土壤地面高光谱遥感原理与方法

合集下载

高光谱遥感图像中的特征提取与分类算法优化

高光谱遥感图像中的特征提取与分类算法优化

高光谱遥感图像中的特征提取与分类算法优化高光谱遥感图像是一种获取地面物体反射光谱信息的重要数据源。

在资源环境监测、农业生产、城市规划等领域,高光谱遥感图像的特征提取与分类算法优化具有重要意义。

本文将重点探讨高光谱遥感图像中的特征提取与分类算法优化的方法和技术。

一、高光谱遥感图像的特征提取方法在高光谱遥感图像中,每个像素点包含多个波段的光谱信息,因此特征提取主要是从光谱、空间和纹理等多个方面进行。

以下介绍几种常用的特征提取方法:1. 光谱特征提取:光谱特征提取是指通过分析各个波段的光谱反射率,获取区分不同地物的特征。

常用的方法有平均光谱曲线、光谱强度、光谱比值等。

可以利用统计学方法或者光谱分解等技术进行光谱特征提取。

2. 空间特征提取:空间特征提取是指通过分析高光谱图像像素点之间的空间关系,提取地物的空间分布特征。

常用的方法有纹理特征、空间模式指数等。

可以利用滤波器、卷积操作、灰度共生矩阵等技术进行空间特征提取。

3. 纹理特征提取:纹理特征提取是指通过分析高光谱图像中地物表面纹理的特征,提取地物的纹理信息。

常用的方法有灰度共生矩阵、小波变换、局部二值模式等。

可以通过计算纹理特征的统计值或者采用机器学习方法进行纹理特征提取。

以上是高光谱遥感图像中常用的特征提取方法,通过综合运用各种方法,可以获得更多的特征信息,提高特征提取的准确度和鲁棒性。

二、高光谱遥感图像的分类算法优化高光谱遥感图像分类是指将图像中的每个像素点划分到不同类别中,以实现对地物的识别和分类。

分类算法的优化可以提高分类的准确性和效率。

以下介绍几种常用的优化算法:1. 监督分类算法优化:监督分类算法是指在训练样本的基础上,通过对特征进行提取和选择,利用统计学或模型建立分类器,实现对遥感图像进行分类。

常用的监督分类算法有支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN)等。

通过优化特征选择、样本分布策略和分类器参数等方面,可以提高分类的准确性。

遥感原理与应用

遥感原理与应用
监测原理
通过长时间序列的卫星 遥感影像,分析城市建 成区的变化。
技术特点
动态监测,时间跨度长, 可分析城市扩张的规模 和速度。
应用效果
为城市规划、土地管理、 环境保护等提供决策依 据。
THANKS FOR WATCHING
感谢您的观看
04 遥感应用案例
森林火灾监测
监测原理
利用卫星或飞机搭载的遥感设备,通过热红外波段探测地表温度 异常,及时发受地面条件限制,可迅速定位火灾位 置。
应用效果
为灭火救援提供宝贵时间,减少火灾损失,评估火灾影响。
土地利用变化监测
监测原理
01
通过比较不同时期的卫星遥感影像,分析土地利用类型的差异。
利用遥感技术监测城市扩张情况,为城市规划和土地管理提供数 据支持。
城市绿地监测
遥感技术能够监测城市绿地分布和面积,为城市绿化建设和生态保 护提供依据。
城市交通状况监测
通过遥感影像分析城市交通状况,为城市交通管理和规划提供数据 支持。
灾害监测遥感
地震灾害监测
利用遥感技术监测地震灾害造成的破 坏,为灾后救援和重建提供数据支持 。
洪涝灾害监测
遥感技术能够实时监测洪涝灾害发生 区域,为灾害救援和灾后评估提供依 据。
03 遥感技术发展
高光谱遥感
高光谱遥感是一种利用光谱信息进行地物识别和分类的技术,通过获取地物在不 同光谱波段的反射和辐射信息,实现对地物的精细分类和特征提取。
高光谱遥感技术能够提供更丰富、更准确的地物光谱信息,广泛应用于环境监测 、资源调查、城市规划等领域。
农业灾害监测
遥感技术能够快速发现病虫害、旱 涝等灾害,为农业减灾提供预警和 决策支持。
林业遥感

高光谱遥感

高光谱遥感
21
三、高光谱遥感发展历程(国内)
它是指在特定光谱域以高光谱分辨率同时获得连续的地物 光谱图像, 使得遥感应用可以在光谱维上进行空间展开, 定量分 析地球表层生物物理化学过程与参数。
之后, 成像光谱技术的研究进入了一个高速发展期, 各国纷 纷投入资金加大成像光谱仪的研究己加拿大、日本、澳大利亚 等国, 相继研制出了不同应用目的的成像光谱仪。 我国在成像 光谱仪的研究开发方面也取得了引人瞩目的成绩, 相继成功研制 出
6
讲课提纲:
6. 高光谱数据综合分析与系统构建 6.1 高空间分辨率与高光谱数据融合 6.2 空间信息辅助下的高光谱数据分析 6.3 时间信息辅助下的高光谱数据分析 6.4 高光谱数据处理与分析系统
7. 高光谱遥感应用 7.1 高光谱遥感应用——精准农业 7.2 高光谱遥感应用——植被生态 7.3 高光谱遥感应用——内陆水质 7.4 高光谱遥感应用——地质矿产 7.5 高光谱遥感应用——大气环境
MIDAS
MIDAS –TASC
ENVI
The Environment for Visualizing Images, Research Systems Inc
ERDAS
ERDAS-Hyperspectral Data Analysis Package
TETRACORDER
U.S. Geological Survey
22
三、高光谱遥感发展历程(国际)
20世纪70年代末期,成像光谱概念形成初期(美国GER的航空光谱研究,
美国喷气推进实验室JPL的航天飞机多光谱红外辐射计SMIRR )
GER的航空光 谱仪成功地检
1983年,第一台高分辨力航空成像光谱仪 (Airborne Imaging Spectrometer,AIS-1) ,JPL

土壤含水量高光谱遥感定量反演研究进展

土壤含水量高光谱遥感定量反演研究进展

土壤含水量高光谱遥பைடு நூலகம்定量反演研究进展
刘 影 1,2,姚艳敏 1,2
(1农业部农业信息技术重点实验室,北京 100081; 2中国农业科学院农业资源与农业区划研究所,北京 100081)
摘 要:高光谱遥感因其光谱信息丰富,在土壤含水量的反演中得到了广泛的应用。通过对土壤含水量
遥感监测方法进行了归纳总结,对比分析了微波法、热红外法、光学法和高光谱法监测土壤含水量的优
缺点以及适用范围;重点分析总结了土壤含水量高光谱遥感定量方法,简要阐述了统计模型和机理模型
反演土壤含水量的研究进展,特别对辐射传输模型和几何光学模型 2 个机理模型进行了说明,将近年来
国内外学者在基于机理模型的土壤含水量遥感反演研究中获得的成果进行了归纳总结,并提出了存在
的问题以及今后的研究方向。
关键词:高光谱;土壤含水量;遥感反演;机理模型
中图分类号:TP79
文献标志码:A
论文编号:casb15090128
Research Progress of Soil Moisture Quantitative Inversion by Hyperspectral Remote Sensing Liu Ying1,2, Yao Yanmin1,2
微波法可以监测土壤表层几厘米到几十厘米的土 壤含水量,具有稳定的物理基础,即水分和干土的介电 常数相差较大 ,土壤含水量越高 ,介电常数也越高 ,所 以可以通过微波信号判断土壤介电常数的大小来获取 土壤含水量。微波监测法包括主动微波监测法和被动 微波监测法 2 种。在主动微波监测方面,目前的研究 主要是利用统计方法建立土壤含水量与后向散射系数 之间的函数关系来反演土壤含水量 ,如 Dobson 等 、 [1] Oh 等[2]、Shi 等[3]对裸土的水分含量进行了反演研究 ; Roger 等[4]、鲍艳松等 对 [5] 于有植被覆盖的地表土壤含 水量进行了反演研究 ,取得较为理想的结果。被动微 波监测的本质是利用微波辐射计测得物体的亮温 ,然 后与土壤含水量建立经验统计关系或通过已有的物理 模型反演土壤水分含量,如 Njoku[6]、乔平林[7]等进行了 亮温与土壤水分之间的关系研究 ,并建立二者的回归 方程;Jackson 等[8]针对大尺度范围内的土壤含水量制 图进行了研究。微波监测法的优点是能够不受天气条 件限制,全天时、全天候工作,对植被、土壤具有一定的 穿透能力 ,监测精度较高。缺点是难以消除植被覆盖 以及地表粗糙度对土壤水分含量反演的影响。

高光谱反演氮磷

高光谱反演氮磷

高光谱反演氮磷
高光谱反演氮磷是一种利用高光谱技术反演氮磷的方法,它是一种非常有效的
土壤肥力评价技术,可以有效地提高土壤肥力评价的准确性和可靠性。

高光谱反演氮磷的原理是利用高光谱技术对土壤中的氮磷含量进行测量,从而
反演出土壤中氮磷的含量。

高光谱技术可以检测到土壤中的多种元素,包括氮、磷、钾、钙、镁等,这些元素的含量可以反映土壤的肥力状况。

高光谱反演氮磷的优势在于,它可以快速、准确地测量土壤中的氮磷含量,而
且可以在大面积地区进行测量,可以有效地提高土壤肥力评价的准确性和可靠性。

此外,高光谱反演氮磷还可以检测土壤中的其他元素,如钾、钙、镁等,这些
元素的含量也可以反映土壤的肥力状况,从而更好地评估土壤的肥力状况。

总之,高光谱反演氮磷是一种非常有效的土壤肥力评价技术,它可以快速、准
确地测量土壤中的氮磷含量,而且可以在大面积地区进行测量,可以有效地提高土壤肥力评价的准确性和可靠性,从而更好地评估土壤的肥力状况。

高光谱遥感影像混合像元分解

高光谱遥感影像混合像元分解

04
混合像元分解实验与分析
实验数据介绍
数据来源
01
实验数据来自中国的某高光谱遥感卫星,覆盖了多个地区和不
同的土地利用类型。
数据特点
02
数据具有高光谱分辨率,包含了数百个波段,能够提供丰富的
地物光谱信息。
数据预处理
03
为了提高混合像元分解的精度,需要进行数据预处理,包括辐
射定标、大气校正、几何校正等。
端元数量与分解精度
实验结果表明,随着端元数量的增加,混合像元分解的精度逐渐提高。但端元数量过多会导致解的不稳定,因此需要 选择合适的端元数量。
不同土地利用类型的识别
通过混合像元分解,可以有效地识别不同类型的土地利用,如植被、水体、城市等。这为土地利用变化监测、生态保 护等方面提供了有力支持。
比较不同方法的结果
混合像元分解的必要性
为了更准确地提取地物信息,提高遥感应用的效果,对高光谱遥感影像进行混合像元分解是必要的。通过混合像 元分解,可以将一个混合像元分解成若干个纯像元的线性组合,从而更准确地表达地物的光谱特征。
混合像元分解研究现状
早期研究方法
早期的研究主要采用端元提取和丰度反 演的方法进行混合像元分解。端元提取 的方法主要基于空间和光谱的统计分析 ,从高光谱数据中提取出纯像元;丰度 反演的方法则是基于线性混合模型,通 过优化算法反演出各纯像元的丰度。
VS
近期研究方法
近年来,随着深度学习技术的发展,越来 越多的研究开始采用深度学习的方法进行 混合像元分解。深度学习方法能够自动地 学习和提取高光谱数据中的复杂结构和特 征,从而更准确地分解混合像元。目前, 常见的深度学习方法包括卷积神经网络 (CNN)、生成对抗网络(GAN)等。

高光谱遥感第二章ppt课件


第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
我校现有设备 Headwall
- 成像光谱仪的光谱与辐射定标技术
第二章 高光谱遥感成像机理与 成像光谱仪
- 成像光谱信息处理技术
海量数据非失真压缩技术 高速化处理技术 辐射量的定量化和归一性 图像特征提取及三维谱像数据的可视化
第二章 高光谱遥感成像机理与 成像光谱仪
5 成像光谱仪的空间成像方式 高光谱遥感成像包括空间维成像和光谱维成
第二章 高光谱遥感成像机理与 成像光谱仪
1 基本概念
光谱学 成像技术
成像 光谱学
第二章 高光谱遥感成像机理与 成像光谱仪
(1) 光谱分辨率 —指探测器在波长方向上的记录宽度,又称为
波段宽度。
第二章 高光谱遥感成像机理与 成像光谱仪
(2) 空间分辨率—对于成像光谱仪,其空间分辨率 是由仪器的角分辨力,即仪器的瞬时视场角 (IFOV)决定的。
第二章 高光谱遥感成像机理与 成像光谱仪
- 二元光学元件成像光谱技术
二元光学元件沿轴向色散,利用面阵CCD 探测器沿光轴方向对所需波段的成像范围进行 扫描,每一位置对应相应波长的成像区。
- 三维成像光谱技术
三维成像光谱仪是在光栅色散型成像光谱 仪的基础上改进而来的,其核心是一个像分割 器,将二维图像分割转换为长带状图像。
(3)仪器的视场角(FOV)—指仪器的扫描镜在空中 扫过的角度。
第二章 高光谱遥感成像机理与 成像光谱仪

高光谱整理

1.遥感图像的最基本单元是像元,每个像元具有空间特征和属性特征。

空间特征:是用X值和Y值来表示;(纹理,形状,大小,方位)属性特征:常用亮度值表示。

(灰度值,亮度值)2.遥感图像特征(②,③遥感成像技术发展的方向)①时间分辨率:对同一地点进行遥感采样的时间间隔,集采样的时间频率。

也称重访周期。

②空间分辨率:像素所代表的地面范围的大小,或地面物体能分辨的最小单元;③光谱分辨率:传感器在接收目标辐射的光谱时能分辨的最小波长间隔;④辐射分辨率:指传感器接收波谱信号时,能分辨的最小辐射度差;3.高光谱遥感基本概念:①多光谱遥感(Multirspectral Remote Sensing),光谱分辨率在波长的1/10数量级范围内(几十个至几百个nm)的遥感;②高光谱遥感(Hyperspectral Remote Sensing),光谱分辨率在波长的1/100数量级范围内(几个nm)的遥感;③超光谱遥感(Ultraspectral Remote Sensing),光谱分辨率在波长的1/1000数量级范围内(0.2-1nm)的遥感。

4.高光谱遥感与常规多光谱遥感的比较:①高光谱遥感:即高光谱分辨率成像光谱遥感,幅宽小,成像范围小,其细微的波段可进行地物成分的识别,风度估计(精细识别)。

②常规多光谱遥感:幅宽大,成像范围宽,可进行宏观地物影像分析,不可被高光谱遥感完全取代(宏观变化趋势)。

研究宏观的变化情况则必须用多光谱成像仪。

5.高光谱遥感发展概况:高光谱遥感的基础是光谱学(spectroscopy).①光谱学:实验室分析地物光谱特征(获得谱信息)②成像技术:把遥感传感器放置航空或航天平台(获得地物的图像信息)③成像光谱学:把实验室仪器放置航空或航天平台(获得地物的图和谱信息)注:光学遥感的发展——空间、光谱分辨率的不断提高:①全色Panchromatic:主要通过形状(空间信息)识别地物。

②彩色color photography:增加了颜色的感知,加强型的颜色感知。

遥感原理与方法

遥感原理与应用绪论1.遥感的概念遥感:即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术.广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波声波、地震波等的探测.狭义遥感:电磁波遥感,即应用传感器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示物体的特征性质及其变化的技术.2.遥测与遥控遥测:对被测物体某些运动参数和性质进行远距离测量的技术.遥控:远距离控制目标物体运动状态和过程的技术.3.遥感的分类按遥感平台分:地面遥感、航空遥感、航天遥感、宇航遥感.按传感器的探测波段范围分:紫外遥感、可见光遥感、红外遥感、微波遥感.按工作方式分:主动遥感、被动遥感 .按记录信息的表现形式分:成像遥感、非成像遥感.按遥感的应用领域分:外层空间遥感、大气层遥感、陆地遥感、海洋遥感、资源遥感、农业遥感、林业遥感、地质遥感、城市遥感、军事遥感等等.4.遥感三要素目标物传感器测量方法5.遥感的主要特点1)获取信息真实、客观2)获取信息的速度快,周期短3)获取信息受条件限制少,范围大4)获取信息的手段多,信息量大6.遥感的过程地物发射或反射电磁波传感器获取数据数据处理信息提取应用7.遥感的应用①利用多时相影像发现土地利用变化、农业作物估产、林业资源调查、自然灾害监测、全球和局部环境监测;②利用高分辨率影像提取城市信息交通道路网络;③军事应用越来越重要:重要目标定位与侦察、导航与武器制导、打击效果评估、战场环境监测等;④高光谱遥感在精准农业中的应用;⑤在建设数字城市、数字省区和数字中国中的应用:DOM、DEM和DLG.第一章电磁波及遥感物理基础1.电磁波传播原理:交互变化的电磁场在空间的传播.描述特性指标:波长、频率、振幅、相位等.特性:波动性、粒子性、横波2.干涉基本原理:波的叠加原理叠加条件:频率相同、震动方向相同、具有固定位相关系3.衍射概念:光通过有限大小的障碍物时偏离直线路径的现象.爱里斑:衍射实验中观察屏上的中央亮斑,其角半径为衍射角.瑞利判据:如果一个点光源的衍射图象的中央最亮处刚好与另一个点光源的衍射图象第一个最暗环相重合时,这两个点光源恰好能被这一光学仪器所分辨.4.偏振概念:如果光矢量E在一个固定水平面内只沿一个方向作振动,则这种光称为偏振光.偏振态:光矢量在垂直于传播方向的平面内可能存在的不同振动状态偏振面振动面:振动方向光矢量方向与光传播方向构成的平面偏振态分类:完全偏振线偏振、圆偏振、椭圆偏振,非偏振,部分偏振5.极化概念:极化是指电磁波的电场振动方向的变化趋势.水平极化H极化:卫星向地面发射信号时,电磁波的振动方向是水平方向.垂直极化V极化:卫星向地面发射信号时,电磁波的振动方向是垂直方向.6.电磁波波谱紫外线:波长范围为~μm,太阳光谱中,只有~μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下.可见光:波长范围:~μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段.红外线:波长范围为~1000μm,根据性质分为近红外、中红外、远红外和超远红外.微波:波长范围为1 mm~1 m,穿透性好,不受云雾的影响.7.黑体绝对黑体:在任何温度下,对各种波长的电磁辐射的吸收系数等于1100%的物体.黑体辐射:黑体的热辐射称为黑体辐射.黑体辐射的三个特性:温度越高,总的辐射通量密度越大,不同温度的曲线不同.随着温度的升高,辐射最大值所对应的波长向短波方向移动.辐射通量密度随波长连续变化,每条曲线只有一个最大值.8.太阳辐射概念:太阳是被动遥感主要的辐射源,又叫太阳光.太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳辐射方向,单位面积单位时间黑体所接受的太阳辐射能量.1353W/m2特点:①太阳光谱相当于5800 K的黑体辐射;②太阳辐射的能量主要集中在可见光,其中~μm的可见光能量占太阳辐射总能量的46%,最大辐射强度位于波长μm左右;③到达地面的太阳辐射主要集中在~μm波段,包括近紫外、可见光、近红外和中红外;④经过大气层的太阳辐射有很大的衰减;⑤各波段的衰减是不均衡的;9.大气大气垂直分层:对流层、平流层、电离层和外大气层大气对太阳辐射的作用:大气吸收主要原因、散射、反射引起吸收的主要成分:氧气、臭氧、二氧化碳、水蒸气散射的概念:电磁波与物质相互作用后电磁波偏离原来的传播方向的一种现象.主要发生在可见光波段散射方式:米散射、均匀散射、瑞利散射大气散射特点:群体散射强度是个体散射强度的线性和.大气散射系数与高度的关系分子散射与气溶胶散射光强之比随角度和能见度的变化规律.大气窗口:电磁波通过大气层时较少被反射,吸收和散射的,透射率较高的波段称为大气窗口.遥感大气窗口:10.地物发射辐射发射率:地物的辐射出射度单位面积上发出的辐射总通量W与同温下的黑体辐射出射度W黑的比值.它也是遥感探测的基础和出发点.影响因素:地物的性质、表面状况、温度按照发射率与波长的关系,把地物分为:黑体或绝对黑体:发射率为1,常数.灰体:发射率小于1,常数选择性辐射体:发射率小于1,且随波长而变化.地物的发射光谱发射光谱:地物的发射率随波长变化的规律.发射光谱曲线:按照发射率和波长之间的关系绘成的曲线.亮度温度:它是衡量地物辐射特征的重要指标.指当物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度.等效温度:为了分析物体的辐射能力,常用最接近灰体辐射曲线的黑体辐射曲线来表达,这时黑体辐射温度称为该物体的等效辐射温度.11.地物辐射地物辐射特性:①在~波段主要在可见光和近红外波段,地表以反射太阳辐射为主,地球自身的辐射可以忽略 .②在~波段主要在中红外波段,地表反射太阳辐射和地球自身的热辐射均为被动遥感的辐射源.③在以上的热红外波段,以地球自身的热辐射为主,地表反射太阳辐射可以忽略.热红外成像地物辐射的分段特性的意义:①可见光和近红外波段遥感图像上的信息来自地物反射特性.②中红外波段遥感图像上,既有地表反射太阳辐射的信息,也有地球自身的热辐射的信息.③热红外波段遥感图像上的信息来自地球自身的热辐射特性.12.不同电磁波段中地物波谱特性可见光和近红外波段:主要表现地物反射作用和地物的吸收作用.热红外波段:主要表现地物热辐射作用.微波波段:主动遥感利用地物后向散射;被动遥感利用地物微波辐射.13.地物反射辐射反射率ρ:地物的反射能量与入射总能量的比,即ρ=Pρ/ P0×100%.表征物体对电磁波谱的反射能力.地物的反射:太阳光通过大气层照射到地球表面,地物会发生反射作用,反射后的短波辐射一部分为遥感器所接收.影响因素:表面颜色、粗糙度和湿度地物反射类型:镜面反射、漫反射、方向反射14.地物波谱特性定义:研究可见光至近红外波段上地物反射率随波长的变化规律.作用:物体波谱曲线形态,反映出该地物类型在不同波段的反射率,通过测量该地物类型在不同波段的反射率,并以此与遥感传感器所获得的数据相对照,可以识别遥感影像中的同类地物.研究地表的主要波段:可见光和近红外波段可见光和近红外地物光谱测试的作用:①传感器波段的选择、验证、评价;②建立地面、航空和航天遥感数据的定量关系;③地物光谱数据与地物特征的相关分析.第二章遥感平台及运行特点1.遥感平台组成:由遥感传感器、数据记录装置、姿态控制仪、通信系统、电源系统、热控制系统等组成.功能:在不同高度进行多平台遥感,可获得不同比例尺、分辨率和地面覆盖面积的遥感图像.类型:按遥感平台距地面的高度分为地面平台、航空平台和航天平台.2.遥感平台的作用地面平台:地面平台稳定性高,能够进行近距离测量,可以测定各类地物的波谱特性;航空平台:能够快速进行航空摄影测量,各种大范围调查和侦察.航天平台:进行各地点和时期期的地球观测,空间调查与实验,提供各种数据.3.卫星轨道及运行特点春分点:黄道面与赤道面在天球上的交点升交点:卫星由南向北运行时与赤道面的交点降交点:卫星由北向南运行时与赤道面的交点近地点:卫星轨道离地球最近的点远地点:卫星轨道离地球最远的点卫星在空间的位置和形状是由6个轨道参数来决定的.它们是:升交点赤经Ω: 春分点R逆时针方向到升交点K的弧长近地点角距ω: 从升交点K沿轨道到近地点A的角距过近地点时刻 t: 卫星S与近地点A间的角距长半轴 a:轨道椭圆的长半径偏心率 e:轨道椭圆的偏心率倾角 i:轨道平面与赤道平面的夹角卫星坐标解算方法:利用星历参数解算、用GPS测定.卫星的姿态:通常用 X前进的切线方向、Y垂直与轨道面方向、Z垂直与XY面三轴定向表示:绕X轴称滚动;绕Y轴称俯仰;绕Z轴称航偏.测量的方法有:红外姿态测量仪、恒星相机测定法、GPS 方法4.遥感中常用卫星轨道参数轨道周期:卫星在轨道上绕地球一周所需的时间;覆盖周期:卫星从某点开始,经过一段时间飞行后,又回到该点用的时间.赤道轨道:i=0°轨道平面与赤道平面重合地球静止轨道:i=0°且卫星运行方向与地球自转方向一致,运行周期相等倾斜轨道:顺行轨道--0°<i<90°卫星运行方向与地球自转方向一致--可覆盖最高南北纬度为i ;逆行轨道--90°<i<180°卫星运行方向与地球自转方向相反--可覆盖最高南北纬度为180°-i .星下点: 卫星质心与地心连线同地球表面的交点星下点轨迹地面轨迹: 星下点在卫星运行过程中在地面的轨迹卫星速度、星下点速度、卫星平均高度同一天相邻轨道间在赤道的距离每天卫星绕地球的圈数5.陆地卫星用途:用于陆地资源和环境探测平台要求:①对全球表面进行周期性成像覆盖;②保证在卫星通过北半球中纬度地区时有最佳光照条件;③同一地点、不同日期的成像地方时间、太阳光照角基本一致.轨道特征:①近极地轨道,卫星轨道平面与地球赤道平面的夹角近90度.轨道倾角越大,覆盖地球表面的面积越大.②卫星轨道近圆形地球资源卫星的偏心率很小③与太阳同步轨道:卫星轨道平面与太阳光之间的夹角太阳光照角始终保持一致的轨道.④可重复观测:地球资源卫星的按一定的周期运行,一个重复周期对地球扫描一次;第三章遥感传感器及其成像原理1.传感器基本组成:收集系统、探测系统、信号转换系统处理器、记录系统输出器收集系统:接收地物辐射电磁波将其聚焦成像探测系统.探测系统:对电磁辐射敏感、将辐射能转换成电信号.信号转换系统:将电信号转换为便于显示、记录、处理的光信号.记录系统:将探测系统或信号转换系统输出的电磁波信息光信号记录、存储到遥感信息载体,以影像或数字形式输出.2.描述遥感器的特性参数空间分辨率:表示按地物几何特征尺寸和形状和空间分布,即在形态学基础上识别目标的能力.光谱分辨率:指遥感器在接收目标辐射的波谱时,能分辨的最小波长间隔,即遥感器的工作波段数目、波长及波长间隔波带宽度 .辐射分辨率辐射灵敏度:辐射分辨率指遥感器探测元件在接收波谱辐射信号时,能分辨的最小辐射度差.时间分辨率:为分析、识别目标所必须具有的最小时间间隔,称时间分辨率.3.传感器类型及优缺点①摄影类型的传感器优点:成本低易操作信息量大缺点:局限性大 ,影像畸变较严重,成像受气侯、光照和大气效应的限制影像须回收胶片②扫描成像类型传感器优点:可对全部五个大气窗口的电磁辐射进行探测,可进行多波段、超多波段遥感--波谱分辨率高缺点:空间分辨率相对较低③雷达成像类型传感器④非图像类型传感器⑤成像光谱仪⑥推扫式传感器4.TM特点①TM中增加一个扫描改正器,使扫描行垂直于飞行轨道②往返双向都对地面扫描MSS仅单向扫描;③地面分辨率由79米到30米;④波段由5个增加到7个;⑤有热红外通道TM6 .5.ETM+ 特点①增加了全色波段,分辨率为15米;②采用双增益技术使热红外波段的分辨率提高到60米;③改进后太阳定标器使卫星的辐射定标误差小于5%.D三种主要功能光电转换:入射辐射在MOS电容CCD元上产生与光亮度成正比的电荷电荷积累:当电压加到CCD电极上时—在硅层形成电位势阱--电荷在势阱内积累电荷转移:加高压形成深势阱, 加低压形成的势阱浅--电荷可进行转移--实现信号传输7.瞬时视场:在扫描成像过程中一个光敏探测元件通过望远镜系统投射到地面上的直径或对应的视场角度.8.传感器误差倾斜误差:因遥感器姿态角引起像点移位投影误差:地形起伏引起的像点移位,仅在扫描方向上.9.雷达遥感分辨率距离向分辨率:脉冲在脉冲发射的方向上距离向能分辨两个目标的最小距离.分为斜距分辨率和地距分辨率方位向分辨率:在辐射波垂直的方向上方位向相邻的两束脉冲之间能分辨的两个目标的最小距离.10.影响后向散射系数的主要因素雷达系统的工作参数:主要包括雷达传感器的工作波长、波束的入射角、入射波的极化方式等地面目标的特性引起:即地表的粗糙度和地物目标的复介电常数和雷达光斑等因素11.雷达影像几何特性透视收缩、雷达阴影、叠掩12.遥感图像与遥感影像遥感影像:由遥感器对地球表面摄影或扫描获得的影像遥感图像:遥感影像经过处理或再编码后产生的与原物相似的形象13.遥感图像基本属性波谱特性、空间特性、时间特性第四章遥感图像数字处理的基础知识1.遥感传感器记录地物电磁波的形式胶片或其它光学成像载体形式光学图像数字形式数字图像2.图像数字化实质:把一个连续的光密度函数变成一个离散的光密度函数采样:空间坐标离散化——图像坐标数字化量化:幅度光密度离散化——图像灰度数字化第六章遥感图像的几何处理1.遥感图像的几何变形概念:原始图像上各地物的几何位置、形状、尺寸、方位等特征与在参照系统中的表达要求不一致时产生的形变.研究前提:必须确定一个图像投影的参照系统,即地图投影系统.影响因素:①传感器成像方式引起的图像变形②传感器外方位元素变化的影响③地形起伏引起的像点位移④地球曲率引起的图像变形⑤大气折射引起的图像变形⑥地球自转的影响2.遥感图像变形误差静态误差:传感器相对于地球表面呈静止状态时所具有的各种变形误差.动态误差:由于地球的旋转等因素所造成的图像变形误差.内部误差:由于传感器自身的性能技术指标偏移标称数值所造成的.外部变形误差:由传感器以外的各种因素所造成的误差,如传感器的外方位元素变化,传感器介质不均匀,地球曲率,地形起伏以及地球旋转等因素引起的变形误差.3.遥感图像的几何处理遥感图像的粗加工处理:遥感图像的精纠正处理①多项式纠正②共线方程纠正③有理函数模型①投影中心坐标的测定和解算②卫星姿态角的测定③扫描角θ的测定遥感图像的精纠正处理:消除图像中的几何变形,产生一幅符合某种地图投影或图形表达要求的新图像.①多项式纠正②共线方程纠正③有理函数模型几何精校正的两个环节①像素坐标的变换,即将图像坐标转变为地图或地面坐标;②坐标变换后的像素亮度值进行重采样.4.遥感图像纠正处理过程①根据图像的成像方式确定影像坐标和地面坐标之间的数学模型.②根据所采用的数字模型确定纠正公式.③根据地面控制点和对应像点坐标进行平差计算变换参数,评定精度.④对原始影像进行几何变换计算,像素亮度值重采样.⑤目前的纠正方法有多项式法,共线方程法和有理函数模型等5.遥感图像多项式模型纠正同名点的选择原则①在图像上为明显的地物点,易于判读②在图像上均匀分布③数量要足够图像灰度值重采样方法①最近邻像元法②双线性内插法③双三次卷积法6.图像间的自动配准和数字镶嵌图像间的自动配准配准的目的:多源数据进行比较和分析,图像融合、变化检测.配准的实质:几何纠正.采用一种几何变换将图像归化到统一的坐标系中. 配准的方式:图像间的匹配、绝对配准.步骤:在源图上选择足够同名点、解算多项式模型参数并配准数字图像镶嵌图像镶嵌:将不同的图像文件合在一起形成一幅完整的包含感兴趣区域图像.要求:不同时间同一或不同传感器获取,图像间要有一定的重叠度实质:几何纠正步骤:图像的几何纠正、搜索镶嵌边、亮度和反差调整、平滑边界线第八章遥感图像自动识别分类1.特征变换的方法和目的①主分量变换②哈达玛变换③生物量指标变换④比值变换⑤穗帽变换目的:①减少特征之间的相关性,使得用尽可能少的特征来最大限度地包含所有原始数据的信息.②使得待分类别之间的差异在变换后的特征中更明显,从而改善分类效果.选择方法:定性:了解变换前后图像的特征定量:距离测度和散布矩阵测度.2.监督分类监督分类法:选择有代表性的试验区来训练计算机,再按一定的统计判别规则对未知地区进行自动分类的方法.监督分类的方法:最大似然法、最小距离法、盒式分类法步骤:①确定感兴趣的类别数.②特征变换和特征选择③选择训练样区④确定判别函数和判别规则⑤根据判别函数和判别规则对非训练样区的图像区域进行分类.监督分类的缺点:①主观性;②由于图象中间类别的光谱差异,使得训练样本没有很好的代表性;③训练样本的获取和评估花费较多人力时间;④只能识别训练中定义的类别.3.非监督分类非监督分类:是指人们事先对分类过程不施加任何的先验知识,而仅凭遥感影像地物的光谱特征的分布规律,即自然聚类的特性,进行“盲目”的分类.非监督分类的方法: K-均值聚类法、ISODATA聚类分析法、平行管道聚类分析法论述题遥感技术未来的发展趋势主要体现在哪些方面我的答案:答:遥感技术未来的发展趋势主要体现在:1、概念的发展.2、平台与观测技术的发展.3、定位技术的发展.4、处理技术的发展.5、遥感应用领域的拓展.6、遥感基础理论的发展.7、应用于环境科学.比如应用遥感技术监测和检测水体水体污染;对大气的监测;城市环境的监测以及管理;监测自然灾害、生态系统等等.简答题简述地物辐射的分段特性及了解地物辐射的分段特性的意义.我的答案:地物辐射的分段特性:地球自身的辐射主要集中在长波,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射.两峰交叉之处是两种辐射共同其作用的部分,在~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身热辐射均不能忽略.辐射波段分为:1、可见光与近红外波段:波长为微米,辐射特性以地表辐射、太阳辐射为主.2、中红外波段:波长为微米,辐射特性以地表辐射、太阳辐射和自身热辐射为主.3、远红外波段:波长为>6微米,辐射特性以地表物体自身热辐射为主.地物辐射的分段特性的意义:1、波谱特性曲线的形态特征反映地面物体本身的特性,包括物体本身的组成、温度、表面粗糙度等物理特性.曲线形态特殊时可以用发射率曲线来识别地面物体,在夜间,太阳辐射消失后,地面发出的能量已发射光谱为主,单侧起红外辐射及微波辐射并与同样温度条件下的发射率曲线比较,是识别地物的重要方法之一.2、地物反射波普曲线除随不同地物不同外,同种地物在不同内部结构和外部条件下形态表现发射率也不同.一般说,地物发射率随波长变化有规律可循,从而为遥感影像的判读提供依据.论述题遥感平台的类型有哪些每种类型的遥感平台各有什么功能我的答案:遥感平台的类型:可分为地面平台、空中平台和太空平台三大类.遥感平台的功能:地面平台:主要指以高塔、车、船为平台的遥感技术系统,地物波谱仪或传感器安装在这些地面平台上,进行各种地物波谱测量,如固定的遥感塔、可移动的遥感车、舰船等.空中平台:又称航空遥感平台,泛指从飞机、飞艇、气球等空中平台对地观测的遥感技术系统.如各种固定翼和旋翼式飞机、系留气球、自由气球、探空火箭等.太空平台:又称航天遥感平台,泛指利用各种太空飞行器为平台的遥感技术系统,以人造地球卫星为主体,包括载人飞船、航天飞机和太空站,有时也把各种行星探测器包括在内.如各种不同高度的人造地球卫星、载人或不载人的宇宙飞船、航天站和航天飞机等.这些具有不同技术性能、工作方式和技术经济效益的遥感平台,组成一个多层、立体化的现代化遥感信息获取系统,。

遥感技术的基本原理

遥感技术的基本原理
遥感技术是利用航天器、飞机和地面观测点等平台,通过对地球表面物体反射、辐射和散射等信息的获取和分析,来研究和监测地球表面和大气变化的一种技术手段。

它的基本原理可以简单概括为以下几个方面:
1. 电磁辐射原理:遥感技术主要基于物体对电磁波的相互作用来获取信息。

地球表面物体受到太阳辐射的照射后,会根据其属性和组成的不同,吸收、反射或散射不同波长的电磁辐射。

利用遥感仪器可以测量到各种波长的电磁辐射,并通过光谱分析等手段,推断出地面物体的属性和组成。

2. 多光谱成像原理:遥感技术通常采用多光谱成像,即利用不同波段的光谱信息来获取地面物体的特征。

多光谱成像可以提供物体的颜色和反射率等信息,从而识别地表物体的类型如植被、水体或城市建筑等。

3. 高光谱成像原理:高光谱遥感技术相比多光谱遥感技术能够获取更高维度的光谱信息。

它可以对地面物体的光谱进行更加精细的分析,从而提供更多的物质信息和精准的物体识别能力。

4. 合成孔径雷达(SAR)原理:合成孔径雷达利用雷达波束的连续接收和信号处理技术,来获取地球表面物体的雷达信号。

相比传统光学遥感技术,SAR不受天气和时间的限制,且可
以获取地表的极化参数、高程数据等。

5. 精度定位原理:遥感技术的数据处理中需要对获取的影像进
行精度定位,以获取地理空间信息。

这通常通过电磁辐射学和地理配准等方法来实现。

总之,遥感技术的基本原理在于利用不同传感器和平台获取地球表面物体的电磁辐射信息,通过对这些信息的分析和处理,来研究和监测地球表面和大气的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤地面高光谱遥感原理与方法
一、高光谱遥感概述
高光谱遥感是一种利用光谱信息对地表物体进行遥感测量的技术。

它通过在电磁波谱的不同波段获取连续的光谱信息,实现对地表物体的高分辨率识别和分析。

高光谱遥感技术以其独特的优势,在地表植被、土壤、水体等领域得到了广泛应用。

二、土壤光谱特征
土壤光谱特征是土壤中不同成分和结构的表现,反映了土壤类型、含水量、有机质含量等多种信息。

通过对土壤光谱特征的测量和分析,可以实现对土壤类型的识别、土壤含水量和有机质含量的估算等。

三、遥感数据处理
遥感数据处理是利用遥感技术获取和处理地表信息的过程。

它包括数据预处理、图像校正、图像增强等步骤。

通过遥感数据处理,可以去除噪声、提高图像分辨率、增强图像特征等,为后续的图像分析和解译提供高质量的数据源。

四、模型建立与反演
模型建立与反演是通过建立数学模型,将高光谱遥感数据与地表物体属性之间的关系进行定量描述。

常用的模型包括线性回归模型、支持向量机模型、神经网络模型等。

通过模型建立与反演,可以实现对土壤参数的定量估算和预测。

五、土壤参数提取
土壤参数提取是从高光谱遥感数据中提取有关土壤类型、含水量、有机质含量等参数的过程。

常用的方法包括光谱角映射、谱图匹配、主成分分析等。

通过土壤参数提取,可以获取丰富的土壤信息,为土壤学研究和农业管理提供有力的支持。

六、图像分类与解析
图像分类与解析是根据已知的训练样本,将高光谱遥感图像中的像素划分为不同的类别或区域。

常用的方法包括监督分类和非监督分类。

通过图像分类与解析,可以将高光谱遥感图像转化为易于理解和使用的地理信息。

七、实例应用分析
本部分将通过具体案例详细介绍高光谱遥感在土壤学研究中的应用。

例如,对某种特定土壤类型的识别和分类,利用高光谱数据预测土壤中的有机质含量、水分含量等关键参数,以及高光谱数据在土地利用变化监测和农业管理中的应用等。

这些案例将展示高光谱遥感在土壤学研究中的广泛应用和潜力。

八、结论与展望
本文总结了高光谱遥感在土壤学研究中的应用原理和方法,展示了其相对于传统方法的优势。

然而,高光谱遥感仍存在一些限制和挑战,如数据获取和处理难度大、对某些特殊土壤类型的识别精度不高、受天气和环境条件影响较大等。

未来研究方向应包括开发更高效的算法和技术,提高高光谱遥感的精度和稳定性;拓展其在不同领域的应用范围,如环境监测、生态保护等;以及加强与其他学科的交叉研究,共同推动高光谱遥感技术的发展和应用。

相关文档
最新文档