函数导数与不等式专题

合集下载

新高考数学大一轮复习专题一函数与导数第7讲导数与不等式的证明

新高考数学大一轮复习专题一函数与导数第7讲导数与不等式的证明

第7讲 导数的综合应用[考情分析] 1.导数逐渐成为解决问题必不可少的工具,利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题是高考的热点和难点.2.多以解答题压轴形式出现,难度较大.母题突破1 导数与不等式的证明母题 (2017·全国Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 2思路分析 ❶f x ≤-34a -2↓ ❷f xmax≤-34a-2↓ ❸f xmax+34a+2≤0 ↓ ❹构造函数证明(1)解 f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +12ax +1x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增. 若a <0,则当x ∈⎝⎛⎭⎪⎫0,-12a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.(2)证明 由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a-1-14a,所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2, 即ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0.设g (x )=ln x -x +1,则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f (x )≤-34a-2.[子题1] 设函数f (x )=ln x -x +1.证明:当x ∈(1,+∞)时,1<x -1ln x<x . 证明 f ′(x )=1x -1=1-xx,x >0,当x >1时,f ′(x )<0,f (x )单调递减, 当0<x <1时,f ′(x )>0,f (x )单调递增, ∴f (x )=ln x -x +1≤f (1)=0,∴ln x ≤x -1, ∴当x >1时,ln x <x -1,① 且ln 1x <1x-1,②由①得,1<x -1ln x ,由②得,-ln x <1-xx, ∴ln x >x -1x ,∴x >x -1ln x, 综上所述,当x >1时,1<x -1ln x<x . [子题2] 已知函数f (x )=e x-x 2.求证:当x >0时,e x+2-e x -1x≥ln x +1.证明 设g (x )=f (x )-(e -2)x -1=e x -x 2-(e -2)x -1(x >0), 则g ′(x )=e x-2x -(e -2), 设m (x )=e x-2x -(e -2)(x >0),则m ′(x )=e x-2,易得g ′(x )在(0,ln2)上单调递减,在(ln2,+∞)上单调递增, 又g ′(0)=3-e>0,g ′(1)=0, 由0<ln2<1,则g ′(ln2)<0,所以存在x 0∈(0,ln2),使得g ′(x 0)=0, 所以当x ∈(0,x 0)∪(1,+∞)时,g ′(x )>0; 当x ∈(x 0,1)时,g ′(x )<0.故g (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+∞)上单调递增, 又g (0)=g (1)=0,所以g (x )=e x-x 2-(e -2)x -1≥0, 故当x >0时,e x+2-e x -1x≥x .又由母题可得ln x ≤x -1,即x ≥ln x +1, 故e x+2-e x -1x≥ln x +1.规律方法 利用导数证明不等式f (x )>g (x )的基本方法(1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max .(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0.(3)通过题目中已有的或常用的不等式进行证明. (4)利用赋值法证明与正整数有关的不等式. 跟踪演练1.(2018·全国Ⅰ)已知函数f (x )=a e x-ln x -1. (1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≥1e时,f (x )≥0.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a e x-1x.由题设知,f ′(2)=0,所以a =12e2.从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x .当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )的单调递增区间为(2,+∞),单调递减区间为(0,2). (2)证明 当a ≥1e 时,f (x )≥exe-ln x -1.方法一 设g (x )=exe -ln x -1(x ∈(0,+∞)),则g ′(x )=e xe -1x.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.方法二 易证e x ≥x +1,① ln x ≤x -1,②∴f (x )≥e xe -ln x -1=e x -1-ln x -1≥x -ln x -1≥0,即证f (x )≥0.2.(2020·株州模拟)已知f (x )=ln x +2e x.(1)若函数g (x )=xf (x ),讨论g (x )的单调性与极值; (2)证明:f (x )>1ex .(1)解 由题意,得g (x )=x ·f (x )=x ln x +2e (x >0),则g ′(x )=ln x +1.当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,所以g (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0,所以g (x )单调递增,所以g (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1e ,单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞,g (x )的极小值为g ⎝ ⎛⎭⎪⎫1e=1e,无极大值.(2)证明 要证ln x +2e x >1e x (x >0)成立,只需证x ln x +2e >xex (x >0)成立,令h (x )=x e x ,则h ′(x )=1-xex ,当x ∈(0,1)时,h ′(x )>0,h (x )单调递增,当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减, 所以h (x )的极大值为h (1),即h (x )≤h (1)=1e,由(1)知,x ∈(0,+∞)时,g (x )≥g ⎝ ⎛⎭⎪⎫1e =1e,且g (x )的最小值点与h (x )的最大值点不同,所以x ln x +2e >x e x ,即ln x +2e x >1e x ,所以f (x )>1e x .专题强化练1.(2020·沈阳模拟)已知函数f (x )=x 2-(a -2)x -a ln x ,a >0. (1)求函数y =f (x )的单调区间;(2)当a =1时,证明:对任意的x >0,f (x )+e x >x 2+x +2.(1)解 f (x )=x 2-(a -2)x -a ln x ,a >0,定义域为(0,+∞),f ′(x )=2x -(a -2)-ax=2x -ax +1x,令f ′(x )>0,得x >a2;令f ′(x )<0,得0<x <a2.∴函数y =f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,a 2,单调递增区间为⎝ ⎛⎭⎪⎫a2,+∞.(2)证明 方法一 ∵a =1,∴f (x )=x 2+x -ln x (x >0), 即证e x-ln x -2>0恒成立, 令g (x )=e x-ln x -2,x ∈(0,+∞), 即证g (x )min >0恒成立,g ′(x )=e x -1x ,g ′(x )为增函数,g ′⎝ ⎛⎭⎪⎫12<0,g ′(1)>0,∴∃x 0∈⎝ ⎛⎭⎪⎫12,1,使g ′(x 0)=0成立,即0e x-1x 0=0,则当0<x <x 0时,g ′(x )<0,当x >x 0时,g ′(x )>0,∴y =g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴g (x )min =g (x 0)=0e x-ln x 0-2, 又∵0e x -1x 0=0,即0e x=1x 0,∴g (x 0)=0e x -ln x 0-2=0e x+ln 1x 0-2=1x 0+x 0-2,又∵x 0∈⎝ ⎛⎭⎪⎫12,1,∴x 0+1x 0>2, ∴g (x 0)>0,即对任意的x >0,f (x )+e x>x 2+x +2. 方法二 令φ(x )=e x-x -1,∴φ′(x )=e x-1,∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0, ∴e x≥x +1,①令h (x )=ln x -x +1(x >0), ∴h ′(x )=1x -1=1-xx,∴h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴h (x )max =h (1)=0,∴ln x ≤x -1,∴x +1≥ln x +2,② 要证f (x )+e x >x 2+x +2, 即证e x>ln x +2,由①②知e x≥x +1≥ln x +2,且两等号不能同时成立, ∴e x>ln x +2,即证原不等式成立.2.(2020·全国Ⅱ)已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤338;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n .(1)解 f ′(x )=2sin x cos x sin2x +2sin 2x cos2x =2sin x sin3x .当x ∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,π时,f ′(x )>0; 当x ∈⎝⎛⎭⎪⎫π3,2π3时,f ′(x )<0.所以f (x )在区间⎝ ⎛⎭⎪⎫0,π3,⎝ ⎛⎭⎪⎫2π3,π上单调递增,在区间⎝⎛⎭⎪⎫π3,2π3上单调递减.(2)证明 因为f (0)=f (π)=0,由(1)知,f (x )在区间[0,π]上的最大值为f ⎝ ⎛⎭⎪⎫π3=338,最小值为f ⎝ ⎛⎭⎪⎫2π3=-338. 而f (x )是周期为π的周期函数,故|f (x )|≤338.(3)证明 由于()322222sin sin 2sin 4sin 2…nx x x x=|sin 3x sin 32x …sin 32nx | =|sin x ||sin 2x sin 32x …sin 32n -1x sin2n x ||sin 22n x |=|sin x ||f (x )f (2x )…f (2n -1x )||sin 22n x |≤|f (x )f (2x )…f (2n -1x )|,所以sin 2x sin 22x sin 24x …sin 22nx ≤238n⎛⎫ ⎪ ⎪⎝⎭=3n4n .。

专题3 导数解决不等式的恒成立和证明

专题3  导数解决不等式的恒成立和证明

第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。

高考数学专题复习-利用导数证明函数不等式

高考数学专题复习-利用导数证明函数不等式

专题四 利用导数证明函数不等式(一)函数不等式的证明由于其形式多变,方法灵活,成为了近几年高考的一个热点与难点,它一般出现在压轴题的位置,解决起来比较困难.利用导数作为工具进行证明是证明函数不等式的一种常见方法,本专题总结了利用导数证明一个未知数的函数不等式的常见方法,希望同学们看后有所收获,提升利用导数证明函数不等式的能力.模块1 整理方法 提升能力对于一个未知数的函数不等式问题,其关键在于将所给的不等式进行“改造”,得到一平一曲、两曲两种模式中的一种.当出现一平一曲时,只需运用导数求出“曲”的最值,将其与“平”进行比较即可. 当出现两曲时,如果两个函数的凸性相同,则可以考虑通过曲线进行隔离.由于隔离曲线的寻找难度较大,所以我们一般希望两个函数的凸性相反.当两个函数的凸性相反时,则可以寻找直线(常选择公切线或切线)实现隔离放缩,当然最理想的直线状态是该直线与x 轴平行或重合.当改造的过程中出现一斜一曲时,一般要将其继续改造,要么将其化归到一边,转化为一平一曲,要么将其转化为两曲.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. 生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m m y x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e 1e x m m x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m =时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥.设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n-=-,即11ln y x n n =-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln e x x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数.生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.例1设函数()1e e ln x xb f x a x x-=+,曲线()y f x =在点()()1,1f 处的切线为()e 12y x =-+.(1)求a 、b ; (2)证明:()1f x >.【解析】(1)因为()1e f '=,()12f =,而()2e e e ln xa x bxb f x a x x +-'=+,所以()()1e e12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =. 【证明】(2)法1:(寻找公切曲线隔离)由(1)知,()12e e ln x xf x x x-=+,于是()12e 1e ln 1x xf x x x->⇔+>.由于()f x 混合了指数函数、对数函数和幂函数,比较复杂,所以可以考虑将指数函数、对数函数进行分离,改造为21ln e e xx x +>. 令()2ln e g x x x =+,则()2212e 2e e x g x x x x -'=-=,由()0g x '>可得2e x >,由()0g x '<可得20ex <<,所以()g x 在20,e ⎛⎫ ⎪⎝⎭上递减,在2,e ⎛⎫+∞ ⎪⎝⎭上递增.而()1e xh x =递减,所以两个函数的凸性相同(都是下 凸函数).此时,我们可以寻找与两个曲线都相切的曲线()1e t x x=,将两个函数进行隔离,从而实现证明.211ln ln 0e e e x x x x x +≥⇔+≥,令()1ln e k x x x =+,则()2211e 1e e x k x x x x -'=-=,由()0k x '>可得1e x >,由()0k x '<可得10e x <<,所以()k x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,所以()min10e k x k ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭,于是1ln 0e x x +≥. 11e e e e 0e ex x x x x x ≥⇔≥⇔-≥,令()e e x s x x =-,则()e e x s x '=-,由()0s x '>可得1x >,由()0s x '<可得01x <<,所以()s x 在()0,1上递减,在()1,+∞上递增,所以()()min 10s x s ⎡⎤==⎣⎦,于是e e 0xx -≥.由于等号不能同时成立,所以21ln e e xx x +>. 法2:(寻找公切线隔离)由(1)知,()12e e ln x xf x x x-=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e e x x x x +>.令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1ex >,由()0m x '<可得10e x <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =, 则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞ 上递减,所以()()max11en x n ⎡⎤==⎣⎦.两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln x x x x +>. 【点评】法1中的两个函数凸性相同,因此需要寻找公切曲线()1e t x x=进行隔离,公切曲线的寻找需要有一定的函数不等式放缩经验.该放缩211ln e e e xx x x +≥≥与常用不等式e e x x ≥以及11ln e ex x x -≤≤有关,因此熟练掌握与e x 、ln x 有关的常用不等式,能有效打开某些不等式的证明思路,使题目的难度降低.法2中的两个函数凸性相反,且两个函数的最值相同,此时可寻找到与x 轴平行的公切线1ey =,实现隔离放缩. 如何恰当地“改造”函数是解题的关键,这需要我们熟悉与n x 、ln x 、e x 四则运算组合后的函数,如:(1)e x x 、2e x x 、3e x x 、…过原点,先减后增;(2)e x x、2e x x 、3e x x 、…过原点,先增后减;(3)e x x 、2e x x 、3e xx、…在(),0-∞上递减,在()0,+∞上先减后增;(4)ln x x 、2ln x x 、3ln x x 、…在()0,+∞上先减后增;(5)ln x x 、2ln x x 、3ln xx、…在()0,+∞上先增后减; (6)ln xx 、2ln x x 、3ln x x、…在()0,1上递减,在()1,+∞上先减后增.例2已知函数()21e xax x f x +-=.(1)求曲线()y f x =在点()0,1-处的切线方程; (2)求证:当1a ≥时,()e 0f x +>. 【解析】(1)()212exax a x f x -+-+'=,因为()0,1-在曲线()y f x =上,且()02f '=,所以切线方程为()()120y x --=-,即210x y --=.【证明】(2)法1:()2211e 0e 01e 0ex xax x f x ax x ++-+≥⇔+≥⇔+-+≥. 当1a ≥时,21211e 1e x x ax x x x +++-+≥+-+,令()211e x g x x x +=+-+,则()121e x g x x +'=++,()12e 0x g x +''=+>,于是()g x '在R 上递增.又因为()10g '-=,由()0g x '<可得1x <-,由()0g x '>可得1x >-,所以()g x 在(),1-∞-上递减,在()1,-+∞上递增,所以()()10g x g ≥-=.法2:()2211e 0e 01e 0ex xax x f x ax x ++-+≥⇔+≥⇔+-+≥. 当1a ≥时,21211e 1e x x ax x x x +++-+≥+-+,由常见不等式e 1x x ≥+(x ∈R ),可得1e 2x x +≥+,所以()()22121e 1210x x x x x x x ++-+≥+-++=+≥.法3:令()()21e e exax x F x f x +-=+=+,则()()2212e x ax a x F x -+-+'== ()()21e x x ax -+-,由()0F x '>可得12x a -<<,由()0F x '<可得1x a <-或2x >,所以()F x 在1,a ⎛⎫-∞- ⎪⎝⎭上递减,在1,2a ⎛⎫- ⎪⎝⎭上递增,在()2,+∞上递减.()F x 的极小值为11e e e e 0a F a ⎛⎫-=-+<-+≤ ⎪⎝⎭,由洛必达法则,可得21212lim e e lim e lim e e e e x x x x x x ax x ax a →+∞→+∞→+∞⎛⎫+-++=+=+= ⎪⎝⎭,所以()0F x ≥,即()e 0f x +>. 法4:()2211e 0e 01e 0e x xax x f x ax x ++-+≥⇔+≥⇔+-+≥.令()211e x G x ax x +=+-+,则()121e x G x ax +'=-+,()12e 0x G x a +''=+>,所以()G x '在R 上递增,又因为()00G '=,由()0G x '<可得0x <,由()0G x '>可得0x >,所以()G x 在(),0-∞上递减,在()0,+∞上递增,所以()()00G x G ≥=.法5:()2211e 0e 01e 0ex xax x f x ax x ++-+≥⇔+≥⇔+-+≥.当0x =时,不等式成立,当0x ≠时,()1212e 11e 0x x x ax x a k x x ++--++-+≥⇔≥=.()()()()()121111433e 12e 12e 1e 2e 2x x x x x x x x x x x k x x x x +++++-----+----++-'===,由()0k x '>可得1x <-或02x <<,由()0k x '<可得10x -<<或2x >,所以()k x 在(),1-∞-上递增,在()1,0-上递减,在()0,2上递增,在()2,+∞上递减.因为()11k -=,()3e 124k +=-,所以()max1k x ⎡⎤=⎣⎦,而1a ≥,所以()a k x ≥,即()e 0f x +≥.法6:()2211e 0e 01e ex xax x f x ax x ++-+≥⇔+≥⇔+-≥-. 令()21m x ax x =+-,则()m x 是以12x a=-为对称轴,开口方向向上的抛物线.令()1e x n x +=-,则()n x 递 减.由于两个函数的凸性相反,因此我们可以通过寻找两 个曲线的公切线将两个函数进行隔离,但由于公切线不容 易寻找,又因为两个函数处于相离的状态,因此我们可以选择在()1e x n x +=-上找切线,通过该切线将两个函数隔离,从而实现证明.由常见不等式e 1x x ≥+可得1e 2x x +≥+,容易想到隔离切线2y x =--,下面进行证明.()()222212210110ax x x ax x a x x +-≥--⇔++≥⇔-++≥,而12e x x +--≥-,命题获证.【点评】对于含有参数的一个未知数的函数不等式,其证明方法与不含参数的一个未知数的函数不等式证明大体一致.法3是直接证明()e 0f x +≥,法4是将不等式等价转化为211e0x ax x ++-+≥,法5是通过分离参数进而证明12e 1x x a x+--+≥,3种方法本质都是一平一曲状态.法6将不等式转化为211e x ax x ++-≥-,由于两个函数的凸性相反,因此我们可以寻找切线实现隔离放缩.对于含有参数的一个未知数的函数不等式,我们还可以通过放缩,消去参数,转化为研究一个特例函数的问题,从而使题目的难度大大降低.例3已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞.法1:(分离参数法)①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x-+'=,令()1ln 1k x x x =-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111limlim 11ln x x x x x++→→-==,所以1a ≤.③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x xx--→→-==,所以1a ≥. 综上所述,1a =.法2:(不猜想直接用最值法)()1a x af x x x-'=-=. ①当0a ≤时,()f x 在()0,+∞上递增,而()10f =,于是()0f x ≥不成立.②当0a >时,由()0f x '>可得x a >,由()0f x '<可得0x a <<,所以()f x 在()0,a 上递减,在(),a +∞上递增,而()10f =,所以1a =.法3:(通过猜想减少分类讨论)由11ln 2022f a ⎛⎫=-+≥ ⎪⎝⎭可得12ln 2a ≥.()1a f x x '=-,由()0f x '>可得x a >,由()0f x '<可得0x a <<,所以()f x 在()0,a 上递减,在(),a +∞上递增,而()10f =,所以1a =.(2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122kk ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n +++=-<,所以2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3. 112n ⎫⎛⎫+⎪⎪⎭⎝⎭较麻烦.考虑取对数,将不等式等价转化为ln ln 1⎛⎛+++ ⎝容易联想到与ln x 有关的常用不等式()ln 1x x +≤.模块2 练习巩固 整合提升练习1:已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b ab =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. 【证明】(2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x =>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x =>-. 综上所述,当0x >,且1x ≠时,()ln 1xf x x >-.练习2:已知函数()()211ln 2ex bf x ax x ax bx =+--+(a 、b ∈R ).(1)若12a b ==,求函数()()ln ex bF x f x ax x =--的单调区间;(2)若1a =,1b =-,求证:()221ln 12e 2f x ax bx x -++>--.【解析】(1)当12a b ==,()211ln 42F x x x x =--,()()()21111222x x F x x x x +-'=--=-.由()0F x '>可得01x <<,由()0F x '<可得1x >,所以()F x 的递增区间为()0,1,递减区间为()1,+∞.【证明】(2)若1a =,1b =-,()222112ln 12e ln 12e ex f x ax bx x x x -++>--⇔->--.令()1ln e x G x x x =-,则()1ln 1e x G x x '=++,()11e e e x x xx G x x x -''=-=.设()e x h x x =-,则()e 10x h x '=->,所以()h x 在()0,+∞上递增,所以()()01h x h >=,所以()0G x ''>,所以()G x '在()0,+∞上递增.又因为1e 1e 0e G -⎛⎫'=> ⎪⎝⎭,21e 21e 10e G -⎛⎫'=-< ⎪⎝⎭,所以()G x '恰有一个零点0211,e e x ⎛⎫∈ ⎪⎝⎭,即()0001ln 10e x G x x '=++=,且当00x x <<时,()0G x '<,当0x x >时,()0G x '>,所以()G x 在()00,x 上递减,在()0,x +∞上递增,所以()()00000001ln ln ln 1ex G x G x x x x x x ≥=-=++.设()ln ln 1x x x x ϕ=++,211,e e x ⎛⎫∈ ⎪⎝⎭,则()11ln 11e 0x x x ϕ'=++>-+>,所以()x ϕ在211,e e ⎛⎫ ⎪⎝⎭上递增,所以()02222211112ln ln 11e ee e e x ϕϕ⎛⎫>=++=-- ⎪⎝⎭.命题获证.练习3:已知函数()e e ln x f x x x =+.(1)求曲线()y f x =在()()1,1f 处的切线方程; (2)求证:()2e f x x ≥.【解析】(1)()()e e 1ln x f x x '=++,所以()12e f '=,又()1e f =,所以()y f x =在()()1,1f 处的切线方程为()e 2e 1y x -=-,即2e e y x =-.【证明】(2)法1:()2212e e e ln e e ln 0x x f x x x x x x x x -≥⇔+≥⇔+-≥,构造函数()12e ln x g x x x x -=+-,则()1e 1ln 2x g x x x -'=++-,()11e 2x g x x-''=+-,()121e x g x x -'''=-.因为()g x '''在()0,+∞上递增,且()10g '''=,所以当01x <<时,()0g x '''<,当1x >时,()0g x '''>,所以()g x ''在()0,1上递减,在()1,+∞上递增,所以()()10g x g ''''≥=,于是()g x '在()0,+∞上递增,又因为()10g '=,所以当01x <<时,()0g x '<,()g x 递减,当1x >时,()0g x '>,()g x 递增,所以()()10g x g ≥=,命题获证.法2:()122e e e e ln e ln 0x xf x x x x x x x x -≥⇔+≥⇔+-≥,构造函数()1e ln x G x x x x-=+-,则()()()()()11122221e e 1e 111x x x x x x x x x G x x xx x -------+-'=+-==.令()1e x H x x -=-,则()1e 1x H x -'=-,由()0H x '>可得1x >,由()0H x '<可得01x <<,于是()H x 在()0,1上递减,在()1,+∞上递增,于是()()10H x H ≥=.于是当01x <<时,()0G x '<,当1x >时,()0G x '>,所以()G x 在()0,1上递减,在()1,+∞上递增,于是()()10G x G ≥=,命题获证.构造的不等式两端的函数凸性一致,且寻找隔离曲线的难度大,不容易证明.考虑到函数()12e ln x g x x x x -=+-的形式不算太复杂,可通过多次求导证明其在x 轴的上方(有且仅有一单的原因在于()G x 当中的ln x 比较“单纯”,求导一次就能消去ln x .练习4:设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数.(1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明. 【解析】(1)()11f x x '=+,所以()1x g x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a F x g x x ++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01x G x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增.由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x ++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11ax h x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞.(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.(2)()()()1212231n g g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证.法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11t F t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1. 练习5:已知函数()()1ln 2f x x a x x =-+(其中a ∈R ). (1)若曲线()y f x =在点()()00,xf x 处的切线方程为12y x =,求a 的值; (2)若12e a <<e 是自然对数的底数),求证:()0f x >. 【解析】(1)()3ln 2a f x x x '=-+,依题意,有()00000000121ln 231ln 22y x y x a x x a x x ⎧=⎪⎪⎪=-+⎨⎪⎪-+=⎪⎩,解得011x a =⎧⎨=⎩或01x a a =⎧⎨=⎩,所以1a =. (2)法1:令()()g x f x '=,则()21a g x x x '=+,因为12ea <<()0g x '>,即()g x 在()0,+∞上递增.因为311ln ln 02222222a a a a g a ⎛⎫=-+=-<-= ⎪⎝⎭,()3111ln ln ln 0222e 2a g a a a a =-+=+>+=,所以()g x 在,2a a ⎛⎫ ⎪⎝⎭上有唯一零点0x .当00x x <<时,()0g x <,当0x x >时,()0g x >,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取到最小值()()00001ln 2f x x a x x =-+.因为()0003ln 02ag x x x =-+=,所以003ln 2a x x =-,所以()()00003122a f x x a x x ⎛⎫=--+= ⎪⎝⎭ ()()()2220000000051125222222a x a x ax a x a x a x x x --+=--+=---,因为0,2a x a ⎛⎫∈ ⎪⎝⎭,所以()00f x >,所以当12ea <<()0f x >. 法2:当x a =时,()02a f a =>. 当x a ≠时,()()()()1ln 0ln 022x f x x a x x x a x x a ⎡⎤=-+>⇔-+>⎢⎥-⎢⎥⎣⎦.令()()ln 2x F x x x a =+-,则()()()()()()22222221252222x a x a a x ax a F x x x a x x a x x a ---+'=-==---,由()0F x '>可得02a x <<或2x a >,由()0F x '<可得2a x a <<或2a x a <<,所以()F x 在0,2a ⎛⎫ ⎪⎝⎭上递增,在,2a a ⎛⎫ ⎪⎝⎭上递减,在(),2a a 上递减,在()2,a +∞上递增.因为112ln ln ln 022222222aa a a F a a ⎛⎫=+=-<-= ⎪⎛⎫⎝⎭- ⎪⎝⎭,()()21112ln 2ln 2ln 02222e 2a F a a a a a =+=+>+=-,所以当0x a <<时,()0F x <,所以()()()0f x x a F x =->,当x a >时,()0F x >,所以()()()0f x x a F x =->.。

专题一 第5讲 导数与不等式的证明

专题一 第5讲 导数与不等式的证明
设 h(x)=x-1-ln x,则 h′(x)=1-1x=0⇒x=1,
可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.

g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

高考数学专题讲解 第5 6讲 函数 导数与不等式 上 下

高考数学专题讲解 第5 6讲 函数 导数与不等式 上 下

第5讲 函数、导数与不等式(上)题一:已知函数()xf x y e = ,x R ∈满足()()f x f x '>,则()1f 与()0ef 的大小关系是( )A. ()()10f ef <B. ()()10f ef >C. ()()10f ef =D.不能确定题二: 设()(),f x g x 是定义在R 上的可导函数,且()()()()0fx g x f x g x ''+<,则当a x b <<时有( )A. ()()()()f x g x f b g b >B. ()()()()f x g a f a g x >C. ()()()()f x g b f b g x >D. ()()()()f x g x f a g a >题三:已知函数f(x)=x 3-ax 2-1(a ≠0). (I ) 求函数f(x)的单调区间;(Ⅱ)当a>0时,若过原点(0,0)与函数f(x)的图象相切的直线恰有三条,求实数a 的取值范围.题四:设函数321a x x bx c 32f -++(x )=,其中a >0,曲线x y f =()在点P (0,0f ())处的切线方程为y=1(Ⅰ)确定b 、c 的值(Ⅱ)设曲线x y f =()在点(11x x f ,())及(22x x f ,())处的切线都过点(0,2) 证明:当12x x ≠时,12'()'()f x f x ≠(Ⅲ)若过点(0,2)可作曲线x y f =()的三条不同切线,求a 的取值范围。

题五:已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()0y f x x ==在(2,2)的切线过点;(Ⅱ)若00()(1,3)f x x x x =∈在处取得极小值,,求a 的取值范围。

题六:已知函数22()ln (0)f x x a x x x=++>,()f x 的导函数是'()f x .对任意两个不相等的正数1x 、2x ,证明:(I )当0a £时,1212()()()22f x f x x x f ++>;(II )当4a £时, 1212'()'()f x f x x x ->-.第6讲 函数、导数与不等式(下)题一:证明:当1x >时,()21ln 1x x x ->+题二:设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2. (I )求a ,b 的值;(II )证明:)(x f ≤2x -2.题三:对正整数n ,设曲线()1ny x x =-在x=2处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和公式是题四:设数列{}n a 的通项是()213nn a n =-,请用导数的方法求它的前n 项和n S题五:已知函数f (x )=-x 2+8x,g (x )=6ln x+m 是否存在实数m ,使得y =f (x )的图象与y =g (x )的图象有且只有三个不同的交点?若存在,求出m 的取值范围;,若不存在,说明理由。

专题12 利用导数研究不等式恒成立问题(解析版)

专题12 利用导数研究不等式恒成立问题(解析版)

专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x )或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.【解析】法一:构造函数法设g (x )=x e 2x -ax -ln x -1(x >0),对任意的x >0,f (x )≤x e 2x 恒成立,等价于g (x )≥0在(0,+∞)上恒成立,则只需g (x )min ≥0即可.因为g ′(x )=(2x +1)e 2x -a -1x ,令h (x )=(2x +1)e 2x -a -1x (x >0),则h ′(x )=4(x +1)e 2x +1x2>0,所以h (x )=g ′(x )在(0,+∞)上单调递增,因为当x ―→0时,h (x )―→-∞,当x ―→+∞时,h (x )―→+∞,所以h (x )=g ′(x )在(0,+∞)上存在唯一的零点x 0,满足(2x 0+1)e2x 0-a -1x 0=0,所以a =(2x 0+1)e2x 0-1x 0,且g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0e2x 0-ax 0-ln x 0-1=-2x 20e2x 0-ln x 0,则由g (x )min ≥0,得2x 20e2x 0+ln x 0≤0,此时0<x 0<1,e2x 0≤-ln x 02x 20,所以2x 0+ln(2x 0)≤ln(-ln x 0)+(-ln x 0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x>0,所以函数S (x )在(0,+∞)上单调递增,因为S (2x 0)≤S (-ln x 0),所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2].法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x在(0,+∞)上恒成立.令m (x )=e 2x-ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln x x 2,再令g (x )=2x 2e 2x +ln x (x >0),则′(x )=4(x 2+x )e 2x +1x>0,所以g (x )在(0,+∞)上单调递增,因为=e 8-2ln 2<0,g (1)=2e 2>0,所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0,所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0,所以ln 2+2ln x 0+2x 0=ln(-ln x 0),即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0),设s (x )=ln x +x (x >0),则s ′(x )=1x+1>0,所以函数s (x )在(0,+∞)上单调递增,因为s (2x 0)=s (-ln x 0),所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2].典例2.设函数f (x )=ln x +k x ,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【解析】(1)由条件得f ′(x )=1x -k x2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -k e 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -e x2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e ,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增.当x =e 时,f (x )取得极小值,且f (e)=ln e +e e=2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +k x-x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -k x2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x +14恒成立,∴k ≥14.故k 的取值范围是14,+典例3.已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x ex ,对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】(1)由题设知f ′(x )=x 2+x a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在12,2上单调递增,∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-x e x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈12,2时,g (x )max =g (1)=1e .由8+a ≤1e ,得a ≤1e-8,∴实数a ∞,1e -8.典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1,所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0.(2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈13,12,所以-6x +1∈[-3,-2],所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ).因为a <0,所以当x ∈[1,2]时,g ′(x )<0,所以g (x )在[1,2]上单调递减,故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3,即g (x )在[1,2]上的值域为-3,-32a -12.因为对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),所以[0,1]⊆-3,-32a -12,所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是()A .27a <-B .25a >-C .29a ≥D .29a >【解析】43322()4,()4124(3)f x x x f x x x x x '=-=-=-,当3x <时,()0f x '<,当3x >时,()0f x '>,()f x 的递减区间是(,3)-∞,递增区间是(3,)+∞,所以3,()x f x =取得极小值,也是最小值,min ()(3)27f x f ==-,不等式4342x x a ->-对任意实数x 都成立,所以272,29a a ->->.故选:D.2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-【解析】函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0≤f x ,当[]1,2x ∈时,()0≤f x 即220ax x a -+≤,即为()221a x x +≤,可化为()212x a x ≤+令()22()1x g x x +=,则()()22'22221)22((12(212))x x x x g x x x -++-++==当[]1,2x ∈时,'()0g x <,单调递减.因此()min 2224()(2)152g x g ⨯==+=,所以min 4()5a g x ≤=故实数a 的取值范围是4,5⎛⎤-∞ ⎥⎝⎦,故选B 3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞【解析】()()()26824f x x x x x '=-+=--,当()0,2x ∈时,()0f x '>,()f x 单调递增,当()2,3x ∈时,()0f x '<,()f x 单调递减,所以()f x 在()0,3上的最大值是()24f =.()111x g x x x-'=-=,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,3x ∈时,()0g x '>,()g x 单调递增,所以()g x 在()0,3上的最小值是()11g =,若1x ∀,()20,3x ∈,()()12g x k f x +≥恒成立,则()()max min g x k f x +≥⎡⎤⎣⎦,即14k +≥,所以3k ≥,所以实数k 的取值范围是[)3,+∞.故选:D .4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+【解析】设()()()23ln 11=-+>-f x x x x ,则()321211-'=-=++x f x x x ,当102x <<时,()0f x '<,()f x 单调递减,当112x <<时,()0f x '>,()f x 单调递增,()003ln10=-=f ,()123ln 20=-<f ,不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立可转化为对任意[]0,1x ∈时()()max 231+≥a f x ,所以()2310+≥a ,解得13a ≥-.故选:C.5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是()A .(],1-∞-B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦【解析】因为不等式sin x x ax -≥,对[]0,x π∈恒成立,当0x =时,显然成立,当(0,]x π∈,sin 1xa x ≤-恒成立,令()sin 1x f x x =-,则()2cos sin x x xf x x -'=,令()cos sin g x x x x =-,则()sin 0g x x x '=-≤在(0,]π上成立,所以()g x 在(0,]π上递减,则()()00g x g <=,所以()0f x '<在(0,]π上成立,所以()f x 在(0,]π上递减,所以()()min 1f x f π==-,所以1a ≤-,故选:A 6.若关于x 的不等式()()22e 222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为()A .1,e ⎡-+∞⎫⎪⎢⎣⎭B .()1,-+∞C .[)1,-+∞D .[)2,-+∞【解析】依题意,()()()22e 221ln 1x a x x a x -+->-+-,则()()222e ln e 21ln 1x x a x a x --+>-+-(*).令()2ln g t t a t =+(1)t >,则(*)式即为()()2e 1x g g x ->-.又2e 11x x ->->在()2,+∞上恒成立,故只需()g t 在()1,+∞上单调递增,则()20ag t t '=+≥在()1,+∞上恒成立,即2a t ≥-在()1,+∞上恒成立,解得2a ≥-.故选:D.7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为()A .[)1,+∞B .[)2,+∞C .[]1,2D .()1,+∞【解析】由题意,函数()2sin f x x x =+的定义域为R ,其满足()()f x f x -=-,所以函数()f x 为奇函数,且()2cos 0f x x =+>',所以函数()f x 为R 上的增函数,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则ln (1)a f x f x ⎛⎫+≥ ⎪⎝⎭对(]0,2x ∈恒成立,即ln 1a x x+≥对(]0,2x ∈恒成立,即ln a x x x ≥-对(]0,2x ∈恒成立,设()(]ln 0,2,h x x x x x ∈=-,可得()ln h x x '=-,当01x <<时,()0h x '>;当12x <≤时,()0h x '<,所以()h x 在(0,1)上单调递增,在(1,2]单调递减,所以()max (1)1h x h ==,所以1a ≥,即实数a 的取值范围为[1,)+∞.故选:A.8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦【解析】由题设,可知:,()0x ∈+∞,问题转化为2(ln 1)x a x -≥在,()0x ∈+∞上恒成立,令ln 1()x f x x -=,则22ln ()x f x x-'=,当20e x <<时()0f x '>,即()f x 递增;当2e x >时()0f x '<,即()f x 递减;所以2max 21()(e )e f x f ==,故22e a ≥.故选:B 9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1【解析】因为31()3g x x =单调递增,120x x >>,所以12()()0g x g x >>,即12()()0g x g x ->,原不等式恒成立可化为122211())((())x m f x x f g x mg x x -->恒成立,即120x x >>时,111222()()()()mg x x f x mg x x f x ->-恒成立,即函数3())ln ((3)m xf x x x x h x mg x ==--在(0,)+∞上为增函数,所以2ln 10()mx h x x '--≥=在(0,)+∞上恒成立,即2ln 1x m x +≥,令2ln )1(k x x x +=,则32l (n )1x k x x '+=-,当120e x -<<时,()0k x '>,()k x 单调递增,当12e x ->时,()0k x '<,()k x 单调递减,故当12e x -=时,函数2ln )1(k x x x +=的最大值为e2,即e2m ≥恒成立,由m ∈Z 知,整数m 的最小值为2.故选:A二、多选题10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是()A .-B .CD .【解析】因为函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,当0x <时,22x ax +≥恒成立,即2a x x ≥+恒成立,因为2x x +≤-2x x =,即x =时取等号,所以a ≥-.当0x =时,00e ≥恒成立.当0x >时,x e ax ≥恒成立,即xe a x ≤恒成立,设()x e g x x =,()()221xx x e x xe e g x x x --'==,()0,1x ∈,()0g x '<,()g x 为减函数,()1,x ∈+∞,()0g x '>,()g x 为增函数,所以()()min 1g x g e ==,所以a e ≤,综上所述:a e -≤≤.故选:ABC 11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4【解析】()x f x e a '=-,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.所以ln x a =时,函数取得最小值ln 1a a a -+,因为()0f x >恒成立,所以ln 10a a a -+>恒成立,且a +∈N ,可得实数a 的所有可能取值1,2,3,故选:ABC.12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6eB .(2eC .(2e +D .2e【解析】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增,所以对[0,)x ∀∈+∞,()()102f x f ≥=;()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=-,当1x >时,()'0g x <;当01x <<时,()'0g x >,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2⎡+∞⎣内,(2e +与2e 均不在区间()2e,⎡+∞⎣内;故选:AB .13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为()A .B .1-C .1D【解析】设1ln (1)y x x x =-->,则110y x '=->,所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->,所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-,∴110ln 1x x >>-.又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211e x xa --≥恒成立.令111(),()e e x x x xg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=,∴211a -≥,解得a ≥或a ≤a 的值可以为AD.三、填空题14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________.【解析】由2()2ln f x x x a =--,得()21(1)2()2x x f x x x x-+'=-=,又函数()f x 的定义域为(0,)+∞,令()01f x x =⇒=',当01x <<时,()0f x '<,函数()f x 单调递减;当1x >时,()0f x '>,函数()f x 单调递增;故1x =是函数()f x 的极小值点,也是最小值点,且(1)1f a =-,要使()0f x ≥恒成立,需10a -≥,则1a ≤.15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.【解析】根据题意,当(]0,1x ∈时,分离参数a ,得23143a x x x ≥--恒成立.令1t x=,∴1t ≥时,2343t t a t --≥恒成立.令()2343t t g t t =--,则()()()2189911t t t t g t '=--=-++,当1t ≥时,()0g t '<,∴函数()g t 在[)1,+∞上是减函数.则()()16g t g ≤=-,∴6a ≥-.∴实数a 的取值范围是[)6-+∞,.16.已知函数()2f x x a =+,(ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.【解析】由()ln 2g x x x =-,可得()112'2x g x x x-=-=,当122x ⎡⎤∈⎢⎥⎣⎦,()'0g x ≤,所以()g x 在122⎡⎤⎢⎥⎣⎦,单调递减,()min ()2ln24g x g ∴==-,()2f x x a =+ ,()f x ∴在122⎡⎤⎢⎥⎣⎦上单调递增,()max ()24f x f a ∴==+, 对任意的12122x x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,4ln24a ∴+≤-,ln28a ∴≤-17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.【解析】设()()ln 1f x x x =-+,则()11x x f e e x -=--,故()()1x f e mf x ->对一切正数x 都成立,()()110011x f x x x x '=-=>>++,故()f x 在()0,∞+上单调递增,()()0ln 010f x -+=>,()()1x f e m f x -∴<恒成立,由()1x h x e x =--,()1xh x e '=-在()0,∞+上恒大于零,所以()h x 在()0,∞+上单调递增,所以()()00h x h >=,1x e x ∴->在()0,∞+上恒成立,()()1xf e f x ∴->,()()11x f e f x -∴>,1m ∴≤.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.【解析】(1)由题意可知:()()´2214f x x a x a =-++,且()f x 有极值,则()´0f x =有两个不同的实数根,故()()224116410a a a ∆=+-=->,解得:1a ≠,即()(),11,a ∈-∞⋃(2)由于0x ≥,()0f x >恒成立,则()0240f a =>,即0a >,由于()()()()´221422f x x a x a x x a =-++=--,则①当01a <<时,()f x 在2x a =处取得极大值、在2x =处取得极小值,当02x a £<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x a ≥时,()()422803min f x f a ==->,解得:121a >;②当1a =时,()0f x ¢³,即()f x 在[)0,+∞上单调递增,且()0240f =>,则()()00f x f ³>恒成立;③当1a >时,()f x 在2x =处取得极大值、在2x a =处取得极小值,当02x ≤<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x ≥时,()()3243min 24240f x f a a a a ==-++>,解得36a -<<,综上所述,a 的取值范围是1216a <<.19.已知函数()ln 32af x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围.【解析】(1)函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x-'=-=①当0a >时,令()0f x '>,可得12x >,此时函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭②当0a <时,令()0f x '>,可得102x <<,此时函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭综上所述:当0a >时,函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0a <时,函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭(2)()310xf x x +-≥在[)1,x ∞∈+恒成立,则2ln 12aax x x -≥在[)1,x ∞∈+恒成立,即21ln 12a x x x ⎛⎫-≥ ⎪⎝⎭在[)1,x ∞∈+恒成立。

2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)

2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)

新高考数学大一轮复习专题:第4讲 不等式[考情分析] 1.不等式的解法是数学的基本功,在许多题目中起到工具作用.2.求最值和不等式恒成立问题常用到基本不等式.3.题型多以选择题、填空题形式考查,中等难度. 考点一 不等式的性质与解法 核心提炼1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d.2.不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I . (2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方. (3)解决恒成立问题还可以利用分离参数法.例1 (1)若p >1,0<m <n <1,则下列不等式正确的是( ) A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <mnC .m -p<n -pD .log m p >log n p答案 D解析 方法一 设m =14,n =12,p =2,逐个代入可知D 正确.方法二 对于选项A ,因为0<m <n <1,所以0<m n<1,又p >1,所以0<⎝ ⎛⎭⎪⎫m n p <1,故A 不正确;对于选项B ,p -m p -n -m n =p -m n -m p -n n p -n =p n -m n p -n >0,所以p -m p -n >mn,故B 不正确;对于选项C ,由于函数y =x -p在(0,+∞)上为减函数,且0<m <n <1,所以m -p>n -p,故C 不正确;对于选项D ,结合对数函数的图象可得,当p >1,0<m <n <1时,log m p >log n p ,故D 正确. (2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( ) A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)答案 A解析 由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0, 则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0, 即(x +3)(x -2)>0,解得x <-3或x >2, 所以不等式的解集为(-∞,-3)∪(2,+∞).易错提醒 求解含参不等式ax 2+bx +c <0恒成立问题的易错点 (1)对参数进行讨论时分类不完整,易忽略a =0时的情况. (2)不会通过转换把参数作为主元进行求解. (3)不考虑a 的符号.跟踪演练 1 (1)已知函数f (x )=⎩⎪⎨⎪⎧3,x <12,1x ,x ≥12,则不等式x 2f (x )+x -2≤0的解集是________________. 答案 {x |-1≤x ≤1} 解析 由x 2f (x )+x -2≤0,得 ⎩⎪⎨⎪⎧x <12,3x 2+x -2≤0或⎩⎪⎨⎪⎧x ≥12,x 2·1x+x -2≤0,即⎩⎪⎨⎪⎧x <12,-1≤x ≤23或⎩⎪⎨⎪⎧x ≥12,x ≤1,∴-1≤x <12或12≤x ≤1,∴原不等式的解集为{x |-1≤x ≤1}.(2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-2,65 B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2} 答案 B解析 当a 2-4=0时,解得a =2或a =-2,当a =2时,不等式可化为4x -1≥0,解集不是空集,不符合题意;当a =-2时,不等式可化为-1≥0,此式不成立,解集为空集. 当a 2-4≠0时,要使不等式的解集为空集,则有⎩⎪⎨⎪⎧a 2-4<0,Δ=a +22+4a 2-4<0,解得-2<a <65.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,65. 考点二 基本不等式 核心提炼基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag x+Bg (x )(AB >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.例2 (1)下列不等式的证明过程正确的是( ) A .若a ,b ∈R ,则b a +a b ≥2b a ·a b =2 B .若a <0,则a +4a≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b D .若a ∈R ,则2a+2-a≥22a ·2-a=2 答案 D解析 由于b a ,a b的符号不确定,故选项A 错误;∵a <0,∴a +4a=-⎣⎢⎡⎦⎥⎤-a +⎝⎛⎭⎪⎫-4a≤-2-a ·⎝ ⎛⎭⎪⎫-4a=-4(当且仅当a =-2时,等号成立),故B 错误;由于lg a ,lg b 的符号不确定,故选项C 错误;∵2a>0,2-a>0,∴2a +2-a ≥22a ·2-a=2(当且仅当a =0时,等号成立),故选项D 正确.(2)(2019·天津)设x >0,y >0,x +2y =5,则x +12y +1xy的最小值为________.答案 4 3解析x +12y +1xy=2xy +2y +x +1xy=2xy +6xy=2xy +6xy.由x +2y =5得5≥22xy ,即xy ≤524,即xy ≤258,当且仅当x =2y =52时等号成立.所以2xy +6xy≥22xy ·6xy=43,当且仅当2xy =6xy,即xy =3时取等号,结合xy ≤258可知,xy 可以取到3,故x +12y +1xy的最小值为4 3.易错提醒 运用基本不等式时,一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指“正数”;“二定”是指应用基本不等式求最值时,和或积为定值;“三相等”是指满足等号成立的条件.若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.跟踪演练2 (1)(2020·北京市中国人民大学附属中学模拟)已知a >0,b >0,且a -b =1,则2a +1b的最小值为________.答案 22+2解析 ∵a >0,b >0,由a -b =1,得a =1+b ,∴2a +1b =2+2b +1b≥2+22b ·1b=2+22,当且仅当b =22时,等号成立,∴2a +1b的最小值为22+2. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 方法一 由题意知y ≠0.由5x 2y 2+y 4=1, 可得x 2=1-y45y2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.方法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝ ⎛⎭⎪⎫t ≤-45舍去.故x 2+y 2的最小值为45.专题强化练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( ) A .{x |-1<x <3} B .{x |1<x <3} C .{x |x <-1或x >3} D .{x |x <1或x >3}答案 D解析 不等式即(x -3)(x -1)>0,由二次不等式的解法大于分两边可得不等式的解集为{x |x <1或x >3}.2.下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a >b ,c <d ,则a c >b dC .若a >b ,c >d ,则a -c >b -dD .若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误. 当a =1,b =0,c =-2,d =-1时,a c <b d,故B 选项错误. 当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误. 由不等式的性质知D 正确.3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f (x )<0的解集为{x |x <-2或x >3},则f (10x)>0的解集为( ) A .{x |x <-2或x >lg3} B .{x |-2<x <lg3} C .{x |x >lg3} D .{x |x <lg3}答案 D解析 一元二次不等式f (x )<0的解集为{x |x <-2或x >3}, 则f (x )>0的解集为{x |-2<x <3},则f (10x)>0可化为-2<10x<3,解得x <lg3, 所以所求不等式的解集为{x |x <lg3}.4.若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b 2a答案 B解析 由题意得a >1,0<b <1, ∴b2a <1,log 2(a +b )>log 22ab =1, 12a b+>a +1b >a +b ⇒a +1b>log 2(a +b ).5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +bab<1,∴ab <a +b <0. 6.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112答案 B解析 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,所以x +2y 的最小值为4.故选B.7.已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是( ) A .4B .5C .6D .7 答案 B解析 由a >-1,b >-2,得a +1>0,b +2>0,a +b =(a +1)+(b +2)-3≥2a +1b +2-3=2×4-3=5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立,所以a +b 的最小值是5.8.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c取得最大值时,3a +1b-12c的最大值为( ) A .3B.94C .1D .0答案 C解析 由正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,得a 2c -2ab c +9b 2c =1≥4ab c, 当且仅当a 2c =9b 2c ,即a =3b 时,ab c 取最大值14,又因为a 2-2ab +9b 2-c =0, 所以此时c =12b 2,所以3a +1b -12c =1b ⎝ ⎛⎭⎪⎫2-1b ≤⎝ ⎛⎭⎪⎫1b +2-1b 24=1,当且仅当b =1时等号成立.故最大值为1. 二、多项选择题9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f (a )+f (b )],则下列关系式中正确的是( )A .q =rB .p <qC .p =rD .p >q 答案 BC解析 r =12(ln a +ln b )=p =ln ab ,p =ln ab <q =ln a +b 2.10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .6B .7C .8D .9 答案 ABC解析 方法一 设y =x 2-6x +a ,则其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a 可以为6,7,8.方法二 分离常数,得a ≤-x 2+6x ,函数y =-x 2+6x 的图象及直线y =a ,如图所示,由图易知5<a ≤8.11.(2020·威海模拟)若a ,b 为正实数,则a >b 的充要条件为( ) A.1a >1bB .ln a >ln bC .a ln a <b ln bD .a -b <e a-e b答案 BD解析 对于A ,因为a >b >0,所以1a <1b,故A 错误;对于B ,因为y =ln x 在(0,+∞)上为增函数,所以a >b >0⇔ln a >ln b ,故B 正确;对于C ,设f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )=0,得x =1e ,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以a >b >0不能推出a ln a <b ln b ,故C 错误;对于D ,设g (x )=x-e x(x >0),则g ′(x )=1-e x.因为x >0,所以e x>1,所以g ′(x )<0,g (x )在(0,+∞)上单调递减,所以当a >b >0时,g (a )<g (b ),即a -e a<b -e b,即a -b <e a-e b,充分性成立;当a >0,b >0,且a -b <e a -e b 时,易证得a >b ,必要性成立,故D 正确.12.(2020·新高考全国Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b>12C .log 2a +log 2b ≥-2 D.a +b ≤ 2答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b=22a -1=12×22a, 因为a >0,所以22a>1,即2a -b>12,故B 正确; 对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确. 三、填空题13.对于0<a <1,给出下列四个不等式:①log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a ;②log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a ;③a1+a<11aa+;④a1+a>a 1+1a.其中正确的是________.(填序号)答案 ②④解析 由于0<a <1,所以函数f (x )=log a x 和g (x )=a x在定义域上都是单调递减函数,而且1+a <1+1a,所以②④是正确的.14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m >0恒成立,则实数m 的取值范围是________. 答案 (1,+∞)解析 ∵x ∈(0,+∞),mx 2-(m +1)x +m >0恒成立, ∴m (x 2-x +1)>x 恒成立,又x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,∴m >xx 2-x +1恒成立,当x ∈(0,+∞)时,xx 2-x +1=1x +1x-1≤121-1=1, 当且仅当x =1x,即x =1时取“=”.∴m >1.15.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-1,12解析 由f (x )=x 3-2x +e x-1e x ,得f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1ex =-f (x ),又x ∈R ,所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x·1ex=3x 2≥0,当且仅当x =0时“=”成立, 所以f (x )在R 上单调递增, 因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,即2a 2+a -1≤0,解得-1≤a ≤12.16.已知实数x ,y 满足x >1,y >0且x +4y +1x -1+1y =11,则1x -1+1y的最大值为________. 答案 9 解析 ∵x +4y +1x -1+1y=11, ∴(x -1)+4y =10-⎝ ⎛⎭⎪⎫1x -1+1y ,又⎝⎛⎭⎪⎫1x -1+1y [(x -1)+4y ]=5+x -1y +4y x -1≥5+24=9, 当且仅当x -1y =4y x -1,即2y =x -1>0时等号成立, ∴⎝⎛⎭⎪⎫1x -1+1y ⎣⎢⎡⎦⎥⎤10-⎝ ⎛⎭⎪⎫1x -1+1y ≥9, 令t =1x -1+1y,则t (10-t )≥9,即t2-10t+9≤0,∴1≤t≤9,∴1x-1+1y的最大值为9.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数导数与不等式专题2函数导数与不等式专题一.利用切线与导数之间的联系解决不等式有关问题1.(2013年高考四川)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(1)指出函数()f x 的单调区间;(2)若函数()f x 的图象在点,A B 处的切线互相垂直,且2x<,证明:211xx -≥;(3)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.2.(2014届江西省新余)已知函数x(=,f ln)xbxaxg.x=aR)()(2∈-(1)若曲线)(x f与)(x g在公共点)0,1(A处有相同的切线,求实数a、b的值;(2)当1=b时,若曲线)(x f与)(x g在公共点P处有相同的切线,求证:点P唯一;(3)若0>a,1=b,且曲线)(x f与)(x g总存在公切线,求正实数a的最小值.34二.利用函数的单调性、极值与导数的联系解决有关不等式问题3.(2014届云南省师大附中)已知函数2()f x x ax=-,()ln g x x =.(1)若()()f x g x ≥对于定义域内的x 恒成立,求实数a 的取值范围;(2)设()()()h x f x g x =+有两个极值点12,x x ,且110,2x ⎛⎫∈ ⎪⎝⎭,求证:123()()ln 24h x h x ->-;54.(2014届湖北省部分重点中学)已知函数322()13f x x x ax =+++在()1,0-上有两个极值点12,x x ,且12x x <(1)求实数a 的取值范围;(2)证明:211()12f x >.6三、灵活应用导数解决函数与不等式的有关综合问题5.(2014届浙江省杭州市)设函数xex f xsin )(+=,2)(-=x x g ;(1)求证:函数)(x f y =在),0[+∞上单调递增;(2)设))(,(11x f x P ,22(,())Q x g x )0,0(21>≥x x ,若直线PQ x//轴,求Q P ,两点间的最短距离.76. (2014届江西省师大附中)设()(1)xf x e a x =-+.(1)若0,()0a f x >≥对一切x R ∈恒成立,求a 的最大值.(2)设()()xa g x f x e =+,且112212(,),(,)()A x yB x y xx ≠是曲线()y g x =上任意两点,若对任意的1a ≤-,直线AB的斜率恒大于常数m ,求m 的取值范围; (3)求证:*13(21)(2)()1nn n n n n n N e +++-<∈-L .8课后强化训练1. (2014届河北省邯郸市 )设函数2()(1)x f x x e ax =-+(1) 当12a =-时,求)(x f 的单调区间; (2)若当0≥x 时,()0f x ≥恒成立,求a 的取值范围.2、(2014届湖北省黄冈中学)已知函数()1ax x ϕ=+,a 为常数.(1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调区间;(2)若()ln ()g x x x ϕ=+,且对任意12,x x (]0,2∈,12x x ≠,都有2121()()1g x g x x x -<--,求a 的取值范围.9函数导数与不等式专题参考答案1解:(1)函数()f x 的单调减区间为)1,(--∞,单调增区间为)0,1(-,),0(+∞(2)由导数的几何意义知,点A 处的切线斜率为)(1x f ',点B 处的切线斜率为)(2x f ',故当点,A B处的切线互相垂直时,有)(1x f '1)(2-='⋅x f , 当x <0时,22)(+=x x f 因为021<<x x,所以 1)22()22(21-=+⋅+x x,所以221<+x ,0222>+x,因此1)22()22()]22()22([21212112=+⋅+-≥+++-=-x x x x x x,(当且仅当122)22(21=+=+-x x ,即231-=x 且212-=x 时等号成立)10所以函数()f x 的图象在点,A B 处的切线互相垂直时有211x x -≥.(Ⅲ)当021<<x x或012>>x x时,)(1x f ')(2x f '≠,故210x x <<.当01<x时,()f x 的图象在点))(,(11x f x 处的切线方程为)()22()2(11121x x x a x x y -⋅+=++- 即 ax x xy +-+=211)22(.当02>x时,()f x 的图象在点))(,(22x f x 处的切线方程为)(1ln 222x x x x y -⋅=- 即 1ln 122-+⋅=xx x y .两切线重合的充要条件是⎪⎩⎪⎨⎧+-=-+=②①a x x x x 212121ln 221,由①及210x x <<知,2102<<x ,由①、②得1)21(411ln 1)121(ln 222222--+-=--+=x x x x a ,令21x t =,则20<<t ,且tt ta ln 412--=设)20(ln 41)(2<<--=t t t t t h ,则23)1(1121)(2<--=--='tt t t t h所以)20()(<<t t h 为减函数,则2ln 1)2()(--=>h t h ,所以2ln 1-->a ,而当)2,0(∈t 且t 趋向于0时,)(t h 无限增大, 所以a 的取值范围是),2ln 1(+∞--. 故当函数()f x 的图象在点,A B 处的切线重合时,a 的取值范围是),2ln 1(+∞--.2解:(1)()xb x f =',()12-='ax x g .∵曲线()x f 与()x g 在公共点()0,1A 处有相同的切线∴ ()()⎪⎩⎪⎨⎧-==-===1201101ln 1a b a g b f ,解得,⎩⎨⎧==11b a . …………………3分(2)设()00,P x y ,则由题设有200ln x ax x -= … ①又在点P 有共同的切线()()000020011''212x f x g x ax a x x +=⇒=-⇒=代入①得002121ln x x -=……5分设()x x x h 2121ln +-=,则()()0211>+='x x x h , ∴()x h 在()+∞,0上单调递增,所以 ()h x =0最多只有1个实根,从而,结合(Ⅰ)可知,满足题设的点P只能是()1,0P ……………7分 (3)当0>a ,1=b 时,()x x f ln =,()x x f 1=', 曲线()x f 在点()t t ln ,处的切线方程为()t x t t y -=-1ln ,即1ln 1-+=t x ty . 由⎪⎩⎪⎨⎧-=-+=x ax y t x t y 21ln 1,得 01ln 112=+-⎪⎭⎫ ⎝⎛+-t x t ax.∵ 曲线()x f 与()x g 总存在公切线,∴ 关于t ()0>t 的方程()01ln 411Δ2=-+⎪⎭⎫⎝⎛+=t a t ,即()t a t ln 14112-=⎪⎭⎫⎝⎛+ ()*总有解.………9分 若e t >,则0ln 1<-t ,而0112>⎪⎭⎫ ⎝⎛+t ,显然()*不成立,所以 e t <<0…10分从而,方程()*可化为 ()()t t t a ln 11422-+=. 令()()()t t t t h ln 1122-+=()e t <<0,则()()()()23ln 11ln 21t t t t t t h --++='.∴ 当10<<t 时,()0<'t h ;当e t <<1时,()0>'t h , 即 ()t h 在()1,0上单调递减,在()e ,1上单调递增. ∴()t h 在()e ,0的最小值为()41=h ,所以,要使方程()*有解,只须44≥a ,即1≥a .…………………………13分3解:(1)()()f x g x ≥,ln (0)xa x x x->∴≤,22ln ln 1(),()x x x x x x x x ϕϕ+-'=-=设…(2分)当(0,1)x ∈时,()0x ϕ'<,当(1,)x ∈+∞时,()0,x ϕ'>()(1)1,(,1]x a ϕϕ=∴∈-∞∴≥.…………………………………………(5分) (2)2()ln ,h x x ax x =-+221()(0),x ax h x x x-+'∴=>2121211,0,,(1,),21(1,2)22i i x x x x ax x i ⎛⎫=∈∈+∞=+= ⎪⎝⎭∴∵∴且,2212111222()()(ln )(ln )h x h x x ax x x ax x -=-+--+∴22222211122212222221(1ln )(1ln )lnln 2(1)4x x x x x x x x x x x x =--+---+=-+=-->…(9分)2222231(21)()ln 2(1),()0,42x x x x x x x x μμ-'=-->=设≥1233()(1)ln 2,()()ln 2.44x h x h x μμ>=-->-∴即 …………………………(13分)4.(1)2()22f x xx a'=++,由题意知方程2220xx a ++=在()1,0-上有两不等实根,设2()22g x x x a=++,其图象的对称轴为直线12x =-,故有 (1)0(0)011()(1)022g a g a g a ⎧⎪-=>⎪=>⎨⎪⎪-=+-+<⎩,解得102a <<...........................(6分)(222a xx=-- 构造2()22g x xx=--利用图象解照样给分)(2)由题意知2x 是方程2220xx a ++=的大根,从而21,02x ⎛⎫∈- ⎪⎝⎭且有222220x x a ++=,即22222a xx =--,这样3222222()13f x x x ax =+++32232222222224(22)1133x x x x x x x =++--+=--+设324()13x x x ϕ=--+,2()42x x xϕ'=--=0,解得121,02x x =-=,由1,2x ⎛⎫∈-∞- ⎪⎝⎭,()0x ϕ'<; 1,02x ⎛⎫∈- ⎪⎝⎭,()0x ϕ'>; ()0,x ∈+∞,()0x ϕ'<知,324()13x x x ϕ=--+在1(,0)2-单调递增,又Q 2102x -<<,从而2111()()212x ϕϕ>-=,即211()12f x >成立。

相关文档
最新文档