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ππππ,即536412f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ππ5364f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ππ,故选:B2.(2022·江苏江苏·高二阶段练习)函数()f x 的定义域是()0,π,其导函数是()f x ',若()()sin cos f x x f x x <-',则关于x()πsin 4x x f ⎛⎫< ⎪⎝⎭的解集为______.【答案】π,π4⎛⎫⎪⎝⎭()()sin cos f x x f x x <-'变形为()()sin cos 0f x x f x x +<',()πsin 4x x f ⎛⎫< ⎪⎝⎭变形为()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭,故可令g (x )=f (x )sin x ,()0,πx ∈,则()()()sin cos 0g x f x x f x x =+''<,∴g (x )在()0,π单调递减,不等式()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭即为g (x )<g (π4),则π,π4x ⎛⎫∈ ⎪⎝⎭,故答案为:π,π4⎛⎫⎪⎝⎭.3.(2022·全国·高三专题练习)函数()f x 定义在0,2π⎛⎫ ⎪⎝⎭上,6f π⎛⎫= ⎪⎝⎭其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.【答案】,62ππ⎛⎫⎪⎝⎭解:()()cos sin f x x f x x'< ()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=,则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭,26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭.故答案为:,62ππ⎛⎫⎪⎝⎭.4.(2022·全国·高三专题练习)设奇函数()f x 定义在(,0)(0,)ππ- 上,其导函数为()'f x ,且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x x g x x'='-,∵()f x 是定义在(,0)(0,)ππ- 上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ- 上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴(2(02sin 2f g πππ==,∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或,(,0)x π∈-,∴6x ππ<<或06x π-<<.∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ- .④构造()()cos F x f x x =或()()cos f x F x x=型1.(2022·重庆·高二阶段练习)已知定义在区间,22ππ⎛⎫- ⎪⎝⎭上的奇函数()y f x =,对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是()f x 的导函数),则下列不等式中成立的是()A.63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.63f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C.43f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D64ππ⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭【答案】B 构造函数()()cos f x g x x =,其中,22x ππ⎛⎫∈- ⎪⎝⎭,则()()()()()cos cos f x f x g x g x x x --==-=--,所以,函数()()cos f x g x x=为奇函数,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()()2cos sin 0cos f x x f x x g x x'+'=>,所以,函数()g x 在0,2π⎡⎫⎪⎢⎣⎭上为增函数,故该函数在,02π⎛⎤- ⎥⎝⎦上也为增函数,由题意可知,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上连续,故函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上为增函数.对于A 选项,63g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭<,则63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,A 错;对于B 选项,63g g ππ⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫-- ⎪ ⎝⎭>,则63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,B 对;对于C 选项,43g g ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭43122f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭>,则43f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,64g g ππ⎫⎫⎛⎛< ⎪ ⎝⎝⎭⎭64f f ππ⎛⎫⎛⎫⎪ ⎪<64ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,D 错.故选:B.2.(2022·福建龙岩·高二期中)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若π6a f ⎛⎫=⎪⎝⎭,1π23b f ⎛⎫=⎪⎝⎭,23π24c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c的大小关系是()A .a b c >>B .b c a>>C .c b a >>D .c a b>>【答案】C因为()()cos sin 0f x x f x x '->,所以设()()cos F x f x x =⋅,则()()()cos sin 0F x f x x f x x ''=⋅->,所以()()cos F x f x x =⋅在()0,π上为增函数,又因为ππ266a f F ⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,1ππ233b f F ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,23π3π244c f F ⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭,ππ3π634<<,所以ππ3π634F F F ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c <<故选:C3.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .b c a >>C .c a b >>D .c b a>>【答案】C解:设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos(22a f ππ==,1(cos (2333b f f πππ==,333()cos ()2444c f f πππ==,因为3324πππ<<,所以33cos()cos ()cos (332244f f f ππππππ<<,所以c a b >>.故选:C .4.(2022·广西玉林·高二期中(文))函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,()f x '是它的导函数,且()()tan x f x f x '⋅>在定义域内恒成立,则()A .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()cos116f f π⎛⎫⋅> ⎪⎝⎭D 46ππ⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭【答案】D因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0cos 0x x >>,,由()()tan x f x f x '⋅>可得()cos ()sin f x x f x x '<,即()cos ()sin 0f x x f x x '-<,令()cos (),0,2g x x f x x π⎛⎫=⋅∈ ⎪⎝⎭,则()()cos ()sin 0g x f x x f x x ''=-<,所以函数()g x 在0,2π⎛⎫ ⎪⎝⎭上为减函数,则(1)643g g g g πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则cos cos cos(1)(1)cos 664433f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2cos(1)(1)643f f πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D5.(2022·全国·高三专题练习)定义域为,22ππ⎛⎫- ⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数,设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x x g x x '+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数.又()f x 是奇函数,∴()()cos f x g x x =也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎝⎭上是减函数,不等式()cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B .6.(2022·全国·高三专题练习)已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫< ⎪⎝⎭的解集为()A .ππ23⎛⎫- ⎪⎝⎭,B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,【答案】A 设()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '>所以()()cos f x g x x =在02π⎛⎫- ⎪⎝⎭上单调递增.又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x =在02π⎛⎫ ⎪⎝⎭,上单调递增,所以()g x 在ππ,22⎛⎫- ⎝⎭上单调递增.当ππ,22x ⎛⎫∈- ⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫ ⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以23x ππ-<<故选:A⑤根据不等式(求解目标)构造具体函数1.(2022·重庆·高二阶段练习)定义在R 上的函数()f x 满足()()260f x f x -'-<,且()21e 3=-f ,则满足不等式()2e 3>-x f x 的x 的取值有()A .1-B .0C .1D .2【答案】D 构造函数()()23e x f x F x +=,则()()()226e xf x f x F x '--'=,因为()()260f x f x -'-<,所以()0F x '<,所以()()23exf x F x +=单调递减,又()21e 3=-f ,所以()()21311e f F +==,不等式()2e 3>-xf x 变形为()231e xf x +>,即()()1F x F >,由函数单调性可得:1x >故选:D2.(2022·黑龙江·哈尔滨市第六中学校高二期中)已知()f x '是定义域为R 的函数()f x 的导函数.若对任意实数x 都有()()2f x f x '>-,且()13f =,则不等式()12e x f x -->的解集为()A .(),1-∞B .()1,+∞C .(),e -∞D .()e,+∞【答案】B解:不等式1()2e x f x -->,等价于不等式1()21e x f x -->,构造函数1()2()e x f x g x --=,则1()(()2)()e x f x f x g x -'--'=,若对任意实数x 都有()()2f x f x '>-,则()0g x '>,()g x 在R 上单调递增,又()0(1)211e f g -==,故1()21e x f x -->即()()1g x g >,故不等式的解集是(1,)+∞,故选:B .3.(2022·黑龙江·哈师大附中高二期中)已知定义在R 上的函数()f x 满足()2f x '>-,则不等式()()2122f x f x x -->--的解集为()A .(),1-∞-B .()1,0-C .()0,1D .()1,-+∞【答案】D设()()2g x f x x =+,则()()2g x f x ''=+.因为定义在R 上的函数()f x 满足()2f x '>-,所以()()20g x f x ''=+>,所以函数()g x 在R 上单调递增.又不等式()()2122f x f x x -->--可化为()()()24121f x x f x x +>-+-,即()()21g x g x >-,所以21x x >-,解得1x >-.所以不等式()()2122f x f x x -->--的解集为()1,-+∞.故选:D.4.(2022·江苏·海门中学高二阶段练习)已知R 上的函数()f x 满足()13f =,且()2f x '<,则不等式()21f x x <+的解集为()A .(,1)-∞B .()3,+∞C .()1,+∞D .(2,)+∞【答案】C解:令()()21F x f x x =--,则()()2F x f x ''=-,又()f x 的导数()'f x 在R 上恒有()2f x '<,()()20F x f x ''∴=-<恒成立,()()21F x f x x ∴=--是R 上的减函数,又()()11210F f =--= ,∴当1x >时,()()10F x F <=,即()210f x x --<,即不等式()21f x x <+的解集为(1,)+∞;故选:C .5.(2022·陕西渭南·二模(理))设函数()f x 的定义域为()0,∞+,()'f x 是函数()f x 的导函数,()(ln )()0f x x x f x '+>,则下列不等关系正确的是()A .2(3)log 3(2)f f >B .()ln 033f ππ<C .(3)2(9)f f >D .21(0e )f <【答案】A函数()f x 的定义域为()0,∞+,则1()(ln )()0()()ln 0f x x x f x f x f x x x''+>⇔+>,令()()ln g x f x x =,0x >,则1()()()ln 0g x f x f x x x'=+>,即()g x 在()0,∞+上单调递增,对于A ,(3)(2)g g >,即2(3)ln 3(2)ln 2(3)log 3(2)f f f f >⇔>,A 正确;对于B ,((1)3g g π>,即(3)ln (1)ln103f f π>=,B 不正确;对于C ,(3)(9)g g <,即(3)ln 3(9)ln 92(9)ln 3(3)2(9)f f f f f <=⇔<,C 不正确;对于D ,21()(1)e g g <,即2211()ln (1)ln10e e f f <=,有22112()0()0e e f f -<⇔>,D 不正确.故选:A6.(2022·安徽·南陵中学模拟预测(文))已知函数()2224ln f x x x x ax =++-,若当0m n >>时,()()n f m f m n ->-,则实数a 的取值范围是()A .()0,9B .(],9-∞C .(],8∞-D .[)8,+∞【答案】B()()n f m f m n ->-,即()()f m m f n n ->-,令224l (n )()x x x ax g x f x x -+==+-,由题意得()g x 在(0,)+∞上单调递增,即4()410g x x a x '=++-≥,即441a x x≤++在(0,)+∞上恒成立由基本不等式得44119x x++≥+=,当且仅当44x x =即1x =时等号成立,则9a ≤故选:B7.(2022·安徽·高二阶段练习)已知()()21lg 20221lg 20222n n -+>,求满足条件的最小正整数n的值为___________.【答案】3解:由()()21lg 20221lg 20222n n -+>,两边取对数得()()()21ln 1lg 2022lg 2022lg 2n n -⋅+>⋅,因为n 是正整数,所以()()()ln lg 20221ln 211lg 202221n n +-+>-,令()()()ln 11x f x x x +=>,则()()()2ln 111xx x f x x x -++'=>,令()()ln 11x h x x x =-++,则()()201x h x x -'=<+,所以()h x 在()1,+∞上递减,则()()11ln 202h x h <=-=<,即()0f x '<,所以()f x 在()1,+∞上递减,所以lg 202221n <-,解得()11lg 20222n >+,因为3lg 20224<<,所以最小正整数n 的值为3.故答案为:38.(2022·浙江·高二期中)已知定义在R 上的可导函数()f x 是奇函数,其导函数为()'f x ,当0x <时,(1)()()0x f x xf x '-+>,则不等式()0f x <的解集为_______________.【答案】(0,)+∞()2e e(1)()()()()()e e e e x xx x x x x x x x f x xf x f x f x f x '--+⎡⎤=+'='⎢⎥⎣⎦,因为(1)()()0x f x xf x '-+>,所以()0e x xf x '⎡⎤>⎢⎥⎣⎦,即函数()e x x y f x =在(,0)-∞时单调递增的.因为()f x 的定义域是R ,且e x x在R 上都有意义,所以()e xx y f x =的定义域也是R ,所以在(,0)-∞时00()(0)0e ex x f x f <=,而e xx在(,0)-∞小于0恒成立,即在(,0)-∞时()0f x >.因为()f x 是奇函数,所以在(0,)+∞时()0f x <恒成立.所以()0f x <的解集为(0,)+∞.故答案为:(0,)+∞.9.(2022·四川·成都实外高二阶段练习(理))已知定义在R 上的可导函数()f x 为偶函数,且满足()21f =,若当0x ≥时,()f x x '>,则不等式()2112f x x <-的解集为___________.【答案】(2,2)-设21()()2g x f x x =-,则()()0g x f x x ''=->,0x ≥时,()g x 是增函数,又()f x 是偶函数,所以2211()()()()()22g x f x x f x x g x -=---=-=,()g x 是偶函数,21(2)(2)212g f =-⨯=-,不等式()2112f x x <-即为()(2)g x g <,由()g x 是偶函数,得()(2)g x g <,又0x ≥时,()g x 递增,所以2x <,22x -<<.故答案为:(2,2)-.10.(2022·四川·成都实外高二阶段练习(文))已知定义在R 上的可导函数()f x 满足()21f =,且()f x 的导函数()f x '满足:()1f x x '>-,则不等式()2112f x x x <-+的解集为___________.【答案】(),2∞-因为()1f x x '>-,所以()10f x x '-+>构造()()212F x f x x x =-+,则()()10F x f x x ''=-+>,即()()212F x f x x x =-+在R 上单调递增,因为()21f =,所以()()22221F f =-+=()2112f x x x <-+变形为()2112f x x x -+<,即()()2F x F <,由()F x 的单调性可知:2x <.故答案为:(),2∞-。

导数与不等式问题专题

导数与不等式问题高考定位导数经常作为高考的压轴题,能力要求非常高.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题、利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.真题感悟(2016·无锡高三期末)已知函数f (x)=ln x+a+e-2x(a>0).(1)当a=2时,求出函数f (x)的单调区间;(2)若不等式f (x)≥a对于x>0的一切值恒成立,求实数a的取值范围. 解(1)由题意知函数f (x)的定义域为(0,+∞).当a=2时,函数f (x)=ln x+e x ,所以f ′(x)=1x-ex2=x-ex2,所以当x∈(0,e)时,f′(x)<0,函数f (x)在(0,e)上单调递减;当x∈(e,+∞)时,f′(x)>0,函数f (x)在(e,+∞)上单调递增.(2)由题意知ln x+a+e-2x≥a恒成立.等价于x ln x+a+e-2-ax≥0在(0,+∞)上恒成立.令g(x)=x ln x+a+e-2-ax,则g′(x)=ln x+1-a,令g′(x)=0,得x=e a-1.列表如下:X (0,e a-1)e a-1(e a-1,+∞)g′(x)-0+g(x)极小值所以g(x)的最小值为g(e a-1)=(a-1)e a-1+a+e-2-a e a-1=a+e-2-e a-1,令t(x)=x+e-2-e x-1(x>0),则t′(x)=1-e x-1,令t′(x)=0,得x=1.列表如下:所以当a∈(0,1)时,g(x)的最小值为t(a)>t(0)=e-2-1e=e(e-2)-1e>0,符合题意;当a∈[1,+∞)时,g(x)的最小值为t(a)=a+e-2-e a-1≥0=t(2),所以a∈[1,2].综上所述,a∈(0,2].考点整合1.解决函数的实际应用题,首先考虑题目考查的函数模型,并要注意定义域,其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.2.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f (x)≥a恒成立,只需f (x)min≥a即可;f (x)≤a恒成立,只需f (x)max≤a 即可.(2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),伴有对参数的分类讨论,然后构建不等式求解.3.常见构造辅助函数的四种方法(1)直接构造法:证明不等式f (x)>g(x)(f (x)<g(x))的问题转化为证明f (x)-g(x)>0(f (x)-g(x)<0),进而构造辅助函数h(x)=f (x)-g(x).(2)构造“形似”函数:稍作变形后构造.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.(4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造f (x)和g(x),利用其最值求解.4.不等式的恒成立与能成立问题(1)f (x)>g(x)对一切x∈[a,b]恒成立⇔[a,b]是f (x)>g(x)的解集的子集⇔[f (x)-g(x)]min>0(x∈[a,b]).(2)f (x)>g(x)对x∈[a,b]能成立⇔[a,b]与f (x)>g(x)的解集的交集不是空集⇔[f (x)-g(x)]max>0(x∈[a,b]).(3)对∀x1,x2∈[a,b]使得f (x1)≤g(x2)⇔f (x)max≤g(x)min.(4)对∀x1∈[a,b],∃x2∈[a,b]使得f (x1)≥g(x2)⇔f (x)min≥g(x)min.热点一利用导数证明不等式【例1】(2017·全国Ⅱ卷)已知函数f (x)=ax2-ax-x ln x,且f (x)≥0.(1)求a;(2)证明:f (x)存在唯一的极大值点x0,且e-2<f (x0)<2-2.(1)解 f (x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f (x)=xg(x),f (x)≥0等价于g(x)≥0,因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-1x,g′(1)=a-1,得a=1.若a=1,则g′(x)=1-1x .当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0. 综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x , 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0.所以h (x )在⎝⎛⎭⎪⎫0,12上单调递减, 在⎝ ⎛⎭⎪⎫12,+∞上单调递增. 又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈(0,1)得f (x 0)<14.因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.探究提高 (1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.或者,利用f (x )min ≥g (x )max 或f (x )max ≤g (x )min 来证明不等式.(2)在证明不等式时,如果不等式较为复杂,则可以通过不等式的性质把原不等式变换为简单的不等式,再进行证明.【训练1】 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ; (2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e xln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2. (2)证明 由(1)知,f (x )=e x ln x +2xe x -1,从而f (x )>1等价于x ln x >x e -x-2e.设函数g (x )=x ln x ,则g ′(x )=1+ln x . 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e.综上,当x>0时,g(x)>h(x),即f (x)>1. 热点二利用导数解决不等式恒成立问题【例2】(2017·南京、盐城模拟)已知函数f (x)=axe x在x=0处的切线方程为y=x.(1)求实数a的值;(2)若对任意的x∈(0,2),都有f (x)<1k+2x-x2成立,求实数k的取值范围.解(1)由题意得f ′(x)=a(1-x)e x,因为函数在x=0处的切线方程为y=x,所以f ′(0)=1,解得a=1.(2)由题知f (x)=xe x<1k+2x-x2对任意x∈(0,2)都成立,所以k+2x-x2>0,即k>x2-2x对任意x∈(0,2)都成立,从而k≥0.不等式整理可得k<e xx+x2-2x,令g(x)=e xx+x2-2x,所以g′(x)=e x(x-1)x2+2(x-1)=(x-1)⎝⎛⎭⎪⎫e xx2+2=0,解得x=1,当x∈(1,2)时,g′(x)>0,函数g(x)在(1,2)上单调递增,同理可得函数g(x)在(0,1)上单调递减.所以k<g(x)min=g(1)=e-1,综上所述,实数k的取值范围是[0,e-1).探究提高(1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.【训练2】(2014·江苏卷)已知函数f (x)=e x+e-x,其中e是自然对数的底数.(1)证明:f (x)是R上的偶函数;(2)若关于x的不等式mf (x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f (x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.(1)证明因为对任意x∈R,都有f (-x)=e-x+e-(-x)=e-x+e x=f (x),所以f (x)是R上的偶函数.(2)解由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,所以m≤-t-1 t2-t+1=-1t-1+1t-1+1对任意t>1成立.因为t-1+1t-1+1≥2(t-1)·1t-1+1=3,所以-1t-1+1t-1+1≥-13,当且仅当t=2,即x=ln 2时等号成立.因此实数m的取值范围是(-∞,-13 ].(3)解令函数g(x)=e x+1e x-a(-x3+3x),则g′(x)=e x-1e x+3a(x2-1).当x≥1时,e x-1e x>0,x2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1, 则h ′(x )=1-e -1x.令h ′(x )=0,得x =e -1,当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0.当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0, 即a -1<(e -1)ln a ,从而e a -1<a e -1; ②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0, 即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1. 热点三 利用导数解决能成立问题【例3】 (2017·南通模拟)已知函数f (x )=x -(a +1)ln x -ax(a ∈R),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.① 若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ② 若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1.③ 若a ≥e,当x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数,f (x )min=f (e)=e -(a +1)-ae .综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1; 当a ≥e 时,f (x )min =e -(a +1)-ae.(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae.g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,g (x )min =g (0)=1,所以e -(a +1)-ae<1,即a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1. 探究提高 存在性问题和恒成立问题的区别与联系存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若g (x )≤m 恒成立,则g (x )max ≤m ;若g (x )≥m 恒成立,则g (x )min ≥m ;若g (x )≤m 有解,则g (x )min ≤m ;若g (x )≥m 有解,则g (x )max ≥m .【训练3】 (2016·四川卷)设函数f (x )=ax 2-a -ln x ,其中a ∈R. (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数). 解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)上单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.1.不等式恒成立、能成立问题常用解法有:(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如a >f (x )max 或a <f (x )min . (2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论. (3)数形结合.2.利用导数证明不等式的基本步骤 (1)作差或变形. (2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值. (4)根据单调性及最值,得到所证不等式. 3.导数在综合应用中转化与化归思想的常见类型 (1)把不等式恒成立问题转化为求函数的最值问题; (2)把证明不等式问题转化为函数的单调性问题; (3)把方程解的问题转化为函数的零点问题.一、填空题1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ⎝ ⎛⎭⎪⎫-12=0,则不等式f (x )<0的解集为________. 解析 如图所示,根据图象得不等式f (x )<0的解集为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,12.答案 ⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,122.(2017·苏北四市调研)若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为________.解析 条件可转化为a ≤2ln x +x +3x恒成立.设f (x )=2ln x +x +3x,则f ′(x )=(x +3)(x -1)x 2(x >0).当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案 (-∞,4]3.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________. 解析 ∵2x(x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0.∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞). 答案 (-1,+∞)4.(2015·全国Ⅱ卷改编)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 解析 令F (x )=f (x )x,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=x f ′(x )-f (x )x 2,当x >0时,x f ′(x )-f (x )<0,所以F (x )=f (x )x在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪ (0,1).答案 (-∞,-1)∪(0,1)5.已知不等式e x -x >ax 的解集为P ,若[0,2]⊆P ,则实数a 的取值范围是________.解析 由题意知不等式e x -x >ax 在x ∈[0,2]上恒成立. 当x =0时,显然对任意实数a ,该不等式都成立. 当x ∈(0,2]时,原不等式即a <e xx-1,令g (x )=e xx-1,则g ′(x )=e x (x -1)x 2,当0<x <1时,g ′(x )<0,g (x )单调递减, 当1<x <2时,g ′(x )>0,g (x )单调递增,故g (x )在(0,2]上的最小值为g (1)=e -1, 故a 的取值范围为(-∞,e -1). 答案 (-∞,e -1) 6.设函数f (x )=3sinπxm.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是________. 解析 ∵f (x )=3sinπxm的极值为±3,即[f (x 0)]2=3.又|x 0|≥|m |2, ∴x 20+[f (x 0)]2≥m 24+3,∴m 24+3<m 2, 解得m >2或m <-2.答案 (-∞,-2)∪(2,+∞)7.已知函数f (x )=ln x -a ,若f (x )<x 2在(1,+∞)上恒成立,则实数a 的取值范围是________.解析 ∵函数f (x )=ln x -a ,且f (x )<x 2在(1,+∞)上恒成立,∴a >ln x -x 2,x ∈(1,+∞).令h (x )=ln x -x 2,有h ′(x )=1x-2x .∵x >1,∴1x-2x <0,∴h (x )在(1,+∞)上为减函数,∴当x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1. 答案 [-1,+∞)8.(2017·泰州模拟)已知函数f (x )=13x 3-x 2-3x +43,直线l :9x +2y +c =0,若当x ∈[-2,2]时,函数y =f (x )的图象恒在直线l 下方,则c 的取值范围是________.解析根据题意知13x3-x2-3x+43<-92x-c2在x∈[-2,2]上恒成立,则-c2>1 3x3-x2+32x+43,设g(x)=13x3-x2+32x+43,则g′(x)=x2-2x+32,则g′(x)>0恒成立,所以g(x)在[-2,2]上单调递增,所以g(x)max=g(2)=3,则c<-6.答案(-∞,-6)二、解答题9.(2016·全国Ⅲ卷)设函数f (x)=ln x-x+1.(1)讨论函数f (x)的单调性;(2)证明当x∈(1,+∞)时,1<x-1ln x<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.(1)解由f (x)=ln x-x+1(x>0),得f ′(x)=1x-1.令f ′(x)=0,解得x=1.当0<x<1时,f ′(x)>0,f (x)单调递增.当x>1时,f ′(x)<0,f (x)单调递减.因此f (x)在(0,1)上是增函数,在x∈(1,+∞)上为减函数.(2)证明由(1)知,函数f (x)在x=1处取得最大值f (1)=0. ∴当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln 1x<1x-1,即1<x-1ln x<x.(3)证明由题设c>1,设g(x)=1+(c-1)x-c x,则g′(x)=c-1-c x ln c.令g ′(x )=0,解得x 0=lnc -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知1<c -1ln c<c ,故0<x 0<1. 又g (0)=g (1)=0,故当0<x <1时,g (x )>0. ∴当x ∈(0,1)时,1+(c -1)x >c x. 10.(2017·衡水中学质检)已知函数f (x )=x +a e x.(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围; (2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ).(1)解 易知f ′(x )=-x -(1-a )ex,由已知得f ′(x )≥0对x ∈(-∞,2)恒成立, 故x ≤1-a 对x ∈(-∞,2)恒成立, ∴1-a ≥2,∴a ≤-1.即实数a 的取值范围为(-∞,-1]. (2)证明 a =0,则f (x )=xex .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R , 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e x 0=(1-x )e x 0-(1-x 0)e x e x +x 0.设φ(x )=(1-x )e x 0-(1-x 0)e x ,x ∈R ,则φ′(x )=-e x 0-(1-x 0)e x ,∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,而φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴x ∈R 时,h (x )≤h (x 0)=0, ∴f (x )≤g (x ).11.(2017·南通调研)已知函数f (x )=ln x +x 2-ax (a 为常数). (1)若x =1是函数f (x )的一个极值点,求a 的值; (2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围. 解 f ′(x )=1x+2x -a .(1)由已知得:f ′(1)=0,所以1+2-a =0,所以a =3,经验证符合题意. (2)当0<a ≤2时,f ′(x )=1x +2x -a =2x 2-ax +1x=2⎝⎛⎭⎪⎫x -a 42+1-a 28x.因为0<a ≤2,所以1-a 28>0,而x >0,即f ′(x )=2x 2-ax +1x>0,故f (x )在(0,+∞)上是增函数.(3)当a ∈(1,2)时,由(2)知,f (x )在[1,2]上的最小值为f (1)=1-a , 故问题等价于:对任意的a ∈(1,2), 不等式1-a >m ln a 恒成立,即m <1-aln a恒成立.记g(a)=1-aln a (1<a<2),则g′(a)=-a ln a-1+aa(ln a)2.令M(a)=-a ln a-1+a,则M′(a)=-ln a<0,所以M(a)在(1,2)上单调递减,所以M(a)<M(1)=0,故g′(a)<0,所以g(a)=1-aln a在a∈(1,2)上单调递减,所以m≤g(2)=1-2ln 2=-log2e,即实数m的取值范围为(-∞,-log2e].。

函数导数、三角函数、不等式(一):高考数学一轮复习基础必刷题

函数导数、三角函数、不等式(一):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.若函数()26ln f x x x x =--,则()f x 的单调增区间为()A .()3,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭B .()0,2C .()2,+∞D .()30,2,2⎛⎫⋃+∞ ⎪⎝⎭2.已知函数()f x 在0x x =处的导数为()0f x ',则()()0003lim x f x x f x x∆→+∆-=∆()A .()013f x -'B .()03f x -'C .()03f x 'D .()013f x '3.已知函数()f x 的导函数的图象如图所示,则()f x 的极值点的个数为()A .0B .1C .2D .34.在平面直角坐标系xOy 中,角α和角β的顶点均与原点O 重合,始边均与x 铀的非负半轴重合,它们的终边关于y 轴对称,若2cos 3α=,则cos β=()A .B .23-C .23D .35.若角θ满足tan 0θ>,sin 0θ<,则角θ所在的象限是().A .第一象限B .第二象限C .第三象限D .第四象限6.已知a ,b ,c 都是实数,则“a b <”是“22ac bc <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若函数()y f x =的大致图象如图所示,则()f x 的解析式可能是()A .()1x f x x =-B .()1x f x x =-C .()21x f x x =-D .()21x f x x =-8.已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线斜率是()A .1B .2C .eD .2e 1---9.函数()()=2sin 0,2f x x πωθωθπ⎛⎫+ ⎪⎝⎭>≤≤的部分图象如图所示,其中A ,B 两点之间的距离为5,那么下列说法正确的是()A .函数()f x 的最小正周期为8B .()13=2f -C .32x =是函数()f x 的图象的一条对称轴D .函数()f x 向右平移一个单位长度后所得的函数为偶函数10.如果函数()sin(2)f x x ϕ=+的图像关于点2,03π⎛⎫- ⎪⎝⎭对称,则||ϕ的最小值是()A .6πB .3πC .56πD .43π11.已知f (x )是定义在R 上的偶函数,当0x >时,2()()0xf x f x x '->,且f (-1)=0,则不等式()0f x x>的解集是()A .(1,0)(0,1)- B .(1)(1)-∞+∞ ,,C .(,1)(0,1)-∞- D .(1,0)(1,)-+∞ 12.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且222cos cos a b c ab c a B b A+-=+,若2a b +=,则c 的最小值为()A .1B .32C .54D .34二、填空题13.已知幂函数()y f x =的图象过点13,9⎛⎫⎪⎝⎭,则(2)f =___________.14.)11x dx -=⎰___________.15.已知()f x 是定义在R 上的偶函数,当0x >时,()()0xf x f x '->,且()20f -=,则不等式()0f x x>的解集是___________.16.函数()()ln 2x f x x=,关于x 的不等式()0f x k ->只有两个整数解,则实数k 的取值范围是_________三、解答题17.已知函数()()22cos cos sin f x x x x x x R =+-∈.(1)求()f x 的最小正周期;(2)当02x π<<时,求()f x 的值域.18.已知角θ的终边经过点()()3,40P a a a >.(1)求sin θ的值;(2)求()3sin cos 2πθθπ⎛⎫-+- ⎪⎝⎭的值.19.如图,在ABC 中,342,,cos ,25AB DC A CB ===的垂直平分线交边AC 于点D .(1)求AD 的长;(2)若AD AB >,求sin ACB ∠的值.20.为了印刷服务上一个新台阶,学校打印社花费5万元购进了一套先进印刷设备,该设备每年的管理费是0.45万元,使用x 年时,总的维修费用为()120x x +万元,问:(1)设年平均费用为y 万元,写出y 关于x 的表达式;(年平均费用=总费用年限)(2)这套设备最多使用多少年报废合适?(即使用多少年的年平均费用最少)21.已知函数()2sin cos cos 6f x x x x π⎛⎫=++ ⎪⎝⎭.(1)求()f x 在0,4⎡⎤⎢⎥⎣⎦π上的最值;(2)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,12A f ⎛⎫= ⎪⎝⎭,a =ABCsin sin B C +的值.22.已知二次函数2()1()=-+∈f x x kx k R .(1)若()f x 在区间[2,)+∞上单调递增,求实数k 的取值范围;(2)若()0f x ≥在(0,)x ∈+∞上恒成立,求实数k 的取值范围.参考答案:1.C 【解析】【分析】求出导函数()f x ',令()0f x '>解不等式即可得答案.【详解】解:因为函数()26ln f x x x x =--,所以()()2626210x x f x x x x x--'=--=>,令()0f x '>,得2x >,所以()f x 的单调增区间为()2,+∞,故选:C.2.C 【解析】【分析】利用导数的定义即可求解.【详解】根据题意,()()()()()00000033lim 3lim33x x f x x f x f x x f x f x xx'∆→∆→+∆-+∆-==∆∆.故选:C 3.C 【解析】【分析】含导函数图象确定()f x 的极值点个数,要保证导函数的零点左右两边导函数函数值一正一负.【详解】因为在0x =左、右两边的导数值均为负数,所以0不是极值点,故由图可知()f x 只有2个极值点.故选:C 4.B 【解析】【分析】根据三角函数的定义可求.【详解】设α的终边上有一点(),x y ,则2cos 3α==,因为角α和角β的终边关于y 轴对称,则(),x y -是角β终边上一点,所以2cos 3β==-.故选:B.5.C 【解析】【分析】根据tan 0θ>,sin 0θ<,分别确定θ的范围,综合即得解.【详解】解:由tan 0θ>知,θ是一、三象限角,由sin 0θ<知,θ是三、四象限角或终边在y 轴负半轴上,故θ是第三象限角.故选:C 6.B 【解析】【分析】利用充分、必要条件的定义,结合不等式的性质判断题设条件间的推出关系,即可知条件间的充分、必要关系.【详解】当a b <时,若0c =时22ac bc <不成立;当22ac bc <时,则必有a b <成立,∴“a b <”是“22ac bc <”的必要不充分条件.故选:B 7.C 【解析】【分析】利用排除法,取特殊值分析判断即可得答案【详解】解:由图可知,当(0,1)x ∈时,()0f x <,取12x =,则对于B ,112(101212f ==>-,所以排除B ,对于D ,1122()012314f ==>-,所以排除D ,当0x >时,对于A ,()1111x f x x x ==+--,此函数是由1y x =向右平移1个单位,再向上平移1个单位,所以1x >时,()1f x >恒成立,而图中,当1x >时,()f x 可以小于1,所以排除A,故选:C 8.B 【解析】【分析】利用偶函数求0x >的解析式再求导,根据导数的几何意义即可求(1,2)处的切线斜率.【详解】设0x >,则0x -<,1()e x f x x --=+,又()f x 为偶函数,∴1()e x f x x -=+,则对应导函数为1()e 1x f x -'=+,∴(1)2f '=,即所求的切线斜率为2.故选:B 9.D 【解析】【分析】根据图象可得6T =,56πθ=,从而求出解析式,再结合三角函数的性质逐一判断即可.【详解】由三角函数的图象可得()22245B A x x -+=,解得3B A x x -=,所以6T =,故A 错误;又26T πω==,所以3πω=,因为()02sin 1f θ==,所以1sin 2θ=,由2θπ≤≤π,所以56πθ=,所以()5=2sin 36f x x ππ⎛⎫+ ⎪⎝⎭,()532sin 16f ππ⎛⎫∴=+=- ⎪⎝⎭,故B 错误;令5,362x k k Z ππππ+=+∈,解得31,x k k Z =-∈,令3312k -=,解得56k Z =∉,故C 错误;由()5=2sin 36f x x ππ⎛⎫+ ⎪⎝⎭右平移一个单位长度后所得的函数为52sin 2sin 2cos 336323y x x x ππππππ⎛⎫⎛⎫=-+=+= ⎪ ⎪⎝⎭⎝⎭,此函数为偶函数,故D 正确.故选:D 10.B 【解析】【分析】根据三角函数的对称性,带值计算即可.【详解】根据题意,2sin 203πϕ⎛⎫-⨯+= ⎪⎝⎭,即4,3k k Z πϕπ-+=∈,解得4,3k k Z πϕπ=+∈;当1k =-时,ϕ取得最小值3π.故选:B.11.D 【解析】【分析】根据题意可知,当0x >时,()0f x x '⎡⎤>⎢⎣⎦,即函数()f x x 在()0,∞+上单调递增,再结合函数f (x )的奇偶性得到函数()f x x的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当0x >时,()2()()0f x xf x f x x x '⎡⎤-=>⎢⎥⎣⎦',则函数()f x x 在()0,∞+上单调递增,而f (x )是定义在R 上的偶函数,容易判断()f x x是定义在()(),00,∞-+∞U 上的奇函数,于是()f x x在(),0∞-上单调递增,而f (-1)=0,则()()110,011f f -==-.于是当(10)(1)x ∞∈-⋃+,,时,()0f x x>.故选:D.12.A 【解析】先利用余弦定理和正弦定理求出3C π=,然后再利用余弦定理和基本不等式,求出c 的最小值.【详解】因为222cos cos a b c abc a B b A+-=+,且222cos 2a b c C ab +-=,所以2cos cos cos ab C ab c a B b A=+,且sin sin sin a b cA B C ==,所以2cos 11sin sin cos sin cos sin()C C A B B A A B ==++,又因为sin()sin 0A B C +=≠,所以1cos 2C =,又因为(0,)C π∈,所以3C π=,又因为222222cos c a b ab C a b ab =+-=+-222()3()312a b a b ab a b +⎛⎫=+-+-= ⎪⎝⎭,当且仅当1a b ==时取等号,故c 的最小值为1.故选:A 【点睛】本题考查解三角形的正弦、余弦定理以及基本不等式求最值,考查学生的逻辑推理及运算求解能力,属于一般题.13.14##0.25【解析】【分析】设()f x x α=,代入点求解即可.【详解】设幂函数()y f x x α==,因为()y f x =的图象过点1(3,)9,所以139α=,解得2α=-所以2()f x x -=,得21(2)24f -==.故答案为:1414.2π【解析】【分析】利用定积分的几何意义及其计算公式求解.【详解】)111111---=+⎰⎰⎰x dx x dx dx,由定积分的几何意义可知11dx -⎰等于半径为1的半圆的面积,即112dx π-=⎰,12111012xdx x -==-⎰,所以)112π-=⎰x dx .故答案为:2π15.(2,0)(2,)-+∞ 【解析】【分析】构造函数,利用导数、函数的奇偶性进行求解即可.【详解】设()()''2()()()f x xf x f x g x g x xx-=⇒=,因为当0x >时,()()0xf x f x '->,所以当0x >时,'()0,()g x g x >单调递增,因为()f x 是定义在R 上的偶函数,所以当0x ≠时,()()()()f x f x g x g x xx--==-=--,所以函数()g x 是奇函数,故当0x <时,函数()g x 也是增函数,因为()20f -=,所以()20f =,所以()20g -=,()20g =,当0x >时,由()0(2)2g x g x >=⇒>,当0x <时,由()0(2)220g x g x x >=-⇒>-⇒-<<,故答案为:(2,0)(2,)-+∞ 16.ln 6,ln 23⎡⎫⎪⎢⎣⎭【解析】利用导数分析函数()f x 的单调性与极值,数形结合可得出实数k 的取值范围.【详解】函数()()ln 2x f x x=的定义域为()0,∞+,()()21ln 2x f x x -'=,令()0f x '=,可得2e x =,列表如下:x 0,2e ⎛⎫ ⎪⎝⎭2e ,2e ⎛⎫+∞ ⎪⎝⎭()f x '+0-()f x 极大值所以,函数()f x的极大值为1222e f e e ⎛⎫== ⎪⎝⎭,()1,22e ∈ ,且()()12ln 2f f ==,()ln 633f =,如下图所示:要使得关于x 的不等式()0f x k ->只有两个整数解,则ln 6ln 23k ≤<.因此,实数k 的取值范围是ln 6,ln 23⎡⎫⎪⎢⎣⎭.故答案为:ln 6,ln 23⎡⎫⎪⎢⎣⎭.【点睛】关键点点睛:本题考查利用不等式的整数解的个数求参数的取值范围,解题的关键在于利用导数分析函数的单调性与极值,然后在同一直角坐标系中画出函数的图象,利用数形结合的方法求解.17.(1)π(2)(]1,2-【解析】【分析】(1)根据辅角公式可得()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,由此即可求出()f x 的最小正周期;(2)根据02x π<<,可得72666x πππ<+<,在结合正弦函数的性质,即可求出结果.(1)解:()cos22sin 26f x x x x π⎛⎫=+=+ ⎪⎝⎭所以()f x 最小正周期为π;(2)02x π<<Q ,72666x πππ∴<+<1sin 2126x π⎛⎫∴-<+≤ ⎪⎝⎭,()f x ∴的值域为(]1,2-.18.(1)45;(2)65-.【解析】【分析】(1)利用三角函数的定义即可求解;(2)三角函数的定义求出cos θ的值,再根据诱导公式,即可求出结果.(1)点P 到坐标原点的距离5d a ==.∵0a >,∴5d a =,∴44sin 55a a θ==.(2)由三角函数的定义,可得33cos 55a a θ==,∴()36sin cos cos cos 2cos 25πθθπθθθ⎛⎫-+-=--=-=- ⎪⎝⎭.19.(1)52AD =或710;(2)sin 5ACB ∠=.【解析】【分析】(1)在ADB △中,利用余弦定理可求出AD 的长;(2)由(1)可得52AD =,在ABC 中,由余弦定理求出BC ,再利用正弦定理可求出sin ACB ∠的值【详解】解:(1)在ADB △中,2224cos 25AD AB BD A AD AB +-==⋅,整理得22064350AD AD -+=,即()()251070AD AD --=,所以52AD =或710.(2)因为AD AB >,由(1)得52AD =,所以4AC AD DC =+=.在ABC 中,由余弦定理得2224362cos 41622455BC AB AC AB AC A =+-⋅⋅=+-⨯⨯⨯=.所以5BC =.由4cos 5A =,得3sin 5A ==.在ABC 中,由正弦定理得sin sin BC AB A ACB∠∠=,即253sin 5ACB ∠=,所以sin ACB ∠=20.(1)()*50.5N 20x y x x =++∈(2)最多使用10年报废【解析】【分析】(1)根据题意,即可求得年平均费用y 关于x 的表达式;(2)由50.520x y x =++,结合基本不等式,即可求解.(1)解:由题意,设备每年的管理费是0.45万元,使用x 年时,总的维修费用为()120x x +万元,所以y 关于x 的表达式为()()*150.455200.5N 20x x x x y x x x +++==++∈.(2)解:因为*N x ∈,所以50.50.5 1.520x y x =++≥=,当且仅当520x x =时取等号,即10x =时,函数有最小值,即这套设备最多使用10年报废.21.(1)()min 14f x =,()max 14f x =;(2)2.【解析】【分析】(1)利用二倍角公式和两角和的正弦公式化简()f x ,进而由x 的取值范围得出函数的最值;(2)利用面积公式,余弦定理和正弦定理求解即可.【详解】(1)()21sin cos sin cos 22f x x x x x ⎛⎫=-+ ⎪ ⎪⎝⎭221cos sin cos 22x x x x =-+1cos 21cos 2sin 2442x x x -+=-312cos 244x x =++1sin 2234x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦ 52336x πππ∴≤+≤1sin 2123x π⎛⎫∴≤+≤ ⎪⎝⎭∴当0,4x π⎡⎤∈⎢⎥⎣⎦时,()min f x =()max f x =(2)1sin 12234A f A π⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭sin 32A π⎛⎫∴+= ⎪⎝⎭()0,A π∈ 4,333A πππ⎛⎫∴+∈ ⎪⎝⎭3A π∴=1sin2ABC S A === 4bc ∴=又a =222cos 2b c a A bc +-∴=22128b c +-=()2208b c +-=12=()224b c ∴+=b c ∴+=又4sin sin sin a b c A B C===()1sin sin 42B C b c ∴+=+=22.(1)4k ≤;(2)k 2≤.【解析】(1)解不等式22k ≤即得解;(2)化为1≤+k x x 在(0,)x ∈+∞恒成立,令1()g x x x =+,求出函数()g x 的最小值即可.【详解】(1)若()f x 在(2,)x ∈+∞单调递增,则22k ≤,所以4k ≤;(2)因为()0f x ≥在(0,)x ∈+∞上恒成立,所以210-+≥x kx 在(0,)x ∈+∞恒成立,即1≤+k x x在(0,)x ∈+∞恒成立令1()g x x x =+,则1()2=+≥=g x x x ,当且仅当1x =时等号成立所以k 2≤.【点睛】方法点睛:处理参数的问题常用的方法有:(1)分离参数法(先分离参数转化为函数的最值);(2)分类讨论法(对参数分类讨论求解).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 函数与导数、不等式 第1讲 函数图象与性质及函数与方程

一、选择题 1.(2014·北京朝阳期末考试)函数f(x)=1x-1+x的定义域为 ( ). A.[0,+∞) B.(1,+∞) C.[0,1)∪(1,+∞) D.[0,1) 2.(2014·新课标全国卷Ⅱ改编)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=( ).A.1 B.-1 C.3 D.-3 3.(2014·天津卷)函数f(x)=log12(x2-4)的单调递增区间为 ( ). A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2) 4.(2014·济南模拟)函数f(x)=(x-1)ln|x|的图象可能为 ( ).

5.(2013·新课标全国卷Ⅰ)已知函数f(x)= -x2+2x,x≤0,lnx+1,x>0.若|f(x)|≥ax,则a的取值范围是( ).A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 二、填空题 6.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2 a)+f(log12a)≤2f(1),则a的取值范围是________. 7.(2014·广州测试)已知函数f(x)=2ax2+2x-3.如果函数y=f(x)在区间[-1,1]上有零点,则实数a的取值范围为____________. 8.已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],

且x1≠x2时,都有fx1-fx2x1-x2<0,给出下列命题: ①f(2)=0;②直线x=-4是函数y=f(x)图象的一条对称轴; ③函数y=f(x)在[-4,4]上有四个零点;④f(2 014)=0. 其中所有正确命题的序号为________. 第2讲 不等式及线性规划 一、选择题 1.(2014·广州综合测试)已知x>-1,则函数y=x+1x+1的最小值为 ( ). A.-1 B.0 C.1 D.2 2.(2014·安徽“江南十校”联考)已知向量a=(3,-2),b=(x,y-1),且a∥b ,若x,y

均为正数,则3x+2y的最小值是( ).

A.53 B.83 C.8 D.24

3.(2014·天津卷)设变量x,y满足约束条件 x+y-2≥0,x-y-2≤0,y≥1,则目标函数z=x+2y的最小值为( ).A.2 B.3 C.4 D.5 4.已知关于x的不等式2x+2x-a≥7在x∈(a,+∞)上恒成立,则实数a的最小值为

A.1 B.32 C.2 D.52 5.在R上定义运算⊗:x⊗y=x(1-y).若对任意x>2,不等式(x-a)⊗x≤a+2都成立,则实数a的取值范围是 ( ). A.[-1,7] B.(-∞,3] C.(-∞,7] D.(-∞,-1]∪[7,+∞) 二、填空题

6.(2014·潍坊一模)已知a>b>0,ab=1,则a2+b2a-b的最小值为________. 7.(2014·吉林省实验中学)若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则1a+1b的最小值是________. 8.已知x>0,y>0,x+y+3=xy,且不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是________. 第3讲 导数与函数的单调性、极值与最值的基本问题 一、选择题 1.函数f(x)=12x2-ln x的单调递减区间为 ( ). A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞) 2.已知函数y=12f′(x)的图象如图所示,则函数f(x)的单调递增区间为 ( ).

A.(-∞,1) B.(-∞,0)和(2,+∞) C.R D.(1,2) 3.已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则 ( ). A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值 C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值 4.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是 A.∀x∈R,f(x)≤f(x0) B.-x0是f(-x)的极小值点 C.-x0是-f(x)的极小值点 D.-x0是-f(-x)的极小值点 二、填空题

5.(2014·盐城模拟)已知f(x)=12x2+2xf′(2 014)+2 014ln x,则f′(2 014)=_____.

6.函数f(x)=2mcos2 x2+1的导函数的最大值等于1,则实数m的值为________. 7.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于________. 8.(2014·绍兴模拟)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________. 三、解答题 9.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6). (1)确定a的值; (2)求函数f(x)的单调区间与极值. 第4讲 利用导数求参数的取值范围 一、选择题 1.已知函数f(x)=12mx2+ln x-2x在定义域内是增函数,则实数m的取值范围是 A.[-1,1] B.[-1,+∞) C.[1,+∞) D.(-∞,1] 2.(2014·广州调研)函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是

A.[0,1) B.(-1,1) C.0,12 D.(0,1) 3.已知函数f(x)=13x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是( ). A.179,+∞ B.179,+∞ C.(-∞,2] D.(-∞,2) 4.已知函数f(x)=13x3+ax2+3x+1有两个极值点,则实数a的取值范围是 ( ). A.(3,+∞) B.(-∞,-3) C.(-3,3) D.(-∞,-3)∪(3,+∞) 二、填空题 5.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是________.

6.若函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是______. 7.已知m∈R,若函数f(x)=x3-3(m+1)x2+12mx+1在[0,3]上无极值点,则m的值为___. 8.已知函数f(x)=x-1x+1,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是______. 三、解答题 9.已知函数f(x)=x2+2aln x. (1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,为求实数a的值;

(2)若函数g(x)=2x+f(x)在[1,2]上是减函数,求实数a的取值范围.

10.(2014·北京西城区一模)已知函数f(x)=ln x-ax,其中a∈R. (1)当a=2时,求函数f(x)的图象在点(1,f(1))处的切线方程; (2)如果对于任意x∈(1,+∞),都有f(x)>-x+2,求a的取值范围. 第5讲 导数与不等式的证明及函数零点、方程根的问题 一、选择题 1.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为 ( ). A.{}x|x>0 B.{}x|x<0 C.{}x|x<-1,或x>1 D.{}x|x<-1,或02.已知f(x)是定义在(0,+∞) 上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的0则必有 ( ). A.af(b)≤bf(a) B.bf(a)≤af(b) C.af(a)≤f(b) D.bf(b)≤f(a) 3.(2014·汕头模拟)已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则下列不等式中成立的是 ( ). A.f(a)<f(1)<f(b) B.f(a)<f(b)<f(1) C.f(1)<f(a)<f(b) D.f(b)<f(1)<f(a) 4.(2013·安徽卷)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是 ( ). A.3 B.4 C.5 D.6 二、填空题

5.函数f(x)=13x3-x2-3x-1的图象与x轴的交点个数是________. 6.(2014·温州模拟)关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________. 7.(2014·洛阳模拟)已知函数f(x)=ex-2x+a有零点,则a的取值范围是________.

8.(2014·邯郸质检)已知函数f(x)=13x3-x2-3x+43,直线l:9x+2y+c=0,若当x∈[-2,2]时,函数y=f(x)的图象恒在直线l下方,则c的取值范围是________. 三、解答题 9.(2013·北京卷)已知函数f(x)=x2+xsin x+cos x. (1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值; (2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.

相关文档
最新文档