高等数学:第三节 函数的极限

合集下载

高等数学第3章第3节函数极限存在条件

高等数学第3章第3节函数极限存在条件

§3 函数极限存在条件引 言在讨论数列极限存在条件时,我们曾向大家介绍过“单调有界定理”和“柯西收敛准则”.我们说数列是特殊的函数,那么对于函数是否也有类似的结果呢?或者说能否从函数值的变化趋势来判断其极限的存在性呢?这是本节的主要任务.本节的结论只对0x x →这种类型的函数极限进行论述,但其结论对其它类型的函数极限也是成立的. 首先介绍一个很主要的结果——海涅(Heine)定理(归结原则).一、归结原则定理1(Heine 定理) 设f 在00(;)U x δ'内有定义,0lim ()x x f x →存在⇔对任何含于00(;)U x δ'且以0x 为极限的数列{}n x ,极限lim ()n n f x →∞都存在且相等.注1.{}()n f x 是数列,lim ()n n f x →∞是数列的极限.所以这个定理把函数()f x 的极限归结为数列{}()n f x 的极限问题来讨论,所以称之为“归结原则”.由此,可由数列极限的性质来推断函数极限性质. 注2.从Heine 定理可以得到一个说明0lim ()x x f x →不存在的方法,即“若可找到一个数列{}n x ,0lim n n x x →∞=,使得lim ()n n f x →∞不存在;”或“找到两个都以0x 为极限的数列{}{},n n x x ''',使l i m (),l i m (n n n n f x f x →∞→∞'''都存在但不相等,则0lim ()x x f x →不存在. 例1 证明01lim sinx x→不存在. 注3.对于00,,,x x x x x x +-→→→+∞→-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式.如当0x x +→时有:定理2 设函数f 在0x 的某空心邻域00()U x +内有定义,0lim ()x x f x A +→= ⇔对任何以0x 为极限的递减数列{}00()n x U x +⊂,有lim ()n n f x A →∞=.二、单调有界定理相应于数列极限的单调有界定理,关于上述四类单侧极限也有相应的定理.现以0x x +→这种类型为例叙述如下:定理3 设f 为定义有00()U x +上的单调有界函数,则右极限0lim ()x x f x +→存在.注:定理3可更具体地叙述如下:f 为定义在00()U x +上的函数,若(1)f 在00()U x +上递增有下界,则0l i m ()x x f x +→存在,且0()lim ()inf ()x x x U x f x f x ++→∈=;(2)f 在00()U x +上递减有上界,则0lim ()x x f x +→存在,且00()lim ()sup ()x x x U x f x f x ++→∈=. 三 函数极限的Cauchy 收敛准则定理4(Cauchy 准则) 设函数f 在00(;)U x δ'内有定义,0lim ()x x f x →存在⇔任给0ε>,存在正数()δδ'<,使得对任何00,(;)x x U x δ'''∈有|()()|f x f x ε'''-<.注:按照Cauchy 准则,可以写出0lim ()x x f x →不存在的充要条件:存在0ε>,对任意(0)δ>,存在00,(;)x x U x δ'''∈使得|()()|f x f x ε'''-≥.例:用Cauchy 准则说明01lim sinx x→不存在. 综上所述:Heine 定理和Cauchy 准则是说明极限不存在的很方便的工具. 作业:p55. 1, 2, 4.。

《高等数学极限》课件

《高等数学极限》课件

THANK YOU
无穷级数与无穷积分的收敛性
总结词
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。收敛性的判 定是高等数学中的一个重要问题,需要用到多种数学 方法和技巧。
详细描述
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。如果一个无 穷级数或无穷积分是收敛的,那么它的和就是有限的 ,否则就是发散的。收敛性的判定是高等数学中的一 个重要问题,需要用到多种数学方法和技巧,如比较 判别法、柯西判别法、阿贝尔判别法等。对于不同的 级数和积分,需要采用不同的方法和技巧进行收敛性 的判定。
03
导数与连续性
导数的定义与性质
导数的定义
导数是函数在某一点的变化率的极限 ,表示函数在该点的切线斜率。
导数的性质
导数具有线性、可加性、可乘性和链 式法则等性质,这些性质在研究函数 的单调性、极值和曲线的几何特性等 方面具有重要应用。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、指数函数、三角函数和反三角函 数等基本初等函数,需要熟记其导数公式。
限的。
无穷积分的定义与性质
总结词
无穷积分是数学中另一个重要的概念,它是由无穷多个 定积分的和组成的积分。无穷积分具有一些重要的性质 ,如可加性、可乘性和可微性等。
详细描述
无穷积分是由无穷多个定积分的和组成的积分,这些定 积分可以是积分限不同的积分。无穷积分在数学中也有 着广泛的应用,如求解面积、体积和曲线长度等。无穷 积分具有一些重要的性质,如可加性、可乘性和可微性 等。其中,可加性表示无穷积分可以拆分成若干个部分 的和,可乘性和可微性则表示无穷积分可以与函数进行 运算和求导。

高等数学同济大学版课程讲解函数的极限

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划课次序号: 03一、课 题:§1.3 函数的极限二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–3 1(2),2(3),3,6八、授课记录:九、授课效果分析: 第三节 函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1 若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A . 若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A . 例1 证明limx 0.证 0-,故∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx ?0. 例2 证明lim 100x x →-∞=. 证 ∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0. 定义2 若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A . 为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水 平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A . 例3 证明2lim 1x x x →∞--?1.证 ∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim 1x x x →∞-+?1. 二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3 设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U (x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )? A ,或f (x )→A (x →x 0). 研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域 (x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式 |f (x )?A |<ε,或 A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4 证明211lim 1x x x →--?2. 证 函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2. 例5 证明0lim x x →sin x ?sin x 0. 证 由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cos sin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得0lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4 设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ- (或x ∈0(,)U x δ+)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ). 由定义3和定义4可得下面的结论.定理2 0lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A . 例6 设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ). 解 x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而 0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1. 例7 设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ). 解 由于 0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ),故0lim x →f (x )不存在. 三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3 若lim f (x )存在,则必唯一.2.局部有界性定义5 在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U (x 0)(或|x |>X )时,|f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4 若lim f (x )存在,则f (x )是该极限过程中的有界变量.证 我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U (x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界.注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在. 3.局部保号性定理5 若0lim x x →f (x )?A ,A >0(A <0),则∃U (x 0),当x ∈U (x 0)时,f (x )>0 (f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0). 该定理通常称为保号性定理,在理论上有着较为重要的作用.推论 在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4. 函数极限与数列极限的关系定理6 0lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞. 定理6 常被用于证明某些极限不存在. 例1 证明极限01limcos x x→不存在. 证 取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1. 又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于 lim n →∞cos 1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在. 课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。

函数的极限

函数的极限

恒有
则称 A 为f(x) 当 x 时的极限。 记作 lim f(x) =A 或 f(x) A (x )
x
y
例如
1 lim 0 x x
证明
1 y x
o
x
1 证明: lim 0. x x
证:
1 1 0 x x
即 就有
故 0 , 欲使 取X
1

,
因此
注:
1 y 0 为 y 的水平渐近线 . x
返回
sin x 例 1 证明 lim =0 . x + x 证: 0 ,欲使
sin x 1 sin x 0 x x x 1 1 只要 x 2 , 故可取 X 2 ,当 x X 时 sin x 恒有 0 x sin x lim =0 成立# x + x
发 散

1 , 2 , , n ,
+ (n )
n 1
1 , - 1 , 1 , - 1 , , - 1
,
数列极限的定义:
若数列
及常数 a 有下列关系 :
0 , 正数 N , 当 n > N 时, 总有 xn a
则称该数列
n
x x0
对上述 , 0,当 0 x x0 时,
即 x U ( x0 , ) ,恒有
o
f ( x) A
即 0 A f ( x) A
即 f ( x ) 0 成立。
类似可证 A 0 的情形,同学们不妨试 一试。
返回
x 1 例 2 当 x 时, y= 2 1 ,问X如何取值, x 3 可使 x>X 时恒有 y - 1<0.01 ?

高等数学第七版1-3函数极限

高等数学第七版1-3函数极限

解: 利用定理 3 . 因为
lim f (x) lim (x 1) 1
x 0
x0
lim f (x) lim (x 1) 1
x 0
x0
显然 f (0 ) f (0 ) , 所以 lim f (x) 不存在 .
4x 1 9 , lim4x 1 9 x2
13
3. 左、右极限(单侧极限)
例如,

f (x)
1 x,
x
2
1,
y 1 x y
x0
x0
1
lim f ( x) 1.
O
x0
分x 0和x 0 两种情况分别讨论!
x从左侧无限趋近 x0 , 记作 x x0—-;
x从右侧无限趋近 x0 ,
记作
x
x+. 0
y x2 1 x
14
左极限 0, 0, 使得 x0 x x0时,
恒有 f (x) A .
记作 lim f ( x) A x x0

f ( x0 ) A.
右极限 0, 0,使得 x0 x x0 时,
恒有 f (x) A .
记作 lim f ( x) A x x0
lim(3x 1) 5 x2
10
例3 证明 lim x2 1 2. x1 x 1
分析: 函数在点x=1处没有定义.但这与函数在该点
是否有极限并无关系.

x2 1 f (x) A x 1 2 x 1
任给 0,
要使 f ( x) A , 只要取 ,
当0
x x0
时,
成立 ,

lim
xx0
x
x0
.
这是证明吗?
非 常 非 常

高等数学教案(极限部分)3 函数极限的性质与计算

高等数学教案(极限部分)3 函数极限的性质与计算
.
2
12
于是对 0, 只要取 min{ 1 , 2 } 0, 则当 0 | x x0 | , 恒有
| B g( x ) | | B g( x ) | 1 1 g( x ) B | g( x ) | | B | (| B | / 2) | B |
22

1 2 n 求 lim( 2 2 2 ). n n n n
解 当 n 时,这是无穷个无穷小的和,
不能直接用 “和的运算法则 ”,
1 2 n 1 2 n lim( 2 2 2 ) lim n n n n n n2 1 n( n 1) 1 1 1 2 lim (1 ) . lim 2 n 2 n 2 n n
3
x2
17

4x 1 求 lim 2 . x 1 x 2 x 3
解 lim( x 2 2 x 3) 0, 除法法则不能用, x 1
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 3 4x 1
(lim x ) 2 3 lim x lim 5
x2 x2 x2
2 2 3 2 5 3 0,
23 1 7 x 1 x2 lim 2 x2 2 . x2 x 3 x 5 3 lim( x 3 x 5) 3
3
lim x lim1
23
例 解
sin x 求 lim . x x
y
sin x x
当 x 时,
1 0, x
而 sin x是有界函数.
sin x lim 0. x x

高等数学(同济第六版)课件 第一章 3.函数的极限(一)

高等数学(同济第六版)课件  第一章  3.函数的极限(一)

且a >b, (或a<b)
则正数X, 当x<-X时, 都有f(x) >b . (或f(x)<b) 当x>X时, 当|x|>X时,
(4) 充要条件:
lim lim lim f ( x ) A x f ( x ) A且 x f ( x ) A.
x
证: " " 0, X 1 0, 当x>X1 时,成立 f ( x ) A .
得 | x x0 |
x0
当 | x x0 | x0 时,才能使x>0, 取 min{ x0 , x0 } 当 0 x x0 时, 成立 | x x0 |
lim x
x x0
x0
" "定义
x x0
lim f ( x ) A
2 x2 x 1 3 lim x 1 x 1 2 x2 x 1 3 | 2 | x 1 | ( x 1) 0, | x 1 2 x2 x 1 3 | 当x与1多么接近时? | x 1 | x 1 | 2
2 x2 x 1 0, 当 0 | x 1 | 时, 成立 | 3 | 2 x 1
lim f ( x ) 0, 则 lim f ( x ) g( x ) 0
x x
1 x (7) 重要极限:lim (1 ) e x x
特点:(1)1 型 (2)底数减1等于指数的倒数 。
例2 求下列极限
2 x3 3 x2 5 (1) lim 3 2 x 7 x 4 x 1
二、 自变量趋向有限值时函数的极限 若当x无限接近于x0时,函数f(x)无限接近于常数A, 称常数A为当x趋于x0时,函数f(x)的极限。 记作 lim f ( x ) A

函数极限的知识点总结

函数极限的知识点总结

函数极限的知识点总结一、函数极限的定义在介绍函数极限的定义之前,我们先来了解一下“极限”的概念。

在数学中,极限是指当自变量趋于某一特定的值时,函数的取值趋于的值。

如果函数f(x)在x趋于a的过程中,它的取值趋于一个确定的常数L,那么我们就称L是函数f(x)在点x=a处的极限,记作lim (x→a)f(x)=L。

这个定义可以用符号来表示为:对于任意的ε>0,存在一个δ>0,当0<|x-a|<δ时,有|f(x)-L|<ε,那么我们就称lim(x→a)f(x)=L。

根据极限的定义,我们可以得到一些结论:1. 如果一个函数在点x=a处的极限存在,那么它只有一个极限值。

2. 如果一个函数在点x=a处的极限不存在,那么它没有极限值。

3. 如果一个函数在点x=a处的极限存在且等于L,那么在点x=a的邻域内,函数的取值都趋于L。

函数极限的定义为我们提供了计算函数在某一点处的极限的依据,下面我们将介绍一些常见的计算方法。

二、函数极限的计算方法1. 代入法代入法是最直接的计算函数极限的方法,当函数的极限存在时,我们可以直接将自变量的值代入函数中计算即可。

例如,计算lim(x→2)(3x+1),我们只需要将x=2代入函数中得到lim(x→2)(3x+1)=3*2+1=7。

2. 分式的极限对于分式函数的极限计算,我们通常采用有理化或者分子分母同除等方法,将分式转化为更简单的形式进行计算。

例如,计算lim(x→1)(x^2-1)/(x+1),我们可以将分式有理化为(x-1)(x+1)/(x+1),然后可以进行约分化简得到lim(x→1)(x-1)=0。

3. 夹逼定理夹逼定理也是一种常见的计算函数极限的方法,它适用于一些复杂函数的极限计算。

夹逼定理的原理是,如果函数f(x)在x=a的邻域内被另外两个函数g(x)和h(x)夹在中间,并且lim(x→a)g(x)=lim(x→a)h(x)=L,那么函数f(x)在x=a处的极限也存在且等于L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21/41
例5 证明 lim x2 1 2. x1 x 1
证 函数在点x=1处没有定义.
f (x) A x2 1 2 x 1 ,
x1 任给 0, 要使 f ( x) A , 只要取 ,
则当0 x 1 时,就有
x2 1 2 ,
x1
x2 1
lim
2.
x1 x 1
类比数列极限的定义,可用如下的数学语言刻画 “自变量无限增大”、 “函数无限接近于A”: x X 表示x 的过程;
f ( x) A 表示 f ( x) A 可任意小.
4/41
定义 1 如果对于任意给定的正数(不论它多么小),总
存在着正数 X ,使得当 x X 时,有
f (x) A ,
24/41
例6
证明 lim
x2
1 .
x2 x2 4 4
条件放大法
证 因为x 2,故不妨假设 x 2 1,即1 x 3,
x2 1 1 x2 1 x2 x2
x2 4 4 4 x 2 4 1 2 12
第三节 函数的极限
一、自变量趋向无穷时函数的极限 二、自变量趋向有限值时函数的极限 三、函数极限的性质 四、小结、思考题、作业
1/41
数列极限:un f (n), n N un a : n 时,f (n) a 函数极限:y f ( x) y A :自变量x的某个变化过程中时,
相应函数值f ( x)无限接近于A 自变量无限变化方式的差异:
6/41
20. x 情形 : lim f ( x) A x
定义 2 如果对于任意给定的正数(不论它多么小),总
存在着正数 X ,使得当 x X 时,有
f (x) A ,
那么常数 A就叫函数 f ( x)当 x 时的极限,记作
lim f ( x) A 或
x
f ( x) A(当x ) .
那么常数 A就叫函数 f ( x)当 x 时的极限,记作
lim f ( x) A 或
x
f ( x) A(当x ) .
" X "定义
lim f ( x) A
x
0, X 0, 使当x X时, 恒有 f ( x) A .
5/41
例1.验证:lim x2 1 1. x x+
总存在正数 ,使得当0 x x0 时,都有 f (x) A ,
那么常数 A就叫函数 f ( x)当 x x0时的极限,记作
lim f ( x) A 或
x x0
f ( x) A(当x x0 ).
" "定义 0, 0,使当0 x x0 时, 恒有 f (x) A .
4x2 1
3
| f ( x) A | 2x2 1 2 2x2 1 ,
要使 |
f (x)
A
|
,
只需
2
x
3 2
1
,即|
x |
( 3 1) / 2

X
max
1, 2
(3
1)
/
2
,则当
|
x
|
X时恒有
4x2 2x2
1 1
2
.
4x2 1
lim
x
2
x2
1
2.
18/41
二、自变量趋向有限值时函数的极限
问题:函数 y f (x)在x x0 的过程中,对应 函数值 f ( x)无限趋近于确定值 A.
f ( x) A 表示 f ( x) A任意小;
0 x x0 表示x x0的过程.
x0
x0
x0 x
点x0的去心邻域, 体现x接近x0程度.
19/41
定义 4 如果对于任意给定的正数(不论它多么小),
14/41
例3 证明 lim sin x 0. x x

0,
sin x x
0
sin x x
1 x
要使
sin x x
0
,
只需要
1 x
,即 x
1
取 X 1 , 则当 x X时恒有
sin x 0 , x

lim sin x 0.
x x
15/41

y sin x
x

A
.


X
X
x
当x X或x X时,函数y f ( x)图形完全落在以
(1)
,只需
1 x2
8/41
故x2 1 ,
x 1
x0
取 X 1,
则当 x X时恒有
x2 1 (1) .
x
x2 1
lim
1.
x x
9/41
练习:用定义证明
lim arctan x ,
x
2
lim arctan x - .
x-
2
13/41
30. x 情形 : lim f ( x) A x
直线y A为中心线,宽为2的带形区域内.
16/41
注:lim f ( x) A lim f ( x) A且 lim f ( x) A.
x
x
x
是由例1、例2可知:
lim x2 1 不存在! x x
17/41
例4
证明
:
lim
x
4x2 2x2
1 1
2.
证 0, 不妨设x2 1 ,
2
定义 3 如果对于任意给定的正数(不论它多么小),总
存在着正数 X ,使得当 x X 时,有
f (x) A , 那么常数 A就叫函数 f ( x)当 x 时的极限,记作
lim f ( x) A 或 f ( x) A(当x ).
x
" X "定义
ห้องสมุดไป่ตู้
lim f ( x) A
x
0, X 0,使当 x X时, 恒有 f ( x) A .
数列:只有一种,n (实际为 n ! )
函数:多种,主要讨论以下几种:
2/41
10、x :表示x 0且x无限增大;
20、x
:表示x
0且x无限减小;
lim
f
(x)
A
30、x :表示|x | 无限增大;
4、x x0:x无限接近某有限值x0.
3/41
一、自变量趋向无穷时函数的极限
10、x 情形 : lim f ( x) A x
20/41
注:
1. 函数极限与f ( x)在点x0是否有定义无关;
2. 与任意给定的正数 有关.
3.几何解释:
当x在x0的去心邻 域时,函数y f ( x) 图形完全落在以直
y
A
A
A
线y A为中心线,
宽为2的带形区域内. o
y f (x)
x0 x0 x0
x
显然,找到一个后, 越小越好.
" X "定义
lim f ( x) A
x
0, X 0,使当x X时, 恒有 f ( x) A .
7/41
例2. 证明 lim x2 1 1.
x
x
证 0, 因x ,故不妨设x 0,
x2 1 (1) x
x2 1 1
x
x(
1
x2 1 x)
1 x
x
1 x2
要使
x2 1 x
相关文档
最新文档