Mg_Al掺杂对LiCoO_2体系电子结构影响的第一原理研究_徐晓光
聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。
超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。
目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。
超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。
随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。
2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。
而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。
目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。
生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。
因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。
锂离子电池正极材料的发展现状和研究进展

作者简介:蒋 兵(1981-),男,助理工程师,主要从事有色金属材料的检验和测试工作。
锂离子电池正极材料的发展现状和研究进展蒋 兵(湖南有色金属研究院,湖南长沙 410015)摘 要:介绍了锂离子电池正极材料钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、钒的氧化物以及导电高聚合物正极材料的发展现状和研究进展。
LiCoO 2在今后正极材料发展中仍然有发展潜力,通过微掺杂和包覆都可使钴酸锂的综合性能得到提高,循环性能大大改善。
环保、高能的三元材料和磷酸铁锂为代表的新型正极材料必将成为下一代动力电池材料的首选。
关键词:锂离子电池;正极材料;磷酸铁锂;三元材料中图分类号:T G146126 文献标识码:A 文章编号:1003-5540(2011)01-0039-04自日本Sony 公司于1990年首先推出以碳为负极的锂离子二次电池产品后,因具有工作电压高、容量大、自放电小、循环性能好、使用寿命长、重量轻、体积小等突出优点,目前,其应用已渗透到包括移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。
另外,国内外也在竞相开发电动汽车、航天和储能等方面所需的大容量锂离子电池。
对锂离子电池而言,其主要构成材料包括电解液、隔膜、正负极材料等。
一般来说,在锂离子电池产品组成部分中,正极材料占据着最重要的地位,正极材料的好坏,直接决定了最终锂离子电池产品的性能指标。
本文将对锂离子电池正极材料的发展现状和研究进展进行综述和探讨。
1 正极材料的选择正极材料在性质上一般应满足以下条件:(1)在要求的充放电电位范围,与电解质溶液具有相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)在全锂化状态下稳定性好。
其结构具有以下特点:(1)层状或隧道结构,以利于锂离子的脱嵌,且在锂离子脱嵌时无结构上的变化,以保证电极具有良好的可逆性能;(2)锂离子在其中的嵌入和脱出量大,电极有较高的容量,并且在锂离子脱嵌时,电极反应的自由能变化不大,以保证电池充放电电压平稳;(3)锂离子在其中应有较大的扩散系数,以使电池有良好的快速充放电性能。
硅化镁的电子结构与热力学性质

硅化镁的电子结构与热力学性质柳福提;程晓洪;张淑华【摘要】利用密度泛函理论的赝势平面波方法对 Mg2Si 晶体的结构进行了几何优化,在优化的基础上对电子结构、弹性常数与热力学性质进行了第一性原理计算.结果得到 Mg2Si 是一种带隙为 0.2846eV 的间接带隙半导体;其导带主要以Mg 的 3p、3s 与Si 的 3p 态电子构成;弹性常量 C11= 114.39GPa、C12= 22.45GPa、C44= 42.78GPa;零温度与零压下的德拜温度为 676.4K.运用线性响应方法确定了声子色散关系,得到Mg2Si 的等容热容、德拜温度、焓、自由能、熵等热力学函数随温度变化的关系.%The electronic structure,elastic constants and thermodynamic properties of Mg2Si were calculated based on the optimized structure by using the first-principles pseudo-potential method of density functional theory.The results showed that the indirect band gap of Mg2Si was 0.2846eV;conduction band was constituted mainly by 3p,3s electrons of Mg atoms and 3p electrons of Si atom;elastic constants C11=114.39GPa,C12=22.45GPa,C44=42.78GPa;Debye temperature is 676.4K at zero pressure and zero temperature.The linear response method was applied to determine the phonon dispersion relations,and the relations of thermodynamic functions of heat capacity,Debye temperature,enthalpy,free energy,entropy with temperature were calculated.【期刊名称】《宜宾学院学报》【年(卷),期】2012(000)006【总页数】4页(P39-42)【关键词】硅化镁;电子结构;弹性常量;热力学性质【作者】柳福提;程晓洪;张淑华【作者单位】宜宾学院物理与电子工程学院,四川宜宾644000 宜宾学院计算物理四川省高校重点实验室,四川宜宾644000;宜宾学院计算物理四川省高校重点实验室,四川宜宾644000;宜宾学院实验与教学资源管理中心,四川宜宾644000【正文语种】中文【中图分类】O48金属硅化物材料具有许多优异的热学、电学及力学性能,其中硅化镁(Mg2 Si)是Mg-Si二元体系的唯一稳定化合物,它具有高熔点、高硬度、高弹性模量的特性,是一种窄带隙n型半导体材料,在光电子器件、电子器件、能源器件、激光、半导体制造、恒温控制通讯等领域有重要应用前景[1-5].由于合金元素Mg与Si的原料资源非常丰富,地层蕴含量大,价格低廉,无毒无污染,因此,Mg2 Si作为一种新型环境半导体材料引起了广大研究工作者的极大关注.近年来,许多学者对Mg2 Si材料的各种性质进行了不少的研究,如有学者对Mg2 Si的晶格动力学[6],能带结构和介电函数[7-10],掺杂及光学性质[11-12],几何结构、弹性及其热力学性质[13-14]进行了研究,这些研究结果对Mg2 Si材料的利用与设计具有重要意义,但对Mg2 Si的热容、德拜温度等热力学性质的研究却很少,故本文采用基于第一性原理的赝势平面波方法,对Mg2 Si的能带结构、弹性常量、德拜温度、热容、自由能、熵等热力学函数进行理论计算,为Mg2 Si材料的实验与设计提供预测.Mg2 Si晶体具有反萤石结构,属于面心立方晶格,空间群为 Fm3m,群号是225,晶格常数 a=0.6391nm[15].在晶体结构中,每个Si原子位于(0,0,0)位置,配位数是8,形成边长为a的面心立方结构.Mg原子位于(0.25,0.25,0.25)位置,每个Mg原子位于Si原子组成的四面体的中心,形成边长为a/2的简立方结构,Mg2 Si晶胞结构如图1所示.本文采用基于密度泛函理论的第一性原理赝势平面波方法,理论计算全部由Material Studios 5.0软件中的量子力学模块CASTEP程序包完成.它是一个基于密度泛函理论的从头算量子力学程序,将离子势用赝势替代,把电子波函数用平面波基组展开,电子与电子相互作用的交换和相关势由局域密度近似(LDA)或广义梯度近似(GGA)进行校正,是目前公认较精确的电子结构计算的理论方法.具体参数设置如下,在几何优化与电子结构计算中:能量截断值(Ultrafine)为380eV,能量收敛度(Energy tolerance)为5.0×10-6 eV/atom,作用在每个原子上的最大力收敛精度0.01eV/Å,最大应变收敛度为0.02GPa,最大位移收敛度为5.0×10-4Å.在倒易空间布里渊中k点的设置使用Monkhorst-Pack法,选取密度为4×4×4,赝势选取超软赝势,参与赝势计算的价电子分别为Mg:2p6 3s2与Si:3s2 3p2,电子与电子之间的交换关联泛函选用广义梯度近似(GGA)中的RPBE方案.声子散射的计算中:能量截断能为900eV,自洽计算的收敛精度为1.0×10-4 eV/cell,k点选取密度为3×3×3,赝势为Hamann提出的模守恒赝势(Norm-conserving).3.1 结构优化根据Mg2 Si晶格参数的实验值,建立起相应的晶体结构,经过几何优化后,得到晶格参数为a=0.6422nm,与实验值0.6391nm[15]非常接近,误差为0.5%,在第一性原理计算可接受的范围以内,后面各种性质的计算是在此优化结构的基础上进行的,说明计算结果应该具有较好的预测性.3.2 能带结构通过对Mg2 Si能带结构的计算,得到沿布里渊区高对称点方向的能带结构如图2所示.从图2可以看出,导带的最低点在X点,价带的最高点在G点,不在同一k点处,说明Mg2 Si是间接带隙半导体.第一布里渊区中高对称k点在导带底Ec与价带顶Ev的特征能量如表1.导带在X点处取得的能量最小值为0.2846eV,而价带在G点处取得能量的最大值为0eV,所以Mg2 Si的带隙为0.2846eV,与陈茜等[2]的结果0.2994eV比较接近.能带的宽窄在能带的分析中非常重要,从表1可得到,导带底的能带宽度为(2.6761eV-0.2846eV=2.3915eV),价带顶的能带宽度为(-2.5231eV-0eV=-2.5231eV),即导带底能带比价带顶能带窄,意味着处于导带底能带中的电子有效质量较大,也就是说,导带底的电子有效质量大于价带顶的空穴有效质量,说明Mg2 Si是重电子,轻空穴的间接能隙半导体.图3为Mg2 Si的总态密度,通过分析得出,Mg2 Si的能带有四个区,其中价带区有三个:-42.877~-42.863 eV为最低能量段,能带宽度很小,来源于Mg的3p态电子;-8.937~-6.994 eV为次低能价带,该价带主要是Mg的3s与Si的3s 态电子的贡献;其余几条靠近费米能级的能带对应于高能价带,能量范围为-4.580~0 eV,该能带的主要贡献是Mg的3p与Si的3p态电子,Mg的3s与Si的3s态电子对该能带有少量的贡献.Mg2 Si的导带主要是Mg的3p、3s与 Si的3p态电子,Si的3s电子的贡献相对较小.3.3 弹性常数弹性在材料科学、化学、物理学及地球物理学等领域都是一个比较重要的研究对象,固态物质的状态方程、比热容、德拜温度、熔点等都与弹性相关.由弹性常数可以获得晶体各向异性特点及晶体结构的稳定性等方面的重要信息.Mg2 Si属于面心立方晶系,其弹性张量Cij有3个独立分量C11、C12及C44,通过几何优化之后计算出Mg2 Si在零温度与零压下的弹性常数与体弹模量如表2所示.根据各向同性系数可算出Mg Si的S=2 1.075,说明其各向同性较好.体弹性模量与剪切模量分别表征材料抵抗断裂与塑性形变的能力,其比值可作为延性或脆性的量度,高B/G(其临界值为1.75)值意味着物质是易延展的,低 B/G表示该材料是易碎的,计算得到Mg2 Si的B/G=1.206,说明Mg2 Si易碎.3.4 德拜温度德拜温度是物质热力学性质的一个重要物理量,利用弹性常量可以计算晶体的德拜温度.通过前面计算得到的弹性常量,运用德拜近似计算出Mg2 Si晶体的德拜温度.根据 Voigt[16]近似,剪切模量为根据Reuss[17]近似,剪切模量为从理论证明,多晶体模量刚好是Voigt和Reuss给出的算术平均值,即对于立方晶体,当p=0GPa时,体弹性模量为然后由剪切模量与体弹性模量求出压缩纵波速和横波波速vs=可得到平均声速最后由平均声速及德拜近似可求得德拜温度118.82 22.27 44.96 54.45 1.07前面各式中,ħ是普朗克常数,k是玻耳兹曼常数,NA是阿伏伽德罗常数,n是原胞中的原子数,M是原胞中分子的质量,V为原胞的体积,ρ=M/V是密度.通过以上式子的计算,得到Mg2 Si在零温度与零压下的德拜温度为θD=676.4K,德拜频率ωD=8.856 ×1013 Hz,它们直接反映晶体的热力学性质.3.5 热容、焓、自由能与熵函数计算中还运用线性响应方法确定了Mg2 Si在第一布里渊区的色散关系与声子的态密度,分别如图4、图5所示.在Mg2 Si晶体的原胞中有两个镁原子与一个硅原子,共有3支声学波与6支光学波.从图中可以看出,当波矢k趋于零时,有三支晶格振动波的频率趋于零,这三支晶格振动波即为声学波,其中有两支横波,一支纵波,其余6支即为光学波.计算结果得到Mg2 Si在G点的光学波的频率分别为7.829×1012 Hz、8.336×1012 Hz和9.408×1012 Hz.在准谐德拜近似下,利用声子态密度来探讨Mg2 Si的热力学性质,利用热容公式:可以算出Mg2 Si在给定的温度下的热容、德拜温度.在温度为0~1000K范围的等容热容、德拜温度分别如图6、图7所示.在温度为40.5K时,热容为1.264 J/mol.K,德拜温度为674.2K,与用弹性常量计算所得零温度与零压下的德拜温度(676.4)非常接近;温度为303K时热容为62.05 J/mol.K,而实验值为67.9 J/mol.K,此时的德拜温度为585.5 K,随着温度的升高,热容趋于73.6 J/mol.K,非常接近经典极限值74.8 J/mol.K,与杜隆-珀替定律一致.焓、自由能、熵函数在温度趋于0K时都趋于零,与热力学第三定律相符,它们随温度的具体变化关系如图8所示.利用基于密度泛函理论的赝势平面波方法对Mg2 Si晶体的电子结构与热力学性质进行了第一性原理计算.计算结果得到Mg2 Si是一种带隙为0.2846eV的间接带隙半导体;其导带主要以Mg的3p、3s与Si的3p态电子构成;弹性常量C11=114.39GPa、C12=22.45GPa、C44=42.78 GPa;零温度与零压下的德拜温度为676.4K;运用线性响应方法确定了声子色散关系,得到Mg2 Si在40.5K时的德拜温度为674.2K、等容热容随温度的升高趋近杜隆-珀替经典极限值74.8J/mol.K;焓、自由能、熵等热力学函数随温度变化关系与热力学第三定律一致.【相关文献】[1]姜洪义,张联盟.Mg-Si基热电化合物的研究现状[J].材料导报,2002,16(3):20-22. [2]陈茜,谢泉,闫万珺,等.Mg2 Si电子结构及光学性质的第一性原理计算[J].中国科学 G 辑,2008,38(7):825-833.[3] Song R B,Aizawa T,Sun JQ.SynthesisofMg2 Si1-x Snx solid solutions as thermoelectric materials by bulkmechanical alloying and hot pressingmaterials[J].MaterSci Eng B,2007(136):111-116.[4]臧树俊,周琦,马勤,等.金属间化合物 Mg2 Si研究进展[J].今日铸造,2006,27(8):866-870.[5]姜洪义,刘琼珍,张联盟,等.Mg-Si基热电材料量子化学计算[J].计算物理,2004,21(5):439-442.[6] Tani J I,Kido ttice dynmics of Mg2 Si and Mg2 Ge compounds from first-principles calculations[J].Intermetallics,2008(16):418.[7] Au-Yang M Y,Cohen M L.Electronic structure and optical propertiesof Mg2 Si,Mg2 Ge,and Mg2 Sn[J].Phys Rev,1969,178(3):1358-1364.[8] Aymerich F,Mula G.Pseudopotential band structures of Mg2 Si,Mg2 Ge,andMg2 Sn,and of the solid solution Mg2Ge,Sn[J].Phys Suatus solid,1970,42(2):697-704.[9] Corkill JL,Cohen M L.Structures and electronic properties of IIA-IV antifluorite compounds[J].Phys Rev B,1993,48:17138-17144.[10]Imai Y,Watanabe A.Energetics of alkaline-earth metal silicides calculated using a first-principle pseudoptentialmethod[J].Intermetallics,2002(10):333-341.[11]闵新民,邢学玲,朱磊.Mg2 Si与掺杂系列的电子结构与热电性能研究[J].功能材料,2004(35):1154-1159.[12]陈茜,谢泉,杨创华.掺杂Mg2 Si电子结构及光学性质的第一性原理计算[J].光学学报,2009,29(1):229-235.[13]彭华,春雷,李吉超.Mg2 Si的电子结构和热电输运性质的理论研究[J].物理学报,2010,59(6):4123-4129.[14]刘娜娜,孙韩英,刘洪生.Mg2 Si弹性性质及热力学性质的第一性原理计算[J].材料导报,2009(23):278-280.[15]Owen E A,Preston G D.The atomic structure of two intermetallic compounds [J].Nature(London),1924(113):914-914.[16]VoightW.Lehrbuch der Kristallphysik[M].Leipzig:Taubner,1996.[17]Reuss A.Berechung der fliessgrenze von mischkristallen[J].Z Angew Math Mech,1929(9):49-58.[18]Hill R.The elastic behavior of a crystalline aggregate[J].Proceedings of the Royal Society of London Series A,1952,65(5):350.。
锂离子电池正极材料改性研究进展

N C A 材 料 ,由场发射扫描电镜(FESEM )结 果 可 知 , N C A 材料均匀地分散在石墨烯纳米片当中,电性能 测试结果显示,包 覆 后 材 料 在 0.1 t 放电比容量由 194.8mA‘h’g—1提升至 a n .Qm A'h'g—1, 倍 率 性 能 、循 环性能都得以提升。
成 一 层 保 护 层 ,防 止 电 解 液 分 解 时 对 材 料 结 构 的 破 坏 。通过对改性后的材料进行表征可以发现,L P A N 掺杂包覆不但提高了锂离子的迁移率,同时也提高 了正极材料的电化学性能。W A N G 161等通过化学沉 淀 法 在 事 先 利 用 M g 掺 杂 的 L i C 〇02 表面包覆了 Z K X F 、层 。通过电化学测试后发现改性后的材料在 3~4.5 V 的电压范围内仍具有良好的循环稳定性,同 时容量保持率也得到了提高。分析可知,元 素 Mg 的掺杂可以稳定L i C 〇0 2的晶体结构,同时包覆层抑 制 正 极 材 料 和 电 解 液 发 生 副 反 应 ,这样电 池 的 循 环 性能就得到了很大的提升。
由于富镍材料相对钴酸锂体系具有更高的容量 密 度 ,同 时 成 本 更 低 &对 环 境 污 染 小 ,因此被视为 未来电池正极材料的候选材料。由于高镍层状正极 材料的结构稳定性以及热稳定性较差,因此会引起 电 池 容 量 的 衰 减 问 题 ,这 将 严 重 影 响 电 化 学 性 能 , 通 过 分 析 发 现 材 料 的 失 效 主 要 归 因 于 :① 在 高镍锂 电 正 极 材 料 中 ,由 于某些的原因 导 致 一 些 过 渡 金 属 的阳离子与过渡锂离子发生混合占位的现象,称为 阳离子的混排。在 高 镍 系 材 料 中 主 要 存 在 N i /L i 的 混 排 [7]。② 材 料 表 面 容 易 发 生 相 变 ,且 此 相 变 过 程 是不可逆的。③ 界 面发生副反应。④ 当材料在截止 电压较高的充放电环境下长期进行充放电循环时, 晶格边界处由于材料应力放电深度变化的诱导产生 微裂纹。
Mg掺杂对Li4Ti5O12电化学性能的影响

Mg T i 5 O 1 2 ( X= 0 . 1 ) h a d g o o d e l e c t r o c h e m i c l a p r o p e r t i e s a n d p a t r i c l e s i z e d i s t i r b u t i o n .T h e i n i t i a l c h a r g e s p e c i i f c c a p a c i t y w a s 1 6 4 . 2 ,
吴 平 ,叶红齐 ,杨宏伟
5 1 8 1 1 9 )
( 1中南大学化 学4  ̄- Y - 学院 ,湖 南 长 沙 4 1 0 0 0 8 3 ; 2深圳 市天骄 科技 开发 有 限公 司,广 东 深圳
摘 要 :采用高温固相法合成尖 晶石型 L i T i O 电极材料 ,研究 了镁 掺杂对其 电化学 性能 的影 响。通 过扫描 电镜 ( S E M) 、
关 键词 :锂离子电池;负极材料;L i T i 0
中图分类 号 :T M 9 1 2
文献 标识码 :A
文 章编 号 :1 0 0 1 — 9 6 7 7 ( 2 0 1 3 ) 0 9 — 0 0 9 2 — 0 3
Ef fe c t s o f Ma g ne s i u m Do p i n g o n El e c t r o c h e mi c a l Pe r f o r ma nc e o f Li 4 Ti 5 01 2
删 P ,Y E Ho n g —q i , Y AN G Ho n g —we i
( 1 C o l l e g e o f C h e mi s t r y a n d C h e m i c a l E n g i n e e i r n g , C e n t r a l — S o u t h U n i v e r s i t y ,H u n a n C h a n g s h a 4 1 0 0 0 8 3 ; 2 S h e n z h e n T i a n j i a o T e c h n o l o g y C o . , L t d . , G u a n g d o n g S h e n z h e n 5 1 8 1 1 9, C h i n a )
习题和思考题

《无机材料科学基础》习题和思考题第一章晶体1.球体按立方最紧密堆积方式堆积,取出立方晶胞,画出立方晶胞中的四面体空隙和八面体空隙的位置分布图。
2.用鲍林规则分析氧化镁晶体结构。
已知镁离子半径为0.65Å,氧离子半径为1.40Å。
(1)确定晶胞中质点的位置坐标;(2)计算每个晶胞中含氧化镁“分子”数,(3)已知晶胞常数a=4.20 Å,求氧化镁堆积系数和密度,(4)氧化镁晶体中最邻近的两个镁离子中心距为多少?次邻近的两个镁离子中心距为多少?最邻近和次邻近的两个氧离子中心距为多少?(5)画出氧化镁晶胞的(111)、(110)、(100)面的质点分布图并在图上标出氧离子的密排方向,求个面的面密度。
3.已知纤锌矿结构中存在两套硫离子和两套锌离子的六方底心格子,并已知锌离子填充在硫离子最紧密堆积体的四面体空隙中,现以一套硫离子的等同点为基准取六方晶胞,画出晶胞中的质点分布图,计算晶胞中所含式量分子数。
4.完成下表5. 六方最紧密堆积与四方最紧密堆积的堆积密度相同,为什么许多氧化物是以氧离子的立方最紧密堆积为基础,而较少以六方最紧密堆积为基础?6. 用鲍林规则分析镁橄榄石的结构:P48 图2-18(1)标记为50的Mg2+与哪几个氧离子配位形成[MgO6]八面体?写出O2+的标高;(2)标记为25的两个O2+与哪几个镁离子配位?写出Mg2+离子的标高;(3)标记为75的O2+离子与哪几个镁离子配位?写出Mg2+离子的标高;(4)标记为0和50的两个Mg2+的[MgO6] 八面体共用几个顶点?写出O2+的标高;(5)[SiO4] 和 [MgO6] 之间、[MgO6]和[MgO6] 八面体之间有那些连接方式?(6)镁橄榄石的晶胞是什么形状?计算晶胞中含有的式量分子数。
第二章晶体缺陷1.氧化镁为氯化钠型结构,氧化锂为反萤石型结构,在两种结构中氧离子都作立方最紧密堆积,为什么在氧化镁中主要的热缺陷是肖特基型,而在氧化锂中却是弗伦克尔型?萤石型结构的氧化物晶体中常见的热缺陷估计主要是什么类型?为什么?2.已知氯化钠晶体中肖特基缺陷形成焓为2.2ev,而氧化镁晶体中肖特基缺陷形成焓为6ev,试分别计算400℃时氯化纳晶体与氧化镁晶体中肖特基缺陷的浓度。
氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响
B — uMg 催 化 剂 , 过 x 射 线 衍 射 (R )热 重 一 热 扫 描 分 析 (GD C、 : 温 物 理 吸 附 、 射 电镜 (E )H 程 序 升 温 还 原 aR / O 通 X D、 量 T / S )N一 低 透 T M 、: ( P ) C 序升 温 脱 附(o-P ) 手 段 对 其 进 行 了 表 征 , 察 了不 同 来 源 的 Mg H- R 和 O 程 T c D等 T 考 O和 B O助 剂 含 量 对 负 载 型 钌 基 氨 合 成 a
Mg . 催 化 剂 活性 更 高 O1
关 键 词 : 合 成 ; ; 化 镁 ; 性 氨 钌 氧 碱
e 图 分 类 号 : 6 3 ; Q132 6 3 1 O 1.21 0 0 4 . T 1 .;O 1. ; 6 48 3 6
文献标识码 : A
文 章 编 号 :10 -8 1 0 1 814 —9 0 146 ( l) .5 10 2 O
na R w s 1 , ek b s i sa p ae v rte sr c fB — u 11 Mg 一, hc ral po oe h Bnu a . w a ai se p e rd oe h u a eo aR ( : / O 2 w i get rm td te : 0 c t f ) h y
催 化 剂 的 物 相 结 构 、 构 性 质 、 观 形貌 、 u物种 的还 原 性 质 和 体 系 酸 碱 性 质 以及 催化 剂 的 氨合 成 活 性 等 方 面 的影 响 。结 果 表 织 微 R 明 , O 的理 化性 质 对 所 制 备 的钌 基 氨合 成催 化 剂 的 结 构 以及 氨 合 成 活 性 有 较 大 影 响 。Mg . Mg O 2比表 面 较 大 ,总 碱 性 位 数 量 较 多 , 载在 其 表 面 的 R 负 u粒 子 粒 径 在 2n 左 右 , n m n: 为 1 . , aR (:) O2催 化 剂 表 面 的 R O时 B .u11Mg . / u物种 易 于还 原 , 面 存 在 的 表 弱 碱 性 位 极 大 地 促 进 了 氨 合 成 活 性 , 4 0 o 时 活 性 达 到 1 . .~ h 30MP , 0 0h- 在 相 同反 应 条 件 下 比 B . u 在 0 C 54 L g 一(. 0 a 5 0 -, ) aR /
Mg含量对N掺杂MgZnO薄膜的光电性能和N掺杂行为的影响
Mg含量对N掺杂MgZnO薄膜的光电性能和N掺杂行为的影响高丽丽;徐莹;张淼;姚斌【摘要】利用射频磁控溅射技术,在相同流量的氮气、氩气混合气体条件下,在石英基片上溅射获得了不同Mg含量的N掺杂MgxZn1-xO薄膜,并研究了Mg含量对N的掺杂行为和薄膜光电性能的影响.结果显示,在N掺杂MgxZn1-xO薄膜中,随着Mg含量的增加,薄膜的电阻率增加,载流子浓度下降;X射线电子能谱中位于395 eV左右的N1s峰强逐渐减弱、甚至消失;Raman光谱中与受主NO相关的位于272 cm-1、642 cm-1左右的振动峰也随之减弱、消失.得到的结果表明:在N和O的化学势相同的条件下,薄膜中Mg含量对N的掺杂行为有一定的影响,随着Mg 含量的增加,受主NO的掺杂浓度降低,N的掺杂状态发生变化;N掺杂Mgr Zn1-xO薄膜中Mg含量低时,存在NO与(N2)O两种状态;Mg含量高时,薄膜中只存在(N2)O一种形式.【期刊名称】《光学精密工程》【年(卷),期】2014(022)005【总页数】6页(P1198-1203)【关键词】MgZnO薄膜;N掺杂;掺杂浓度;光电性能【作者】高丽丽;徐莹;张淼;姚斌【作者单位】北华大学物理学院,吉林吉林132013;吉林大学物理学院,吉林长春130012;吉林大学物理学院,吉林长春130012;北华大学物理学院,吉林吉林132013;吉林大学物理学院,吉林长春130012【正文语种】中文【中图分类】O4721 引言ZnO作为第三代半导体材料,室温下禁带宽度为3.37 eV,有望制成蓝光、蓝紫光等短波长发光器件[1-6]。
而纤锌矿结构的 Mg x Zn1-x O 因具有与ZnO相似的结构和光学特性,被看作是ZnO基发光二极管(LED)的合适垒层材料而被广泛研究[7-11]。
目前,n型 MgZnO合金薄膜的制备质量已经能够达到光电子器件的要求,p型MgZnO的制备却进展缓慢,甚至进入了瓶颈阶段。
2019年武汉理工大学材料学院博士研究生招生入围考试考生信息公示汇总表
\
technology . 87:(1)83-94 (一作,JCR一区)2018.6
1.Nonhalogen Solvent-Processed Asymmetric Wide-
是
Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency, Adv. Funct. Mater, 2018, 28,
1049799924
全日制 非定向
天津科 技大学
高分子材 料与工程
武汉理 工大学
材料工程
戴红莲
武汉理工大学、 朱楚洪,
陆军军医大学基础医
学院
1.High energy storage properties and dielectric behavior
of (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Al0.5Nb0.5)xO3 lead-
全日制 非定向
山东科 技大学
材料化学
山东科 技大学
材料加工 工程
韩颖超
王忠卫、曾荣昌 (山东科技大学)
nthanum magnesium hexaluminate thermal cycling lifetime
and CMAS corrosion behaviour,CERAMICS
INTERNATIONAL,2018年7月(一作,JCR一区)
2.Deposition and characterization of WC-Co hard-metal
coatings by high velocity oxy-fuel process combined with dry-
是(符合在国际重
金属元素掺杂α-Fe(N)体系的电子结构及力学性能的第一性原理计算
金属元素掺杂α-Fe(N)体系的电子结构及力学性能的第一性原理计算刘香军;杨吉春;贾桂霄;杨昌桥;蔡长焜【摘要】基于第一性原理研究M(M=Ti,V,Cr,Mn,Co和Ni)掺杂α Fe(N)的结合能、电子结构及力学性能.计算结果表明,Ti和V优先占据晶胞的顶角位置,Cr和Mn优先占据晶胞的体心位置,Co和Ni与N不相邻时结构最稳定.Ti与V的掺杂加强了晶胞的稳定性,Cr,Mn与Ni的掺杂削弱了晶胞的稳定性,Co的掺杂不影响晶胞的稳定性.这些过渡金属在α-Fe晶胞中均存在金属键和离子键的共同作用,成键轨道主要来自M3d,Fe4s3p3d与N2p.与纯α-Fe体系相比,掺杂体系刚性均变强,经计算可得α-Fe(N)-V体系的弹性模量E、剪切模量G和体积模量B均为最大值,即掺杂V可显著提高材料的力学性能,V是最有效的固氮元素,与高氮钢冶炼的实验结果相吻合.【期刊名称】《材料工程》【年(卷),期】2019(047)009【总页数】6页(P72-77)【关键词】第一性原理;高氮钢;电子结构;弹性常数【作者】刘香军;杨吉春;贾桂霄;杨昌桥;蔡长焜【作者单位】内蒙古科技大学材料与冶金学院,内蒙古包头014010;内蒙古科技大学材料与冶金学院,内蒙古包头014010;内蒙古科技大学材料与冶金学院,内蒙古包头014010;内蒙古科技大学工业技术研究院,内蒙古包头014010;内蒙古科技大学材料与冶金学院,内蒙古包头014010【正文语种】中文【中图分类】TG146N对钢材性能有着显著的影响,如强度、硬度均随N含量的增加而提高,韧性却不降低[1]。
同时N还能提升高氮钢的抗摩擦、抗腐蚀能力[2-4]。
由于常压下N 在钢液中的溶解度很低[5],通常采用高压充氮[6]和添加固溶金属氮化物的方法[7-9]来提高N在钢中的溶解度。
但高压充氮对设备的要求高、成本大,因此添加固溶金属氮化物(如Cr, Mn, Mo和V等的氮化物)来提高钢中氮含量是一种经济合理的有效方法。