《长方体和正方体》整理复习表格

合集下载

(完整版)五年级下册数学第三单元整理与复习教学设计

(完整版)五年级下册数学第三单元整理与复习教学设计

《长方体和正方体的整理与复习》教学设计【教学内容:】人教版《义务教育课程标准实验教科书?数学》五年级下册第三单元《长方体和正方体的整理与复习》【教学目标】:1、对长方体和正方体知识进行整理和复习。

2、通过整理、复习,使学生进一步掌握长方体和正方体的特征,表面积、体积的概念以及相邻单位间的进率;能进一步认识长方体、正方体的表面积和体积及其计算方法,并能正确地计算。

理解它们的内在联系,能灵活运用。

3、巩固本单元的基本概念和基本计算,提高学生的空间想象的能力。

4、使学生知道知识的内在联系,提高学生灵活运用知识的能力。

【教学重点、难点】:1、学生对知识进行自我梳理,知道知识的内在联系。

2、灵活运用知识解决实际问题。

3、使学生形成表象,形成空间观念。

【教具准备】:用纸条打印本单元的知识点、课件。

【教学过程设计】:一、整理。

1、引入:同学们,我们已经学完了第三单元的全部知识,这节课我们一起对这一单元的知识进行整理和复习,把所学的知识系统的整理,形成知识网络。

板书课题:长方体和正方体的整理与复习2、学生回顾本单元所学知识。

①引导学生说出本单元的知识点(学生想到什么说什么,教师根据学生说的顺序用事先准备好的纸条出示相关知识点在右边的黑板上)。

全班学生交流,互相补充。

②引导学生梳理,形成知识网络。

教师指名学生回答我们先学了什么?后学了什么?最后学了什么?教师根据学生的归纳总结,并把刚才粘贴在右边的纸条按一定的顺序粘贴在左边的板书上二、复习。

(一)、课件出示长方体和正方体,让学生回忆长方体和正方体的特征。

1、长方体:①面:长方体上平平的部分是长方体的面【长方体有6个面(相对的面完全相同)】②棱:两个面相交的边叫做长方体的棱【长方体有12条棱(相对的棱长度相等)】③顶点:三条棱相交的点叫做顶点【长方体有8个顶点】。

2、正方体:①面:正方体有6个面(6个面完全相同)。

②棱:正方体有12条棱(12条棱长度都相等)。

③顶点:正方体有8个顶点。

《长方体和正方体的整理与复习》教学反思

《长方体和正方体的整理与复习》教学反思

《长方体和正方体的整理与复习》教学反思《长方体和正方体的整理与复习》教学反思范文《长方体和正方体的整理与复习》是人教实验版第十册数学的第三单元内容,是在学生探究平面图形的基础上,第一次接触三维立体图形,是由平面扩展到立体的开始。

立体图形是学生初次有了”看不到“的地方,开始了真正意义上的空间想象。

前面两个单元都没有整理复习专项内容。

本单元特意安排一个整理和复习板块,这足以说明整理本单元内容是非常必要。

着眼复习课和练习课不同,复习课是学生对已有知识的再现和梳理,对学生已经建构的知识进行巩固、深化、扩展。

使知识系统化、条理化,针对学生的弱点,查漏补缺。

要充分发挥复习课的作用,避免将复习课上成练习课,复习课应当选择恰当的教学策略。

因此,本节课我尝试使用“先学后教、当堂训练”教学模式,经历了“自学—巩固—解决问题能力培养—思维培养”四阶段。

一,尝试回忆整理,形成知识网络。

本节课的重点是让学生通过自主回忆,自我梳理,整理归纳形成系统的知识网络。

首先课件出示长方体和正方体立体图,让学生猜一猜今天的学习内容,引出课题。

再直截了当地出示学习目标、自学指导,让生明确今天学习本节课的目的,并有方向可循。

接着放手给学生自己完成“整理表”,最后引导全班交流,完善整理表,形成知识网络。

这一过程,我充分发挥学生的主体作用,让每个学生都参与到知识的整理中来,巧妙的帮助学生从概念,公式,单位,进率等角度去整理知识点。

学生都能快速完成整理表,对计算公式的掌握较好,但在引导全班交流时,发现学生对排水法的理解不够深入。

二、再现“难点”,补缺补漏,巩固所学知识。

在本单元教学过程中,我发现学生对12条棱的分组、排水法理解不透,导致解决问题时不够灵活,阻碍学生解决能力的培养。

学生由于第一次接触“立体图形”,空间想象有待培养与发展。

我从以下3个问题入手,发展空间观念,知识巩固。

(1)长方体6个面中,只能有2个正方形,这两个正方形只能相对,不能相邻。

五年级长方体和正方体概念和公式归纳

五年级长方体和正方体概念和公式归纳

长方体和正方体概念一、长方体和正方体的各部分名称1.由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3.由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有有6个面,8个顶点,12条棱,它们的长度都相等,所有的面都完全相同。

4.长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5.长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

二、总棱长公式长方体的棱长总和=(长+宽+高)×4棱长总和÷4=长+宽+高正方体的棱长总和=棱长×12正方体的棱长=棱长总和÷12三、表面积1.长方体或正方体6个面和总面积叫做它的表面积。

2.长方体的表面积=(长×宽+长×高+宽×高)×2无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2无底又无盖长方体表面积=(长×高+宽×高)×2正方体的表面积=棱长×棱长×6四、体积1.物体所占空间的大小叫做物体的体积。

2.长方体的体积=长×宽×高=底面积×高V=abh=sh长=体积÷宽÷高a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h= V÷a÷b3.正方体的体积=棱长×棱长×棱长 V=a×a×a注意:正方体的棱长扩大n倍,表面积扩大n的平方倍,体积扩大n的立方倍。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

部编新人教版小学五年级下册数学第三单元《整理和复习》具体内容和教学建议

部编新人教版小学五年级下册数学第三单元《整理和复习》具体内容和教学建议

《整理和复习》具体内容和教学建议编写意图(1)整理和复习是对本单元的知识进行梳理与巩固。

第一部分,主要梳理以下内容:长方体、正方体的特征、关系;长方体、正方体的表面积;长方体、正方体的体积和容积。

第(1)、(2)题,是特征的复习,主要从“面”“棱”“顶点”这三个角度进行,通过长方体、正方体的相同点、不同点的比较,揭示两者之间的关系。

第(3)题,是表面积、体积、容积的回顾整理,不仅关注结论与公式,更关注公式推导的过程。

(2)第二部分,主要复习不规则物体的体积计算方法。

让学生在任务解决中回顾用“排水法”测量体积的方法。

(3)思考题主要复习长方体的体积,发展空间想象能力。

基于“长方体的体积就是指含有几个体积单位”这一意义,利用“长×宽×高”这一关系求出体积。

教学建议(1)注重知识回顾,更注重沟通联系。

复习整理时,不仅要注重长方体和正方体特征、相关计算等知识技能的回顾,更应关注知识间的联系。

可以用分类的方式,让学生体会到,长方体、正方体具有以下共同点:“都是由6个面组成的”“侧面展开都是长方形或正方形”“侧面积的计算方法都是底面周长乘高”“体积都是底面积乘高”……(2)重视解决问题策略的学习。

结合第2题,帮助学生梳理策略,形成解问题的基本思路。

求物体的体积,分两种情况:规则物体的体积与不规则物体的体积。

规则的物体,测量有关数据,利用公式计算;不规则的物体,想办法转化为规则的,常用的方法是排水法。

(3)可设计综合实践活动。

本单元的复习,还可以结合一些综合实践活动进行。

例如:“长方体的包装问题”“长方体、正方体的拼与切”“测量绿豆的体积”等,通过设计开放性、操作性强的课题研究,促使学生经历观察、操作、描绘、想象、推理等学习活动,并进行一些规律探索。

以此加强对长方体、正方体的表面积、体积意义的理解与计算技能的巩固,包括一些不规则物体的体积测量方法。

编写意图(1)练习十是在学生对本单元进行知识整理的基础上编排的,综合性较强,目的是提高综合运用知识的能力。

《长方体和正方体》_概念和公式归纳

《长方体和正方体》_概念和公式归纳

《长方体和正方体》概念和公式归纳一、概念:1、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

在一个长方体中,相对的面完全相同,相对的棱长度相等。

2、正方体是由6个完全相同的正方形围成的立体图形。

(正方体也叫立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

3、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体或正方体6个面和总面积叫做它的表面积。

6、物体所占空间的大小叫做物体的体积。

计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米。

规定:棱长是1cm的正方体,体积是1cm³. 棱长是1dm的正方体,体积是1dm³.棱长是1m的正方体,体积是1m³.7、容器所能容纳物体的体积通常叫做它们的容积。

8、3a读作“a的立方”表示3个a相乘,(即a·a ·a)9、至少用(8 )个小正方体能拼成一个大正方体。

10、箱子、油桶、仓库等所能容物体的体积,通常叫做它们的容积。

计量容积,一般就用体积单位。

11、计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml 。

12高。

13、计量不规则物体的体积可以用排水法。

(水面上升的那部分水的体积就是不规则物体的体积。

)二、公式:长方体公式:棱长和=(长+宽+高)×4底面积(占地面积、、上面积)=长×宽左面、右面=宽×高前(后)面积=长×高表面积=(长×宽+长×高+宽×高)×2没盖的表面积=长×宽+(长×高+宽×高)×2或=(长×宽+长×高+宽×高)×2-长×宽体积(容积)=长×宽×高长=体积÷宽÷高 宽=体积÷长÷高 高=体积÷长÷宽 体积(容积)=底面积×高 = 横截面积×长底面积=体积÷高 高=体积÷底面积 横截面积=体积÷长 长=体积÷横截面积正方体公式:棱长和=棱长×12 棱长=棱长和÷12 表面积=棱长×棱长×6 (任意一个面积×6) 没盖的表面积=棱长×棱长×5体积(容积)=棱长×棱长×棱长=底面积×棱长 三、体积单位换算:进率: 1L =1000ml 1L=1dm ³ 1ml=1 cm ³ 1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升长度单位: 毫米厘米分米 米 千米 面积单位:平方毫米 平方厘米 平方分米 平方米 公顷 平方千米 体积单位: 立方厘米 立方分米 立方米 容积单位: (毫升) (升)10 10 100 100 100 10000 100 1000 1000 1000 10 1000。

青岛版小学数学《长方体和正方体的整理复习》课堂实录

青岛版小学数学《长方体和正方体的整理复习》课堂实录一、创设情境,导入单元复习师:同学们好!今天我们第一次见面,老师给同学们带来两件小礼物,你们能根据它们的形状大小猜一猜是什么吗?(包装好的一盒牛奶和一个魔方)生1:里面是一个长方体生2:里面装的是一个长方体盒子,盛的是液体师:这位同学猜的比较准确,(举魔方)这是什么?生1:是一个正方体生2:是一个魔方师:这位同学的眼力真不错,猜不出来的同学也没关系,生活中像这样形状的物品实在太多了。

老师给你们带来的是一盒牛奶和一个魔方,这两件礼物包含了两层含义:一层含义是老师对同学们的祝福,希望同学们身体倍棒,健康成长(手举奶盒),头脑灵活,越来越聪明(举魔方);另一层含义,这两件东西是我们这节课学习的小助手,你知道这节课我们要学习什么了吗?板书:长方体和正方体的整理复习二、全班交流本单元内容师:请同学们回忆我们都学过长方体和正方体的哪些知识?生答,板书:特征、表面积、体积和体积单位、容积和容积单位、体积的计算师:这么多的知识有没有什么好办法让他们系统条理的展现出来呢?三、单元知识整理,形成知识体系学生小组为单位结合课本和单元目标导学整理本单元内容,看哪个组整理的快,汇报的好。

学生小组讨论整理,小组长做好记录,整理出本单元的知识体系。

四、全班汇报交流师:每个小组汇报时,可选择一个知识点来说,让每个小组都有发言的机会。

生1:我们小组想汇报长方体和正方体的特征,长方体和正方体都有12条棱,8个顶点,6个面。

生2:长方体相对的两个面完全相同,相对的棱长度相等,可以根据长度不同把长方体的棱分成3组,每组4条。

生3:正方体的6个面完全相同,而且都是正方形,12条棱都相等。

师:他们对长方体和正方体的知识掌握的真熟练,还有补充的吗?生:长方体的特殊情况有两个面是正方形时,其余的四个面都完全相同。

评价:补充的非常好,知识更全面了。

师:学习了一部分知识后,我们要善于总结和比较知识之间的联系和区别,这样更有利于我们对知识的掌握。

2021年小学数学第二单元《长方体》—五年级下册章节复习精编讲义(思维导图+知识讲解+达标训练)北师大版,含解析

期中复习讲义(北师大版)2020-2021学年北师大数学五年级下册期中章节复习精编讲义第二单元《长方体(一)》知识互联网知识导航知识点一:长方体的认识1 长方体和正方体的各部分名称:在长方体或正方体中,围成的长方形或正方形叫作长方体或正方体的面;面和面相交的边叫作棱;棱和棱相交的点叫作顶点。

2 长方体和正方体的特征3 长方体和正方体的异同点4 长方体和正方体的关系:正方体可以看成是长、宽、高都相等的特殊的长方体5 长方体和正方体特征的应用:判断所给图形能否组成长方体,可以根据长方体的特征一组一组地进行寻找,看看能否找到3组相对应的面。

知识点二:展开与折叠1 正方体展开图的特点(1)沿着正方体的棱剪开,可以把正方体展开成一个平面图形,这个平面图形就是正方体的展开图。

在展开图中,正方体的6个面是相连的,相对的面完全隔开。

(2)将展开图沿虚线(折痕)向内折,能重新折叠成正方体。

(3)正方体的展开图是由6个大小、形状完全相同的正方形组成的组合图形。

(4)正方体的展开图,可分四个类型错误!“一四一”型:中间四个正方形相连,两侧各一个错误!“二三一”型:中间三个正方形相连,两侧分别是两个和一个错误!“二二二”型:中间两个正方形相连,两侧各两个错误!“三三”型:两侧各三个2 长方体展开图的特点:长方体相对的面大小、形状完全相同,并且相对的面完全隔开;长方体上、下两个面的面积相等,长和宽分别是长方体的长和宽;前、后两个面的面积相等,长和宽分别是长方体的长和高;左、右两个面的面积相等,长和宽分别是长方体的宽和高。

3长方体和正方体与展开图之间的对应关系(1)长方体和正方体的每一个面都与其他四个面相邻,但只有一个相对的面,所以只要找到一组相对的面,也就同时确定了它们与其他四个面的相邻关系,从而能够通过想象把展开图还原成立体图形。

(2)判断一个图形折叠后相对应的面,可以根据长方体、正方体展开图的特点,先确定一个面为下面,再想象折叠的过程,从而找出相对的面,也可以用实物折一折,直观地找一找。

苏教版六年级数学第二单元《长方体和正方体》整理与练习(1)

苏教版六年级数学——第二单元《长方体和正方体》整理与练习 (1)教课内容:教科书第 33 页整理与练习第1~3 题教课目的 :1、指引学生以小组议论的方式,对本单元所学内容进行梳理,进一步完美相关长方体和正方体的认知构造。

2、经过练习稳固本单元的基础知识,形成知识系统。

3、进一步培育学生的空间观点。

教课要点与难点:对本单元所学内容进行梳理,进一步完美相关长方体和正方体的认知构造。

教课过程一、口答:1、长方体、正方体的特点。

2、什么叫表面积?3、什么是体积?4、什么是容积?5、常用的体积单位有哪些?常用的容积单位有哪些?6、如何求长方体、正方体的表面积、体积?7、体积和容积有什么异同点?经过回答上述问题,回首本单元的相关观点。

二、基础练习:1、填空:(1)长方体有()个面,()条棱,()个极点,相对的棱长度(),相对的面()。

(2)正方体有()个面,()条棱()个极点;它的棱(),每个面()。

(3)长方体或正方体()叫做它们的表面积。

(4)物体所占()叫做物体的体积。

(5)容器所能容纳物体的()叫做容器的容积。

2、判断(1)体积单位间的进率是 1000。

( )(2)8.05 立方米= 8 立方米 5 立方分米 ( )(3)长方体的六个面必定是长方形。

( )进一步稳固上边复习的内容。

3、单位的换算:3.6 平方米 =()平方分米3.6 立方米 =()立方分米350 平方厘米 =()平方分米480 立方厘米 =()立方分米50 立方分米 =()立方米4.3 升=()毫升 =()立方厘米5200 毫升 =()升 =()立方分米先填空,而后指名回答;说出填空的依据。

4、达成第 1 题。

(1)预计体积时能够在察看的基础上判断,也能够综合图形中的数据大小判断。

指名学生口答校正。

谈谈是如何想的。

(2)求表面积和体积。

一人板演,其他自练。

列出综合算式。

集体评讲。

5、做第 2 题。

指出:先向杯中倒入必定量的水,再将土豆放入水中,量杯中水面上涨前后刻度所显示的体积相差200 毫升。

五年下册第三单元,长方体和正方体,长方体的认识,面、棱、点、棱长总和


长方体有12条棱,每相对的4条棱相等 (按照相等的棱长可分为3组)
认识长方体
顶点.
三条棱相交的点叫做顶点.
长方体一共 有8个顶点.
长方体有8个顶点。
以同一顶点上的长,宽,高为一组,可分为4 组。



高 高 高 长 宽 长 宽


长方体有8个顶点。 以同一顶点上的长,宽,高为一组,可分为4组。
5
1 6
宽(
高(
5 )厘米;
1 )厘米。 长( 2 )厘米;
宽(
2 2
5
5 )厘米; 高( 2 )厘米。
四 : 下图中的长方体和正方体都是由棱长1厘米的 小正方体摆成的,它们的长,宽,高各是多少?
长2厘米 宽2厘米
(1)
长3厘米
高4厘米
(2)
长3厘米
宽3厘米 高3厘米
宽3厘米
高2厘米
(3)
分别计算每个长方体或正方体向上的面的面积。
2
(1)
厘 米
7厘米
5厘米
(3)
5 厘 米
5厘米
3 厘 米
3厘米
(2)
7厘米
5厘米
填一填
(1)长方体有(6 )个面,(12)条棱,
( 8 )个顶点。
(2)长方体相对的面( 完全相同 ),
相对的棱长度( 相等
)。
(3)一个长方体最多可能有( 2 )个面是 正方形。
根据所提供的条件,回答问题:
单位:厘米
下图中的长方体和正方体都是由棱长1厘米的长2厘米宽厘米宽2厘米12长3厘米3长3厘米宽3厘米高2厘米宽3厘米高3厘米高4厘米分别计算每个长方体或正方体向上的面的面积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体的形状特征
长方体和正方体的表面积、体积和容积
形体 表面积 体积(容积)
定义 计算公式 常用单位 定义 计算公式 常用单位
长方体 长方体或正方体6个面的( ),叫做它们的表面积。 S= ( ) ( ) ( ) 物体所占( )叫做物体的体积。容器所能容纳物体的( )叫做它们的容积。 V= V=
( )
( )
( )
( )
( )

正方体 S=

V=

V=

长度、面积、体积以及容积的计量单位
长度 面积 体积 容积
常用单位 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )

进率 1米=( )分米 1分米=( )厘米 1米=( )厘米 1平方米=( )平方分米 1平方分米=( )平方厘米 1平方米=( )平方厘米 1立方米=( )立方分米 1立方分米=( )立方厘米 1立方米=( )立方厘米 1升=( )
毫升
1升=( )立方
分米
1毫升=( )立方
厘米

形体 相同点 不同点 联系
面 棱 顶点 面的面积 面的面积 棱长

长方体 ( )个 ( )条 ( )个 6个面都是( ),有时有( )个相对的面是( )形。 相对的2个面的面积( ) ( )的棱长度
相等。
正方体是

一种特殊
的( )
正方体 ( )个 ( )条 ( )个 6个面都是( )形。 6个面的面积( ) 12条棱的长度
( )

相关文档
最新文档