GANFET单粒子效应
宇航用半导体器件重离子单粒子效应试验指南

宇航用半导体器件重离子单粒子效应试验指南下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言在宇航领域,半导体器件的性能至关重要。
FinFET_器件单粒子翻转物理机制研究评述

第 41 卷第 2 期航 天 器 环 境 工 程Vol. 41, No. 2 2024 年 4 月SPACECRAFT ENVIRONMENT ENGINEERING225 https:// E-mail: ***************Tel: (010)68116407, 68116408, 68116544FinFET器件单粒子翻转物理机制研究评述王仕达1,张洪伟2,1*,唐 民1,梅 博1,孙 毅1(1. 中国空间技术研究院,北京 100094; 2. 国防科技大学 计算机科学与技术学院,长沙 410073)摘要:鳍式场效应晶体管(FinFET)器件由于其较高的集成度以及运算密度,已成为未来航天应用领域的重要选择。
FinFET器件的辐射敏感性与其制作工艺和工作条件息息相关。
为了解FinFET器件的单粒子翻转(SEU)敏感机制,文章结合国内外开展的相关研究,从SEU机理出发,分析了器件特征尺寸、电源电压和入射粒子的线性能量传输(LET)值等不同条件对器件SEU敏感性的影响,最后结合实际对FinFET器件SEU的研究发展方向进行展望。
关键词:鳍式场效应晶体管;单粒子翻转;软错误率;静态随机存取存储器中图分类号:TN386; V416.5文献标志码:A文章编号:1673-1379(2024)02-0225-09 DOI: 10.12126/see.2023146Review on the physical mechanisms of single event upset of FinFET devicesWANG Shida1, ZHANG Hongwei2,1*, TANG Min1, MEI Bo1, SUN Yi1(1. China Academy of Space Technology, Beijing 100094, China; 2. College of Computer Science and Technology,National University of Defense Technology, Changsha 410073, China)Abstract: Fin field-effect transistor (FinFET) devices have become an important choice for future space applications due to their high integration and high computational density. The radiation sensitivity of FinFET devices is closely related to their fabrication processes and operating conditions. To understand the single event upset (SEU) sensitivity mechanism of FinFET devices, a number of relevant researches conducted both domestically and abroad were reviewed in this article. Based on the SEU machanism, the influence of different operating conditions such as the feature size of FinFET devices, the power supply voltage, and the linear energy transfer (LET) values of incident particles on the SEU susceptibility of FinFETs were analyzed. Finally, an outlook on the research direction for SEUs of FinFET devices based on practical applications was provided.Keywords: FinFET; single event upset (SEU); soft error rate (SER); SRAM收稿日期:2023-09-19;修回日期:2024-04-16引用格式:王仕达, 张洪伟, 唐民, 等. FinFET器件单粒子翻转物理机制研究评述[J]. 航天器环境工程, 2024, 41(2): 225-233 WANG S D, ZHANG H W, TANG M, et al. Review on the physical mechanisms of single event upset of FinFET devices[J]. Spacecraft Environment Engineering, 2024, 41(2): 225-2330 引言随着集成电路产业的持续发展,以平面金属−氧化物−半导体场效应晶体管(MOSFET)器件为主体的半导体集成电路已达其物理极限。
单粒子瞬态效应

单粒子瞬态效应
单粒子瞬态效应是指在微电子器件中,由于单个粒子的能量转移,导致器件输出信号的瞬时变化。
这种现象在现代半导体器件中越来越常见,尤其是在芯片集成度越来越高的情况下。
单粒子瞬态效应的出现主要是由于微观尺度下器件结构的敏感性。
当它受到高能粒子的撞击时,粒子的能量会被转移到器件中的电子,导致电子的能量增加,或者电子被激发到高能级状态。
这些现象会导致器件的输出信号瞬时变化,甚至引起故障。
单粒子瞬态效应的研究主要分为两个方面:一是对单个粒子的特性进行研究,如能量、轨迹、入射角度等;二是对器件的响应进行研究,如输出信号的幅度和时间特性等。
针对单粒子瞬态效应的研究,可以采用不同的方法进行。
一种常见的方法是利用加速器产生高能粒子,并将其辐射到器件上,通过对器件输出信号的分析,研究单粒子瞬态效应的特性。
另外,还可以利用模拟器件对单粒子瞬态效应进行仿真,以更好地理解该现象的机理和影响。
单粒子瞬态效应对微电子器件的稳定性和可靠性产生了很大的挑战。
在现代半导体器件中,采用了很多方法来抑制单粒子瞬态效应的影响,如加强器件结构的防护、增加器件电容等。
此外,还可以通过设计电路来减小单粒子瞬态效应对器件的影响。
尽管单粒子瞬态效应在微电子器件中带来了很多挑战,但也为微电子技术的进一步发展提供了很多机会。
通过对单粒子瞬态效应的深入研究,可以更好地理解微电子器件的特性和机理,为微电子领域的创新提供更加坚实的基础。
单粒子效应相关的问题

准备的问题1、了解下3维仿真混合模拟的具体操作,顺便了解下90nm Spice工艺库的情况和65nm建模的结构;(主要是看具体怎么调用Spice模型,还有90nm工艺库能不能给我们用,其次65nmMOS管各个掺杂浓度和具体的尺寸,如果可以的话建立多个MOS管在单个结构中的角度辐射问题)2、请教器件单粒子仿真遇到的有关不收敛问题,弄清楚我们这里仿真的时候特别慢的原因;看是否是分配的用户多了,他就分的内存小了,还是其他什么原因;3、就读阅的相关文献不懂的地方,提前找出,与各位老师,师兄请教;具体问题如下:1)针对O. A. Amusan的那篇“Charge Collection and Charge Sharing in a 130 nm CMOSTechnology”里面提到的去掉源极来分析双极放大效应是否正确;如果不正确,能否在仿真一下;2)了解一下双极放大作用的具体原理,如下图,弄清楚理论基础知识;3)如何实际的操作求出存储电路的临界LET值和临界电荷;4)针对硕士论文提到的恢复时间和反馈时间的概念不太懂,针对加固单元的基本原理向师兄请教,询问如何用蒙特卡洛Geant4软件仿真;5)请教一下工艺掺杂以及阱接触、衬底接触各方面的问题,包括如何构建N+埋层结构及接触掺杂;6)关于如何区分FWHM单粒子脉冲的宽度;7)保护环和其他的一些结构是如何掺杂的,和以前引入的是否一致;4、在国防科大仿真一下自己想要尽快研究的问题(如添加N+埋层与保护环结合的角度辐射模拟仿真,研究一下N阱内双极放大作用和电荷分享的机制,就各位老师和各位师兄发表的一些文章不懂的进行请教);5、单粒子瞬态与其它单粒子引起的软错误的区别与联系;6、研究单粒子瞬态主要研究那几个方面,比如瞬态电流脉冲,电荷收集之类的;7、解决单粒子瞬态问题的关键是什么。
器件级,比如材料,结构等。
还是电路级;8、我们器件仿真时如何定义网格以便为我们定义铁电薄膜材料器件打下基础;9、请教有关单粒子多位翻转检测电路的相关知识;为我们以后建立的模型实际电路检测创建初步的知识;。
氮化镓场效应管

氮化镓场效应管1. 引言氮化镓场效应管(GaN FET)是一种基于氮化镓材料制造的半导体器件,具有优异的高频性能、高功率密度和低噪声特性。
它在电力电子、无线通信和雷达等领域有着广泛的应用。
本文将对氮化镓场效应管的原理、结构和应用进行全面详细的介绍。
2. 原理氮化镓场效应管是一种基于金属-半导体结构的器件,其工作原理与传统的MOSFET (金属-氧化物-半导体场效应晶体管)类似。
其主要包括以下几个关键部分:2.1 栅极栅极是控制氮化镓FET开关特性的关键部分。
通常由金属材料制成,通过施加电压来控制栅极与源极之间形成的电场强度,从而调节导电区域。
2.2 源极和漏极源极和漏极是器件中负责电流流动的两个端口。
源极提供了载流子,漏极接收并输出了通过氮化镓FET的电流。
2.3 氮化镓层氮化镓层是氮化镓FET的关键材料,具有优异的电子迁移率和热导率。
它能够承受高温环境下的工作,并具有较高的耐压能力。
3. 结构氮化镓场效应管通常由多个不同层次和结构的材料组成,以实现所需的电特性。
其典型结构包括以下几个部分:3.1 衬底衬底是整个器件的基础,通常由硅(Si)或碳化硅(SiC)等材料制成。
它提供了支撑和稳定性,并与其他组件形成良好的接触。
3.2 绝缘层绝缘层用于隔离栅极和源极/漏极之间的电场,以防止漏电和干扰。
常用的绝缘材料包括氧化铝(Al2O3)和二氧化硅(SiO2)等。
3.3 栅极金属栅极金属用于控制栅极与源极之间形成的电场强度。
常用的栅极金属包括钨(W)和铂(Pt)等。
3.4 氮化镓层氮化镓层是整个器件的关键部分,具有优异的电特性。
它通常由金属有机化学气相沉积(MOCVD)等方法制备。
3.5 源极/漏极金属源极/漏极金属用于提供电流流动的路径,并将信号从器件输出到外部电路。
常用的源极/漏极金属包括铝(Al)和铜(Cu)等。
4. 应用氮化镓场效应管由于其卓越的性能,在许多领域得到广泛应用。
以下是几个主要的应用领域:4.1 无线通信氮化镓场效应管在无线通信中具有重要作用,可以用于功率放大器、射频开关和低噪声放大器等关键组件。
碳化硅mosfet单粒子效应

碳化硅mosfet单粒子效应碳化硅MOSFET单粒子效应引言:碳化硅(SiC)材料因其优异的物理特性而被广泛应用于半导体器件制造领域。
其中,碳化硅金属氧化物半导体场效应晶体管(SiC-MOSFET)因其高电子迁移率、高击穿电场强度以及良好的热传导性能,成为一种理想的功率电子器件。
然而,随着集成度的提高和器件尺寸的缩小,单粒子效应逐渐显现出来。
本文将介绍碳化硅MOSFET的单粒子效应及其对器件性能的影响。
1. 单粒子效应的概念单粒子效应是指在微小尺寸的电子器件中,当单个电荷粒子(如电子或离子)穿越器件时引起的瞬态电荷积累和电流漂移现象。
在碳化硅MOSFET中,由于其高电子迁移率和较短的输运时间,单粒子效应会更加显著。
2. 单粒子效应的来源碳化硅MOSFET的单粒子效应主要来自以下几个方面:(1) 器件尺寸缩小:随着技术的进步,MOSFET的尺寸逐渐缩小,导致单粒子效应更加明显。
(2) 高电子迁移率:碳化硅具有较高的电子迁移率,电子在器件中运动更快,因此对单粒子效应更敏感。
(3) 高击穿电场强度:碳化硅MOSFET的击穿电场强度相对较高,使得单粒子效应更容易发生。
3. 单粒子效应的影响单粒子效应对碳化硅MOSFET的性能产生了重要影响,主要体现在以下几个方面:(1) 电流漂移:当单个电荷粒子穿越MOSFET时,会引起瞬态电荷积累和电流漂移,导致器件的工作点偏移。
(2) 静态偏置漂移:由于电流漂移的存在,器件的静态偏置点会发生漂移,进而影响整体电路的稳定性。
(3) 噪声增加:单粒子效应也会引起噪声的增加,降低碳化硅MOSFET的信噪比。
(4) 可靠性降低:单粒子效应会导致器件的可靠性降低,降低其使用寿命。
4. 单粒子效应的抑制方法为了抑制碳化硅MOSFET的单粒子效应,可以采取以下几种方法:(1) 器件结构优化:通过优化MOSFET的结构参数,如增大栅极电容、增加栅极电压等,来减小单粒子效应的影响。
(2) 材料改进:通过改进碳化硅材料的制备工艺,减少缺陷和杂质,提高材料的纯度,从而降低单粒子效应的发生率。
gan场效应晶体管

gan场效应晶体管GAN场效应晶体管(Generative Adversarial Network Field Effect Transistor)是一种新型的晶体管结构,它结合了GAN技术和场效应晶体管的特点,具有许多独特的优势和应用前景。
本文将对GAN 场效应晶体管的原理、特点和应用进行详细介绍。
一、原理GAN场效应晶体管的原理是基于生成对抗网络(GAN)和场效应晶体管(FET)的相互作用。
生成对抗网络是一种由生成器和判别器组成的模型,通过不断的对抗学习使生成器产生逼真的样本。
场效应晶体管是一种利用电场控制电流的器件,其中包括源极、漏极和栅极。
GAN场效应晶体管将生成器与场效应晶体管的结构相结合,实现了对电流的控制和调节。
二、特点1. 高效能:GAN场效应晶体管具有高效能的特点,可以在较低的电压下实现高电流的传导。
这使得它在电子设备中的能耗更低,性能更优越。
2. 高可靠性:由于GAN场效应晶体管结构的独特设计,它具有较高的可靠性和稳定性。
在极端环境下,它仍然能够正常工作,不易受到外界干扰。
3. 高集成度:由于GAN场效应晶体管可以实现对电流的精确控制和调节,因此可以在一个芯片上集成大量的晶体管,从而实现高集成度的电路设计。
4. 高速度:由于GAN场效应晶体管的特殊结构和电流控制能力,它可以实现快速的开关速度和响应速度,适用于高频率信号的处理。
5. 多功能:GAN场效应晶体管不仅可以实现电流的控制,还可以用于模拟信号的放大、开关和反相等功能,具有广泛的应用潜力。
三、应用1. 人工智能:GAN场效应晶体管可以应用于人工智能领域,用于实现神经网络的加速和优化,提高机器学习和深度学习的效率和性能。
2. 通信技术:GAN场效应晶体管可以用于无线通信系统中的功率放大器设计,实现信号的放大和传输,提高通信质量和传输速度。
3. 显示技术:GAN场效应晶体管可以应用于显示器件中,用于驱动液晶显示屏和有机发光二极管(OLED)等,提高显示效果和显示速度。
【CN110096765A】一种FinFET器件的单粒子效应评估方法【专利】

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910294484.8(22)申请日 2019.04.12(71)申请人 北京大学地址 100871 北京市海淀区颐和园路5号
(72)发明人 安霞 李艮松 任哲玄 黄如 (74)专利代理机构 北京万象新悦知识产权代理有限公司 11360代理人 李稚婷
(51)Int.Cl.G06F 17/50(2006.01)
(54)发明名称一种FinFET器件的单粒子效应评估方法(57)摘要本发明公布了一种FinFET器件的单粒子效应评估方法,在FinFET器件被粒子入射前,提升器件的温度,温度变化量与自热效应引起的温度变化量相同,然后再进行粒子入射和单粒子效应表征参数的提取。本发明考虑了FinFET的自热效应对FinFET器件单粒子效应的影响,修正了以往评估方法由未考虑自热效应所带来的偏差,为FinFET器件单粒子效应的评估提供了更加准确的手段。
权利要求书1页 说明书3页 附图1页
CN 110096765 A2019.08.06
CN 110096765 A1.一种FinFET器件单粒子效应的评估方法,包括以下步骤:1)测试并获取FinFET器件由自热效应带来的温度变化量ΔTSHE;2)提高FinFET器件的温度至Troom+ΔTSHE,并持续保持这一温度,进行FinFET器件的粒子入射实验,其中Troom为室温;3)提取所需的单粒子效应表征参数。2.如权利要求1所述的评估方法,其特征在于,所述步骤1)通过仿真软件模拟出FinFET器件在某种具体工作条件下因自热效应带来的温度变化量ΔTSHE,或者,通过实验的方法测试出FinFET器件因自热效应带来的温度变化量ΔTSHE。3.如权利要求1所述的评估方法,其特征在于,步骤2)选择具有某一线性能量传输值的粒子进行粒子入射实验。4.如权利要求1所述的评估方法,其特征在于,在步骤3)提取的参数包括漏端收集电荷量、瞬态电流幅度以及瞬态电流脉宽。5.如权利要求1所述的评估方法,其特征在于,步骤1)通过SPICE仿真内置的BSIM自热模型提取FinFET器件在某种具体工作条件下由自热效应带来的温度变化量ΔTSHE。6.如权利要求5所述的评估方法,其特征在于,所述评估方法具体是:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Single-Event and Radiation Effect on Enhancement Mode Gallium Nitride FETsA.Lidow1, J. Strydom1, Alana Nakata1, M. Rearwin2Member IEEE,M. Zafrani2member IEEE1Efficient Power Conversion Corporation2Microsemi CorporationABSTRACTThis paper presents responses of the latest MiGaN FETs to space radiation conditions. The new MiGaN has shown radiation tolerance to 1Mrad TID and SEGR and SEB immunity at LET of 85Mev/(mg/cm2) as well as immunity to displacement damage and Low dose (ELDRs) testing.I.INTRODUCTIONEnhancement-mode gallium nitride (eGaN®*) transistors have been commercially available for over four years. In that time they have enabled significant efficiency improvement in commercial DC-DC converters in a variety of topologies and at a variety of power levels [1]. Enhancement-mode transistors from Efficient Power Conversion Corporation (eGaN FETs) used in Microsemi MiGan TM FETs have also been demonstrated to have remarkable tolerance to gamma radiation [2] and single event effects (SEE) [3]. In September 2013, a new generation of eGaN FETs was introduced that was designed for high power density, multi-megahertz DC-DC conversion. In this paper we present new results characterizing the stability of these new improved EGaN devices under radiation exposures.As this is a relatively new technology an introduction of the eGaN device structure will be beneficial for future reference. eGaN devices based on EPC process and design are fabricated on a silicon wafer for process compatibility with today silicon manufacturing as well as cost. A thin layer of aluminum Nitride (AlN) is grown on the silicon to provide a seed layer for the subsequent growth of a gallium nitride Heterostructure.A Heterostructure of aluminum gallium nitride (AlGaN) and then GaN is grown on the AlN. A thin layer of AlGaN layer is grown on top of the highly resistive GaN creating a strained interface between the GaN and AlGaN crystal layers. This interface combined with the intrinsic piezoelectric nature of the GaN, creates a two dimensional electron gas (2DEG) which is filled with highly mobile and abundant electrons [4]. Further processing of a gate electrode forms a depletion region under the gate. The FET can be turned on by applying a positive bias to the voltage to the gate similar to a N-Channel MOSFET fig.1 show a typical I-V curve of a 40V MGN2915. Additional layers of metal are added to route the electrons to the gate, drain and source terminals as shown by the device cross section fig.2. This structure is repeated many times to form a power device similar to a power LDMOS layout.Fig. 1. Typical IV Curves for MGN2915* eGaN is a registered trademark of Efficient Power Conversion CorporationFig. 2. eGaN FET cross sectionII.EXPERIMENTAL METHODSTotal Ionizing Dose Testing:TID tests were performed in the “Gamma Cave” at the University of Massachusetts, Lowell. The devices were subjected to a total gamma dose of 1 MRads (Si) at a dose rate of 96 Rads (Si)/sec. A 60Co source was used and all testing was according to MIL-STD-750, Method 1019. Two different test conditions were used. The first test condition biased the drain-source at 80% of rated V DS(MAX) also referred as the “OFF” sta te with the gate grounded. The second test condition also referred as the “ON” state biased the gate-source at 5 V and the drain grounded.Low Dose Testing (ELDRs):Low dose testing was performed at Microsemi on our new JL Shepherd 484 irradiator with a Dual-Hemisphere Cobalt-60. The dual- hemisphere irradiator is capable of a 10mRad (Si)/sec and 100mRad (Si)/sec Low-Dose-Rate gamma simultaneously. The samples were subjected to a total dose of 100kRad (Si) at 100mRad (Si)/sec under three test conditions.-The ON state with 5V on the gate with the drain and source grounded.- The OFF state with drain-source at 80% of rated V DS(MAX) with the gate shorted-Un-biased this condition has shown to have an effect on other technology such as bipolar transistor.Neutron Testing:The devices were exposed to neutrons at the University of Massachusetts Lowell 1 MW Research Reactor using the Fast Neutron Irradiation (FNI) facility. This facility was specifically designed to provide an intense fast neutron flux (up to 9E10 n/cm^2-sec 1 MeV Si equivalent) with high beam uniformity (+/-10%) over a broad area of approximately 500 cm^2. Gamma shielding and thermal neutron filtering are also incorporated into the facility to eliminate gamma (TID) effects and minimized sample neutron activation. The gamma dose associated with a 1E13 1 MeV (Si) n/cm^2 exposure was approximately 1.33 krad (Si), while the fast to thermal neutron ratio was approximately 400:1.The samples were irradiated in the well characterized portion of the FNI, with all leads grounded in accordanceto MIL-STD-750 TM1017. Samples were removed after each exposure point was reached. Sulfur dosimetry was used to verify that each level achieved its desired exposure.Single Event Effects (SEE) Testing:SEE Testing is used to quantify the effects of ionizing radiation on electronic devices. Heavy-ion testing of third-generation MiGan TM FETs was performed at the Texas A&M cyclotron following MIL-STD-750E, METHOD 1080. Fig. 3 shows a block diagram of the test setup used during the SEE testing. The FTI1000 ATE is connected to a switch matrix with separate connections for the gate, source and drain to the laptop via a DSB cable. The test equipment is control by software which manages the setting of drain, gate and sources as well as performing the pre-electrical test and post stress measurement including thePost In situ Gate Stress (PIGS) test.Fig. 3. Block diagram and actual setup at TAMUDevice Tested:The table below shows the devices tested as well asthe radiation screening along with the test conditionsperformed.Table I. Summary of the MiGaN device testedIII. RESULTSTotal ionizing Dose Testing:The devices showed a small threshold shift post100kRad TID and stabilized up to 700kRad. The deviceswere within the datasheet specification. With no dielectricbeneath the gate for these eGaN FETs, this immunity to TIDwas expected. Fig 4 and 6 show the leakage and thresholdresponse over high dose exposure for the 40V, 100V and200V eGaN FETs.Fig.4.a MGN2901 Idss response to TID Spec<10uAFig. 4.b MGN2901 threshold response to TIDSpec 0.7<V TH<2.0Fig 5.a. MGN2910 Idss response to TID Spec<10uA Fig 5.b. MGN2910 threshold response to TIDSpec 0.7<V TH<2.0Fig 6.a. MGN29015 Idss response to TID Spec<10uA Fig 6.b. MGN2915 threshold response to TIDSpec 0.7<V TH<2.0Neutron Testing:As expected the MiGaN devices tested under Fast Neutron Irradiation did not exhibit any parameter shifts post neutron exposures up to 1e15 fluence. The minimum energy to displace GaN atoms is much larger than Si and GaAs and therefore did not seem to affect the 2DEG layer. Figures 7.a-d show the pre and post response of the MGN2915 (40V) .Fig 7.a. I GSS response of MGN2915Fig 7.b. I DSS response of MGN2915Fig 7.c. V TH response of MGN2915Fig 7.d. R DS(on) response of MGN2915Low Dose Testing (ELDRs):Some minorshifts were observed during low dose testing. Fig 8.b shows a decrease in leakage in the unbiased sample, but is probably due to tester equipment.Fig 8.c. shows a decrease in threshold voltage sample across all conditions, but still remaining within device specification up to 100kRad. This small shift in threshold could be similar to the one observed during the high dose exposure. It will be verified in further testing by carrying the exposure beyond 100kRad. Fig 8.a. I GSS response to ELDRs MGN2915Fig 8.b. I DSS response to ELDRs MGN2915Fig 8.c. V TH response to ELDRs MGN2915Fig 8.d. R DS(on) response to ELDRs MGN2915Single Event Effects (SEE) Testing:Being a lateral device, the worst case beam condition was at normal incidence with the highest surface LET. The Bragg peak was targeted to be near the 2DEG layer. The MGN2910 200V device did not show any shift in BV DSS voltage with Kr and Xe ions. A decrease to 180V was observed with Au ions when the Bragg peak was positioned near the 2DEG layer. Fig. 8 shows the SEE SOA. The MGN2915 40V device was extremely stable to its full ratedV DS , showing no degradation under worst condition and high fluence. Fig. 9 shows the SEE SOA response. The new process improvements made to the third generation of MiGaN has shown the devices to be near immune to single event exposure.Fig. 8. MGN2910 SEE SOA curve under worst conditionFig. 9. MGN2915 SEE SOA curve under worst conditionIV.CONCLUSIONThe new and third generation MiGaN devices manufactured by EPC for Microsemi HiRel space have demonstrated high radiation tolerance under TID, ELDRs, SEE and displacement damage.Further radiation testing will be performed in the coming year such as; angle testing, higher fluence, and low-dose testing across all the voltage platforms. Acknowledgement:The authors give thanks to Tom Regan from Lowell University for his help with the Neutron discussion and expertise in the subject.REFERENCES1. A. Lidow, J. Strydom, M. de Rooij, and Y. Ma, “GaNTransistors for Efficient Power Conversion,” Power Conversion Publications, 2012.2. Alexander Lidow, J. Brandon Witcher, and Ken Smalley,“Enhancement Mode Gallium Nitride (eGaN) FET Characteristics under Long Term Stress,” GOMAC Tech Conference, Orlando, Florida, March 2011.3. A. Lidow and K. Smalley, “Radiation Tolerant EnhancementMode Gallium Nitride (eGaN®) FET Cha racteristics,”GOMAC Tech Conference, Las Vegas, Nevada, March 2012. 4. M. Pavier, A. Woodworth, A. Sawle, R. Monteiro, C. Blake,and J. Chiu, “Understanding the effect of power MOSFET package parasitic on VRM circuit efficiency at frequencies above 1 MHz,” in Proc. PCIM Eur., May 2003, pp. 279–284.5. D. Reusch, J. Strydom, “Understanding the Effect of PCBLayout on Circuit Performance in a High Frequency Gallium Nitride Based Point of Load Converter,” Applied Power Electronics Conference APEC 2013, pp.649-655, 16-21 MaFig. 9. MGN2915 SEE SOA curve under worst condition。