油气藏增产新技术解读
低渗透油藏增产增注工艺技术研究

1411 低渗透油田的开发现状当前,我国石油低渗透油藏储量的占比较高,年产量几乎占全国石油产量的一半,这就给我国石油原油生产持续稳定发展带来了很大的发展空间。
低渗透油田自身的低丰度、低压以及低产这三大特点造成了低渗透油田的开发难度大。
不仅如此由于低渗透油田的开发地质复杂,裂缝发育以及地质条件活跃等因素都加剧了低渗透油藏的开发难度。
目前我国低渗透油田的开发过程中主要面临以下技术问题:首先是传统的水驱渗流理论不能很好的适用于低渗透油田的多尺度裂缝,需要进一步针对低渗透油田特质来进行研究和实践高含水期水驱的规律和渗流理论。
传统的水驱渗流模型无法准确的反应低渗透油田地质特征和实际开采的状态,反应的油水流动规律适应性差,需要对此进一步的研究和优化;然后就是低渗透油田在开发过程中需要进行压裂改造,基质砂石和裂缝系统关系复杂,水驱波及的体积较小,整个油井的驱动效率较低,造成低渗透油田的采收效率低,表层储层的非均质性比较明显;最后就是已经进行开发的老油区缝网配置不合理,缺乏高效合理的注水技术和工艺,需要针对不同的地质特性和油藏储性建立井网加密调整优化模式,制定出合理的注水技术,实现低渗透油气田持续新有效的驱动效果,增大低渗透油田的采收效率。
2 堵塞物的形成及特性不同的油井地层堵塞特征研究是应对油层解堵的工艺基础。
造成油井地层堵塞的原因有:油井在作业过程中造成的地层伤害、不合理的开采方式以及不合理的开采参数的长期应用,造成油井的堵塞、注入水和地层流体不匹配;或是由于环境的问题和压力的改变使得地层形成无机垢堵或是有机垢堵,压裂液破裂流出或是残渣的存在造成的压裂缝堵塞等状况。
上述这些原因都会造成油井地层堵塞,加剧低渗透油田的开发难度。
在生产时间较短的井以及注水时间较短的油井中,堵塞物以有机物为主。
对于生产时间较长的井,同时还经过多次增产措施的井,其堵塞物的成分比较复杂,表现为有机物和无机物并存,且以无机物为主。
3 低渗透油田增产增注技术研究油井通过有压裂、酸化、降压等增产增注技术来改造油层特性,降低低渗透油藏的堵塞情况,通过采取一系列适合本区域内低渗透油层的增产增注技术,提高低渗透油田的开发效率和单井产能。
非常规油气藏压裂新技术

− 北美的非常规作业每3个中就 GULFCOAST
33%
有1个(33%)
ROCKIES
32%
− 国际市场中每5个中就有1个 WILLISTON/BAKKEN
30%
(20%)
MARCELLUS/UTICASHALE
25%
PERMIANBASIN
22%
▪ 总结出:“蛮力”不是解决
EAGLEFORDSHALE
18% 14%
施工人员缺乏经验/人为错误
13%
4 地面设备问题
12%
胶液没有破胶
1%
提高储层认知度
我们看到了什么– Barnett 案例
70%的产气量 30%
生产剖面
½ 的射孔
20%
10%
0% 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SPE 103202
应力
3.5
H3
2.5 2
• 在中等盐度水中性能优越 • 高浓度盐水中性能较好
总悬浮固体(TSS)
25 m (limits to be further defined)
总溶解固体 (TDS)
10,000 mg/L
20,000 mg/L
大于100,000 mg/L
(还未确定上限)
总多价阳离子
(e.g. Ca2+ + Mg2+ + Fe3+)
案例#1 – Seneca Resources
SPE 159681 – 2012ATCE
案例#1 – Seneca Resources
84,000 ft3/ft
132,000 ft3/ft
SPE 159681 – 2012ATCE
油田注气提高采收率开发应用技术研究

油田注气提高采收率开发应用技术研究随着石油资源的逐渐枯竭,采收率的提升成为油田开发的重要目标。
油田注气是提高采收率的一种有效手段,对于开发油田具有重要的经济价值。
本文将介绍油田注气的原理、技术现状和未来发展前景。
一、油田注气原理油田注气是通过在油田地层中注入气体,使原油层中压力增加,原油与岩石孔隙中支持相互作用力减小,从而降低油泥的黏滞性、升高润滑性,使原油在孔隙内能够流动更容易,提高采油效率,增加采收率。
注入的气体有天然气、氮气、二氧化碳等,不同的气体具有不同的物理化学性质,对于不同类型的油藏选取合适的注入气体可以提高采收率。
二、油田注气技术现状油田注气技术是石油工业中比较成熟和广泛应用的一种技术,随着技术的不断发展,注气技术的效率和适用性逐步提高。
(一)注气方式目前油田注气技术主要分为直接注气和间接注气两种方式。
直接注气是将气体注入到油井中,通过压缩空气等设备将气体直接压入油井管道,沿着井眼垂直注入地下油藏。
直接注气的优点是注入速度快,注气效果显著。
间接注气是在地层内建立气体区域,然后用压力差将气体推入油层中。
常用的方法是在油藏水深处设立气幕,使气体充满整个油藏水深,经过几次推压和加气,形成均匀的气带,压力梯度增强,从而使注入的气更加均匀,采收率提高。
间接注气的优点是可控性强,注入节奏可控,可以减少因直接注气引起的泥层破坏。
(二)注气气体注气气体的选择是影响油田注气效果的关键因素。
常见的气体有天然气、氮气、二氧化碳等。
其中,天然气是最常用的注入气体,其成分简单,渗透能力强,同时含有的天然气成分有助于原油的上升,增加了注气效果。
氮气常用于高渗透油田和中深层油层的注气,可以提高油层的压力和渗透性。
二氧化碳注气适用于高黏度油藏,有助于降低原油的黏度,提高采油效率。
三、油田注气未来发展前景油田注气技术是提高采收率的重要手段,具有广阔的应用前景。
未来在油田注气技术的发展中,需要注重以下几个方面:(一)优化注气方式:随着技术的不断发展,需要采用更为灵活多样的注气方式,对于不同类型的油藏选取合适的注入方式,提高注气效果。
致密砂岩油气藏开发技术

致密砂岩油气藏开发技术作者:刘国良朱丽君李朋来源:《科技资讯》2015年第15期摘要近年来,随着油气藏开采水平的提高,致密砂岩油气藏的勘探开发成为关注的焦点。
由于致密砂岩储层具有孔隙度小、渗透率低、粘土矿物类型丰富和岩性致密等特殊的地质特征,导致此类油气藏经济高效开发难度大。
虽然在国内外已有成功开发致密油气藏的先例,但目前对于致密砂岩油气藏的开发技术还未形成统一的认识。
本文对目前致密砂岩油气藏的开发技术进行了分析,希望借此文章达到对致密砂岩储集层开发技术能有一个较为明确的认识。
关键词致密砂岩;油气藏;开发技术中图分类号:TE34:P61 文献标识码:A 文章编号:1672-3791(2015)05(c)-0000-001引言目前国外所开发的大型致密砂岩气藏以深盆气藏为主,主要集中在加拿大西部和美国西部。
全球致密油资源量约为6900×108t;根据中国国土资源报(2014/1/9)公布的全国油气资源动态评价的结果,我国剩余天然气资源62×1012m3,其中非常规致密天然气资源量占天然气总资源的50%左右。
我国未来油气产量稳产增产将更多地依靠开采低渗透油气藏,致密砂岩油气藏是低渗透中重要的一种。
随着勘探程度的提高和油气资源需求的不断增长,对致密砂岩油气藏的开发将是中国油气开发建设的主战场之一,所以研究致密砂岩油气藏显得至关重要。
2致密砂岩油气藏的特点致密砂岩油气藏由于储层致密,油气逃逸速度低于生烃和排烃速度,原生油气藏均为高压油气藏,其油气水的关系十分复杂,这类油气藏当中都有一定程度天然裂缝的发育。
在对此类油气藏进行开发的过程中,往往出现以下特征:①不高的水驱动用程度;②油井动液面出现较低,采油井底流压太小;③采油速度降低很快;④地层压力降低很快。
3致密砂岩油气藏开发技术3.1多段压裂水平井技术多段压裂水平井技术结合了水平井技术和人工压裂技术的优点,有效改善了近井地带渗流条件,大幅提高了单井控制储量,已成为有效开发致密砂岩油气藏的重要技术手段。
石油行业油气勘探开发技术创新方案

石油行业油气勘探开发技术创新方案第一章油气勘探开发技术概述 (2)1.1 油气勘探开发技术现状 (2)1.1.1 勘探技术现状 (2)1.1.2 开发技术现状 (2)1.2 技术发展趋势 (3)1.2.1 勘探技术发展趋势 (3)1.2.2 开发技术发展趋势 (3)第二章地震勘探技术创新 (3)2.1 高精度地震勘探技术 (3)2.1.1 技术原理 (3)2.1.2 技术特点 (4)2.2 四维地震勘探技术 (4)2.2.1 技术原理 (4)2.2.2 技术特点 (4)2.3 深海地震勘探技术 (4)2.3.1 技术原理 (4)2.3.2 技术特点 (5)第三章钻井技术创新 (5)3.1 钻井液技术创新 (5)3.2 钻头及钻具技术创新 (5)3.3 钻井工艺技术创新 (6)第四章油气田开发技术创新 (6)4.1 油气藏评价技术创新 (6)4.2 开发方案优化技术创新 (6)4.3 提高采收率技术创新 (7)第五章油气藏改造技术创新 (7)5.1 水力压裂技术创新 (7)5.2 酸化处理技术创新 (8)5.3 增产措施技术创新 (8)第六章油气田提高采收率技术 (8)6.1 注水驱油技术创新 (8)6.1.1 技术概述 (8)6.1.2 创新内容 (8)6.2 气驱油技术创新 (9)6.2.1 技术概述 (9)6.2.2 创新内容 (9)6.3 化学驱油技术创新 (9)6.3.1 技术概述 (9)6.3.2 创新内容 (9)第七章油气藏监测技术创新 (9)7.1 地面监测技术创新 (9)7.1.1 高精度地震勘探技术 (10)7.1.2 微地震监测技术 (10)7.1.3 地面地球物理监测技术 (10)7.2 地下监测技术创新 (10)7.2.1 钻井监测技术 (10)7.2.2 生产监测技术 (10)7.2.3 地下光纤监测技术 (10)7.3 遥感监测技术创新 (11)7.3.1 合成孔径雷达遥感技术 (11)7.3.2 高光谱遥感技术 (11)7.3.3 无人机遥感监测技术 (11)第八章油气田环境保护技术创新 (11)8.1 油气开采污染治理技术创新 (11)8.2 油气开采废弃物处理技术创新 (12)8.3 油气开采环保监测技术创新 (12)第九章油气行业智能化技术创新 (13)9.1 物联网技术在油气行业的应用 (13)9.2 大数据技术在油气行业的应用 (13)9.3 人工智能技术在油气行业的应用 (14)第十章油气勘探开发技术管理创新 (14)10.1 技术创新管理体系构建 (14)10.2 技术创新激励机制 (15)10.3 技术创新成果转化与推广 (15)第一章油气勘探开发技术概述1.1 油气勘探开发技术现状1.1.1 勘探技术现状当前,我国油气勘探技术取得了显著成果,主要包括以下方面:(1)地震勘探技术:地震勘探技术在我国已经得到广泛应用,主要包括二维、三维地震勘探和地震资料处理解释技术。
石油勘探开发技术的未来发展趋势简析

石油勘探开发技术的未来发展趋势简析随着全球能源需求的不断增长和石油资源的逐渐枯竭,石油勘探开发技术的未来发展趋势备受关注。
在未来的发展中,技术的创新将会引领石油勘探开发领域取得更大的突破,我将在本文中对未来石油勘探开发技术的发展趋势进行简要分析。
1.智能化技术的应用将成为主流随着人工智能、大数据、物联网等技术的不断发展和应用,石油勘探开发领域也将逐渐引入智能化技术。
智能勘探开发技术将通过数据采集、分析和处理,实现对石油地质结构、油田开发情况等信息的全面监测和实时分析,从而提高勘探开发效率和准确性。
智能化技术还可以帮助企业实现无人作业,降低人力成本,提高作业安全性。
2.油藏开发技术将迈向精细化随着传统油气资源逐渐枯竭,未来的石油勘探开发将更加重视油藏开发技术的精细化。
通过先进的油藏地质模拟技术、注水、压裂等手段,将能够更好地实现油藏的开发和提高采收率。
将引入先进的增产技术,如水平井、多级压裂等技术,实现对油气藏更精准的开采。
3.环保意识将成为未来发展的主旋律随着全球环境问题的日益严重,石油勘探开发技术的发展将更加注重环保意识。
未来,石油勘探开发将更多地采用清洁能源、环保工艺,通过减排、降耗等手段提高资源利用效率,减少对环境的影响。
将逐步淘汰落后的设备和技术,引入低碳、环保的新型设备和技术。
4.绿色石油勘探技术将成为新的热点在未来的石油勘探开发技术中,绿色石油勘探技术将成为新的热点。
传统石油勘探开发存在着较大的环境风险,如油污染、地质灾害等问题。
绿色石油勘探技术将通过生物、化学、物理等手段,在勘探开发过程中减少对环境的影响,实现石油资源的可持续开发。
5.跨界融合将引领未来技术创新未来石油勘探开发技术的发展将更多地涉及到跨界融合,如石油勘探领域将与地质学、地球物理学、化学工程、机械制造等领域相结合,引领新的技术创新。
还将与先进制造技术、材料科学等领域相融合,推动石油勘探开发技术实现更快的突破。
未来石油勘探开发技术的发展将主要体现在智能化、精细化、环保意识、绿色技术和跨界融合等方面。
油田注气提高采收率技术简介

油田注气提高采收率技术简介闫方平气驱采油技术是已有80多年历史的提高原油采收率方法之一。
最初以注液化石油气为主,后来发展为注干气。
近年来该技术发展很快,广泛用于油田的开发方式有注气混相驱、近混相驱、非混相驱;还有注气维持地层压力驱油等。
该技术使用的气体包括:天然气、液化石油气、CO2、N2、烟道气和空气等。
气驱采油是一项复杂的技术,其中包括抽提、溶解、蒸发、凝析、增溶等能改变原油相态特征的作用机理。
目前在国外,注气提高采收率技术已发展成为一项比较成熟的技术,从室内研究到先导性试验,再到工业推广,形成了从注气机理研究、数值模拟、工艺设计、效果预测等一整套理论实践作法。
注气驱油在国外已获得了广泛应用,世界上已有上千个各类注气采油工程项目。
气驱是最有发展前途的提高采收率方法之一。
今天我们主要介绍注CO2提高采收率和注空气提高采收率两个方面。
一、注CO2提高采收率技术1、研究现状注CO2提高原油采收率提出于二十世纪三十年代,室内实验开始于五十年代,并于六十年代开始进行矿场试验。
进入七十年代以来,注CO2提高原油采收率的理论研究和生产应用都获得了迅速发展,逐渐成为一种重要的提高采收率方法。
多年的生产实践表明,CO2驱可以延长水驱近衰竭油藏寿命15-20年,提高采收率7-25%,是石油开采,特别是轻质油开采的最好提高采收率方法之一。
(1)世界老油田开发问题与提高采收率技术选择当前各大产油国中,加大新油藏的勘探开发是石油工作的重要方向;另外,提高已发现油田的采收率,是各国石油工业的焦点所在。
当前世界大部分油田都已经过了产量高峰期,在非OPEC 国家中,成熟油田的产量占的比重越来越高。
(2)世界CO2提高采收率概况世界CO2提高采收率潜力为1600×108—3000 X108桶,世界CO2驱油产量占世界提高采收率产量的15%,CO2驱油项目主要分布在美国,另外,在俄罗斯、加拿大、土耳其等国家也有CO2驱油项目进行,并取得良好效果。
15种改变石油行业的新技术

15种改变石油行业的新技术世界石油天然气工业持续快速发展,深水、非常规油气推动世界油气工业出现新版图,天然气发展迈入黄金期,科技进步在其中的作用愈发重要,涌现出一批新理论、新方法、新技术、新工具、新工艺。
中国石油集团经济技术研究院科技研究所持续跟踪研究世界石油工业技术发展动向,按照创新性、重要性、可行性等原则,从上下游众多前沿技术中筛选出15项加以简要介绍,以期对推动我国石油工业技术的发展有所裨益。
海洋深水沉积体系识别描述及有利储层预测技术美国得州大学、BP挪威公司、挪威卑尔根大学、法国Azur大学等联合攻关,综合运用高分辨率层序地层学、三维地震、电磁测量、遥感、测井、钻井、地质露头和试验以及地质-地震建模等技术方法,分析深水沉积作用过程、沉积环境和沉积产物,识别沉积体系的类型、分布,了解浊流、块状流、碎屑流等流体的形成机制,明确水下扇重要砂体储层的形成机理、控制因素、分布特点及油气聚集关系,建立深水沉积体系储层的地质模型,实现了深水砂岩储层和资源潜力的有效预测。
该技术广泛应用于海域斜坡、深水盆地的沉积体系识别描述及有利储层预测,在南美、西非大西洋沿岸、墨西哥湾、北海、巴伦支海、喀拉海以及东南亚、澳大利亚西北大陆架、孟加拉湾深海扇等海域相继发现一些大型油气田,其勘探领域已扩展到水深3000米的深海区。
地震沉积学分析技术大幅提高储层预测精度和探井成功率地震沉积学分析技术是利用高精度三维地震资料的精细处理和成像结果,结合地震地层学与高精度层序地层学方法,研究沉积相形成及空间分布规律,对宏观的古沉积环境、沉积体系进行解释与恢复;综合地震反演与属性分析技术对油气储层的内、外部特征和属性等进行精细刻画和表征,从而建立三维储层模型。
该技术主要包括地震岩石学和地震地貌学两部分,前者研究地震资料与测井岩性的对应,后者则研究地震切片中岩性和沉积相分布模式。
利用该技术,河道、河口坝等碎屑岩沉积微相砂体的钻遇率可达到50%~70%,三角洲河道砂体,席状砂,河道砂体、边滩及心滩等微相预测准确率达到80%以上,10米薄砂体的钻遇率达到90%,储层砂体预测精度可提高到1/4波长(3~5米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后,注入量上升到2.64m3/h,而注入压力下降到1.38MPa。 中阿但特戴维油田某油井:
岩性:砂岩,孔隙度7%,渗透率10×10-3μm2。 井况:该井由于细砂堵塞了射孔孔眼,因而产量很低。 应力压裂前,该井的原油产量为1.5m3/d,压裂后上升到4.0m3/d, 一年后产量仍有3.5m3/d。
国外,主要是美国和前苏联,从70年代,特别是80 年代以来,进行了大量的室内外试验、机理及现场应用。
国内,起步晚,但发展快,1986年以来,现场施工 试验获得了可喜的成果。
高能气体压裂增产技术
火工的有关知识 国外高能气体压裂技术发展现状 高能气体压裂的增产机理及理论研究 高能气体发生器的研制 高能气体压裂的压力检测及施工工艺 高能气体压裂技术应用效果
ห้องสมุดไป่ตู้
高能气体压裂增产技术
应力压裂气体发生器的应用 应力压裂技术是美国Servo-Dynamics公司研制的
高能气体压裂工具,已有近30年历史,施工井次已达 4000口以上,应用也最广。其中95%在套管井中进行, 5%在裸眼井中进行,处理深度90~4268m,缝长可达 10m以上。可适应的压力范围伟1.725~41.4MPa,一般 可增产69%~279%。
高能气体压裂增产技术
所研究的爆燃压裂技术有动力压裂、运动压裂、辐 射压裂、炸药及火药爆燃压裂、压档诱生爆燃压裂、液 体推进剂多层段高能气体压裂及套管井燃烧压裂等。技 术特点是对井筒危害小、成本低、清井快、增产效果明 显。
采用的实验方法及测试手段比较先进,其技术有爆燃 时压力-时间相关曲线测定技术、实验室物理模拟及裂 缝设计和控制技术、爆燃压裂井段裂缝几何形态照相技 术、裂缝形态井下电视录像技术。
反应的放热性3~6MJ/kg; 反应的高速性10-6s; 生成大量高温高压气体产物600~1000L/kg。
高能气体压裂增产技术
火工材料 火药:是在无外界供氧条件下,可由火花、火焰等
外界能源正常引燃,并迅速进行有规律的燃烧,同时 生成大量热和气体产物的混合物。
广义上,火药属于炸药。通常由氧化剂、粘结剂、 可燃剂及附加剂等组成。
高能气体压裂增产技术
前苏联高能气体压裂技术发展情况 60年代末,大量使用由军工厂生产的带壳体气体发生
器(ACГ),并形成成套的技术规范。 70年代开始,主要使用无壳气体发生器(AДC-5型、
AДC-6型和ПГДBK-150 )。 目前主要使用的是ПГД·BK-100型和ПГД·BK-150
型,施工井深1000~6500m,最高井温达200℃ ,最大装 药量可达140kg。
油气藏增产新技术
序言
80年代后期进入90年代以来,在我国,关于油气 藏增产的各种新技术大量出现,有的已经形成了一定规 模的工业应用。如高能气体压裂技术,截止1995年底, 全国各油田累计施工700多口井,增油7万多吨,成功率 达90%以上,有效率达70%以上。水力振动技术自1991年 6月投入现场使用以来,已施工850多井次,增产增注效 果明显,累计增油20多万吨,增注达300多万立方米。
按反应速度分完全燃烧和不完全燃烧;按燃烧稳定性分 稳态燃烧和非稳态燃烧。
高能气体压裂增产技术
爆燃:燃速很快,伴有火焰、火花,并且燃烧着的粒 子四面飞散、不需要外界氧的燃烧。
爆炸:极短时间内发生能量转变或气体体积急剧膨胀 的现象,是由迅速的物理或化学变化所引起的。
爆炸一般分为物理爆炸、化学爆炸和核爆炸。 炸药爆炸属于化学爆炸,有三特征:
火药能量性质主要由爆热、比容、火药力或比冲等 表征。
高能气体压裂增产技术
发射药 单基火药 双基火药 三基火药 固体火箭推进剂 气体发生剂 黑火药 起爆药 炸药 猛性炸药 黑索金 奥克托今 混合炸药 油气井射孔弹用耐热混合炸药
高能气体压裂增产技术
国外高能气体压裂技术发展现状
美国高能气体压裂发展情况 1858年,美国德瑞凯首创性发现了改造油层从而使油
ГOC(氧化燃烧混合物)进行高能气体压裂是一项新 研制的具有较大发展前途的方法,装药的燃烧速度更为缓 慢,最大装药可达1t左右,常用药量为400~500kg,施工 井深已达2500m。
高能气体压裂增产技术
油田应用效果
杜玛兹油田:自1980年开始应用,到1984年共施工66井次,累计 增油2.04万t,施工成功率60%,一次施工平均增油309t。
应力压裂技术可应用于新井的油气层增产处理,包 括多次处理,也可在水力压裂等工艺措施前或工艺措 施后进行处理,还可应用于不宜进行水力压裂及酸化 处理的油层,如水敏性油气层。
高能气体压裂增产技术
应用实例
东得克萨斯油田某注水井: 岩性:细砂岩,孔隙度14%,渗透率5×10-3μm2。 井况:该井第一次酸化处理未成功,用水泥封固后射孔,再次酸
油气藏增产新技术
高能气体压裂增产技术 井下脉冲放电增产技术 油藏人工地震处理技术 油水井水力振荡增产增注技术 井下超声波增产技术 稠油油藏电磁波和微波加热技术 油藏微生物处理技术 深穿透射孔增产技术
高能气体压裂增产技术
基本原理:利用脉冲加载并控制压力的上升速度, 使迅速释放的高温高压气体在井筒附近压开多方位的径 向裂缝,使储层中的天然裂缝能够与井筒连通,从而达 到增产目的。
高能气体压裂增产技术
火工的有关知识
爆炸与燃烧 燃烧是物质进行的剧烈氧化还原反应,并伴随发热和发
光的现象。 通常所称燃烧指物质与空气中的氧气化合引起剧烈氧化
现象,而火药燃烧是一个复杂的物理化学过程。火药表面 受到点火作用加热后,开始分解、气化,气化后产物在气 相中继续进行化学反应,将火药中储存的化学能释放出来。
净增产。1860年,丹尼斯第一次成功使用步枪火药改造油 层。1864年11月,罗伯茨申请了第一个油井爆炸增产专利。 之后80多年,人们利用井筒爆炸技术使油井增产,其中有 步枪火药爆炸器、黑火药爆炸器、硝化甘油爆炸器。70年 代,出现种种高爆产品,如浓硝基甲烷炸药、可压缩液体 炸药、散装固体推进剂、液体推进剂等,同时试验室研究 及理论研究有了新的突破,油田试验逐渐扩大规模。