线性规划的实际应用

线性规划的实际应用
线性规划的实际应用

线性规划的实际应用

教学目标

(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规化问题的图解法;

(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;

(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.

教学建议

一、重点难点分析

学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。

二、教法建议

(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.

(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.

(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.

教学设计方案

教学目标

(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;

(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.重点难点

理解二元一次不等式表示平面区域是教学重点。

如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

教学步骤

(一)引入新课

我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?

(二)线性规划问题的教学模型

线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是

已知

中都是常数,是非负变量,求的最大值或最小值,这里是常量。

前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形

来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。

线性规划在实际中的应用

线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:

1.物调运问题

例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两

个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?

2.产品安排问题

例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?

3.下料问题

例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?

4.研究一个例子

下面的问题,能否用线性规划求解?如能,请同学们解出来。

某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产

每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合

板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?A.教师指导同学们逐步解答:

(1)先将已知数据列成下表

(2)设生产书桌x张,生产书橱y张,获利润为z元。

分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。

(3)目标函数

①在第一个问题中,即只生产书桌,则,约束条件为

∴最多生产300张书桌,获利润元

这样安排生产,五合板先用光,方木料只用了,还有没派上用场。

②在第二个问题中,即只生产书橱,则,约束条件是

∴最多生产600张书橱,获利润元

这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。

③在第三个问题中,即怎样安排生产,可获利润最大?

,约束条件为

对此,我们用图解法求解,

先作出可行域,如图阴影部分。

时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解

为,即此时

因此,只生产书橱600张可获得最大利润,最大利润是72000元。

B.讨论

为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。

这是一个特殊的线性规划问题,再来研究它的解法。

C.改变这个例子的个别条件,再来研究它的解法。

将这个例子中方木料存有量改为,其他条件不变,则

作出可行域,如图阴影部分,且过可行域内点M

(100,400)而平行于的直

线离原点的距离最大,所以最优解为(100,

400),这

时(元)。

故生产书桌100、书橱400张,可获最大利润56000元。

总结、扩展

1.线性规划问题的数字模型。

2.线性规划在两类问题中的应用

布置作业

到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。

探究活动

如何确定水电站的位置

小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B 两村到河边的垂直距离分别为

300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?

[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化

成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.

以L所在直线为轴,轴通过A点建立直角坐标系,如

图所示.作A关于轴的对称点,连,与轴

交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,

300),(0,-300).过B作轴于点,过A

作,于点H.

由,,得B(300,700).于是直线的方程为

所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A 村距河边的最近点90 m的地方

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

《简单的线性规划》知识点及题型归总

二元一次不等式(组)与简单的线性规划问题 一、考点、热点回顾 1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线. (2)对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域. 2.线性规划相关概念 名称意义 约束条件由变量x,y组成的一次不等式 线性约束条件由x,y的一次不等式(或方程)组成的不等式组 目标函数欲求最大值或最小值的函数 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解 可行域所有可行解组成的集合 最优解使目标函数取得最大值或最小值的可行解 线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题 3.重要结论 画二元一次不等式表示的平面区域的直线定界,特殊点定域: (1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线. (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 知识拓展 1.利用“同号上,异号下”判断二元一次不等式表示的平面区域 对于Ax+By+C>0或Ax+By+C<0,则有 (1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方; (2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方. 2.最优解和可行解的关系 最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 二、典型例题 例1、(1)分别画出不等式x+2y-4>0和y≥x+3所表示的平面区域;

二元一次方程简单的线性规划要点

§3.3.1二元一次不等式(组)与 平面区域(1) 1.了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 一、课前准备 复习1:一元二次不等式的定义_______________二元一次不等式定义________________________二元一次不等式组的定义_____________________ 复习2:解下列不等式: (1)210x -+>; (2)22320 41590 x x x x ?+-≥??-+>?? . 二、新课导学 ※ 学习探究 探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,30 40x x +>??-

并思考: 当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?_______________ 根据此说说,直线x-y=6左上方的坐标与不等式6x y -<有什么关系?______________ 直线x-y=6右下方点的坐标呢? 在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线x-y=6的_____;反过来,直线x-y=6左上方的点的坐标都满足不等式6x y -<. 因此,在平面直角坐标系中,不等式6x y -<表示直线x-y=6左上 方的平面区域;如图: 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图: 直线叫做这两个区域的边界 结论: 1. 二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2. 不等式中仅>或<不包括 ;但含“≤”“≥”包括 ; 同侧同号,异侧异号. ※ 典型例题 例1画出不等式44x y +<表示的平面区域. 分析:先画 ___________(用 线表示),再取 _______判断区域,即可画出. 归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0C ≠时,常把原点作为此特殊点. 变式:画出不等式240x y -+-≤表示的平面区域. 例2用平面区域表示不等式组312 2y x x y <-+??

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题 【知识概述】 线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题. 解决线性规划的数学问题我们要注意一下几点 1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题; 2.解决线性规划问题需要经历两个基本的解题环节 (1)作出平面区域;(直线定”界”,特“点”定侧); (2)求目标函数的最值. (3)求目标函数z=ax+by最值的两种类型: ①0 b>时,截距最大(小),z的值最大(小); ②0 b>时,截距最大(小),z的值最小(大); 【学前诊断】 1.[难度] 易 满足线性约束条件 23, 23, 0, x y x y x y +≤ ? ?+≤ ? ? ≥ ? ?≥ ? 的目标函数z x y =+的最大值是() A.1 B.3 2 C.2 D.3 2.[难度] 易 设变量,x y满足约束条件 0, 0, 220, x x y x y ≥ ? ? -≥ ? ?--≤ ? 则32 z x y =-的最大值为( ) A.0 B.2 C.4 D.6

3. [难度] 中 设1m >,在约束条件1y x y mx x y ≥??≤??+≤? 下,目标函数z x my =+的最大值小于2,则m 的取 值范围为( ) A .(1,1 B .(1)+∞ C .(1,3) D .(3,)+∞ 【经典例题】 例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =+的最大值为( ) A.5 B.4 C.1 D.8 例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为( ) A.4 B.3 C.2 D.1 例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥??--≤??≥≥? ,若目标函数(0,0)z abx y a b =+>>的最小 值为8,则a b +的最小值为____________. 例4. 在约束条件下0,0,,24, x y x y s x y ≥??≥??+≤??+≤?当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )

人教版高中数学【必修五】[知识点整理及重点题型梳理]_简单的线性规划问题_提高

人教版高中数学必修五 知识点梳理 重点题型(常考知识点)巩固练习【巩固练习】 简单的线性规划问题 【学习目标】 1. 了解线性规划的意义,了解线性规划的基本概念; 2. 掌握线性规划问题的图解法. 3. 能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力. 【要点梳理】 要点一:线性规划的有关概念: 线性约束条件: 如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. 线性目标函数: 关于x 、y 的一次式(,)z f x y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. 线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解、可行域和最优解: 在线性规划问题中, ①满足线性约束条件的解(,)x y 叫可行解; ②由所有可行解组成的集合叫做可行域; ③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题. 要点二:线性规划的应用 1.线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出所有的限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清. 2.线性规划的理论和方法经常被用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.

简单的线性规划

简单的线性规划 一、本章节的地位及作用 1.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视,体现了数学的工具性、应用性. 2.本节内容渗透了转化、归纳、数形结合数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材. 3.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力. 二、教学目标 1.知识目标:能把实际问题转化为简单的线性规划问题,并能给出解答. 2.能力目标:培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力. 3.情感目标:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新. 三、教学重点与难点 1.教学重点:建立线性规划模型 2.教学难点:如何把实际问题转化为简单的线性规划问题,并准确给出解答. 解决重点、难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,突破难点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化. 四、教学方法与手段 1.教学方法 为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质. 2.教学手段 新大纲明确指出:要积极创造条件,采用现代化的教学手段进行教学.根据本节知识本身的抽象性以及作图的复杂性,为突出重点、突破难点,增加教学容量,激发学生的学习兴趣,增强教学的条理性、形象性,本节课采用计算机辅助教学,以直观、生动地揭示二元一次不等式(组)所表示的平面区域以及图形的动态变化情况. 3.学生课前准备 坐标纸、三角板、铅笔和彩色水笔 五、教学过程设计 教学流程图

简单的线性规划教学设计(二) 人教课标版(优秀教案)

《简单的线性规划》教学设计(二) 【教学目标】 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值. 【重点难点】 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点. 【教学步骤】 一、新课引入 我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用. 线性规划 先讨论下面的问题 设2z x y =+,式中变量x 、y 满足下列条件 4335251x y x y x -≤-??+≤??≥? ① 求z 的最大值和最小值. 我们先画出不等式组①表示的平面区域,如图中 ABC ?内部且包括边界.点(0,0)不在这个三角形区域内,当0,0x y == 时,20z x y =+=,点(0,0)在直线0:20l x y +=上.作一组和0l 平等的直线:2,l x y t t R +=∈ 可知,当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>. 即0t >,而且l 往右平移时,t 随之增大,在经过不等式组①表示的三角形区域内的点且平行于l 的直线中,以经过点(5,2)A 的直线l ,所对应的t 最大,以经过点(1,1)B 的直线1l ,所对应的t 最小,所以 max 25212z =?+=min 2113z =?+= 在上述问题中,不等式组①是一组对变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又称线性约束条件. 2x y +是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数,由于2z x y =+又是x 、y 的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数2z x y =+在 =0

简单的线性规划教案

简单的线性规划教案 ●教学目标 (一)教学知识点 用图解法解决简单的线性规划问题. (二)能力训练要求 能应用线性规划的方法解决一些简单的实际问题. (三)德育渗透目标 1.增强学生的应用意识. 2.培养学生理论联系实际的观点. ●教学重点 线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小. ●教学难点 根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.尤其是最优解是整数解. ●教学方法 讲练结合法 结合典型的实际问题讲解怎样用图解法解决线性规划的两类重要实际问题. ●教具准备 投影片三张(或多媒体课件) 第一张:记作§7.4.3 A 内容:课本P 62图7—24. 第二张:记作§7.4.3 B 内容:课本P 63图7—25. 第三张:记作§7.4.3 C 内容如下: 解:设每天应配制甲种饮料x 杯,乙种饮料y 杯.则, ????? ????≥≥≤+≤+≤+0 03000103200054360049y x y x y x y x 作出可行域: 目标函数为:z =0.7x +1.2y 作直线l :0.7x +1.2y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点

C ,且与原点距离最大,此时z =0.7x +1.2y 取最大值. 解方程组?? ?=+=+, 3000103, 200054y x y x 得点C 的坐标为(200,240). 所以,每天应配制甲种饮料200杯,乙种饮料240杯,能使该咖啡馆获利最大. ●教学过程 Ⅰ.课题导入 上节课,我们一起探讨了如何运用图解法解决简单的线性规划问题. 生产实际中有许多问题都可以归结为线性规划问题,其中有两类重要实际问题,下面我们就结合这两类问题的典型例题来探讨一下如何解决线性规划的实际问题. Ⅱ.讲授新课 第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大? 例如:某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大? 产品 消耗量 资源 甲产品(1 t ) 乙产品(1 t) 资源限额(t ) A 种矿石(t ) 10 4 300 B 种矿石(t) 5 4 200 煤(t) 4 9 360 利润(元) 600 1000 那么????? ????≥≥≤+≤+≤+; 0,0,36094,20045,300410y x y x y x y x 目标函数为:z =600x +1000y . 作出以上不等式组所表示的平面区域(或打出投影片§7.4.3 A ),即可行域.

简单的线性规划问题

简单的线性规划问题 [学习目标]1?了解线性规划的意义以及约朿条件、目标函数、可行解、可行域、最优解等基本概念2了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 目知识梳理自主学习 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数z=ax+hy(心0)对应的斜截式直线方程是y=一为+齐在y轴上的截距是齐当Z 变化时,方程表示一组互相平行的直线. 当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;

当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约朿条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约朿条件,在平面直角坐标系中,把可行域表示的平面图形准确地画岀来,可疔域可以是封闭的多边形,也可以是一侧开放的无限大的平而区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求岀目标函数的最大值或最小值. (4)答:写岀答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给立一泄数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大: (2)给泄一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?

最新简单的线性规划基础练习

博文教育专用试题简单的线性规划问题学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.若实数满足约束条件,则的最大值为() A. -4 B. 0 C. 4 D. 8 2.已知变量x,y满足约束条,则的最大值为 A. 2 B. 6 C. 8 D. 11 3.设变量满足约束条件则目标函数的最大值为()A. 6 B. 19 C. 21 D. 45 4.已知动点满足,则的最大值是() A. 50 B. 60 C. 70 D. 90 5.设变量x,y满足约束条件,则目标函数的最大值为( ) A. 6 B. 19 C. 21 D. 45 6.已知实数满足,则的最大值为() A. B. C. D. 二、填空题 7.若变量、满足约束条件,则的最大值为______________.

8.已知变量满足约束条件,则的最小值为__________.9.已知实数x,y满足,则的最大值为___________.10.若,满足约束条件,则的最小值为__________.11.设变量满足约束条件则目标函数的最大值为_____________. 12.设整数 ..满足约束条件,则目标函数的最小值为________. 13.设实数满足约束条件,则的取值范围是______.

参考答案 1.D 【解析】分析:由已知线性约束条件,作出可行域,利用目标函数的几何意义,采用数形结合求出目标函数的最大值。 详解:作出不等式组所对应的平面区域(阴影部分),令,则,表示经过原点的直线,由有,当此直线的纵截距有最大值时,有最大值,由图知,当直线经过A点时,纵截距有最大值,由有,即,此时,选D. 点睛:本题主要考查了简单的线性规划,考查了数形结合的解题方法,属于中档题。 2.D 【解析】分析:先根据约束条件画出可行域,再利用目标函数中z的几何意义,求出直线z=3x+y的最大值即可. 详解:作出变量x,y满足约束条件的可行域如图, 由z=3x+y知,y=﹣3x+z,

简单的线性规划问题附答案

简单的线性规划问题附 答案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变 化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;

(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小 ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大 ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一 求线性目标函数的最值 例1 已知变量x ,y 满足约束条件???? ? y ≤2,x +y ≥1, x -y ≤1,则z =3x +y 的最大值为( ) A .12 B .11 C .3 D .-1 答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由? ?? ?? y =2, x -y =1? ?? ?? x =3, y =2,此时z =3x +y =11. 跟踪训练1 (1)x ,y 满足约束条件???? ? x +y -2≤0,x -2y -2≤0, 2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一... ,则实数a 的值为( ) 或-1 B .2或1 2

教你如何做出最佳选择——简单线性规划求最优解

教你如何做出最佳选择 ——简单的线性规划求最优解 在线性约束条件下,求线性目标函数最值问题,称为“线性规划”。目标函数),(y x f z =取得最值时,变量y x ,的对应解),(y x 称为最优解。若Z y x ∈,时,z 取得最值,称),(y x 为最优整数解,简称整解。点),(y x 的横、纵坐标都是整数,称为整点。 求最优整解问题出现在高中数学新教材中,常见的实际应用题型有两种,(1)给出一定数量的人力、物力资源,问怎样安排能使完成的任务量最大,收益最大; (2)给出一项任务,问怎样统筹安排,能使完成这项任务投入的人力、物力最小。因为研究的对象是人、物等个体,故y x ,往往是整数,较y x ,不是整数时求解困难,所以这是一个应用数学知识解决实际问题的新难点,加之教材介绍较为笼统简略,对教师和学生的理解掌握造成了一定的困难,针对这一问题,总结两种寻找最优整解的方法与大家探讨。 这两种求解方法分别是:调整优值法(简称调值法)、枚举整点法(简称枚举法)。调值法是先求非整点最优解,再借助不定方程,调整最优解,最后筛选出最优解;枚举法,因为取得最值的整点分布在可行域内,可从y x ,中选取系数的绝对值较大的一个对其逐一取值,以此为标准分类讨论,取得另一变量的最值,代入目标函数,比较函数值大小,找到最优解。 下面通过几个典型例题,介绍一下这几种方法的具体运用。 例1(调整优值法)要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 今需A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少? 解析:设需要第一种钢板x 张,第二种钢板y 张,钢板总数z 张,则

简单线性规划-高中数学知识点讲解

简单线性规划 1.简单线性规划 【概念】 线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值. 【例题解析】 ?+2?≤8 例:若目标函数z=x+y 中变量x,y 满足约束条件 { 0≤?≤4 . 0≤?≤3 (1)试确定可行域的面积; (2)求出该线性规划问题中所有的最优解. 解:(1)作出可行域如图:对应得区域为直角三角形ABC, 其中B(4,3),A(2,3),C(4,2), 则可行域的面积S =1 2????? = 1 2×1×2=1. (2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z, 则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z 得截距最小,此时z 最小为z=2+3=5, 当直线经过点B(4,3)时,直线y=﹣x+z 得截距最大, 此时z 最大为z=4+3=7,

1/ 5

故该线性规划问题中所有的最优解为(4,3),(2,3) 这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值. 【典型例题分析】 题型一:二元一次不等式(组)表示的平面区域 典例 1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k 的值是() 7343 A.3B.7C.3D. 4 4 4 分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平 33 面区域面积的条件即可. 解答:不等式组表示的平面区域如图所示. 由于直线y=kx +44 过定点(0,).因此只有直线过AB 中点时,直线y=kx + 33 4 3 能平分平面区域. 15 因为A(1,1),B(0,4),所以AB 中点D(,). 22 当y=kx +4155 过点(,)时, 3222 = ? 2 + 4 3 ,所以k = 7 3 . 答案:A. 点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域. 注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点. 题型二:求线性目标函数的最值

相关文档
最新文档