第一章 三角函数 章末检测(人教A版必修4)

合集下载

高中数学 第一章 三角函数 1.41.4.3 正切函数的性质与

高中数学 第一章 三角函数 1.41.4.3 正切函数的性质与

1.4.3 正切函数的性质与图象A 级 基础巩固一、选择题1.函数y =3tan ⎝⎛⎭⎪⎫2x +π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π-3π8,k ∈ZC.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π,k ∈Z 解析:由2x +π4≠k π+π2,得x ≠12k π+π8(k ∈Z).答案:C2.f (x )=-tan ⎝⎛⎭⎪⎫x +π4的单调区间是( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB.()k π,(k +1)π,k ∈ZC.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:令-π2+k π<x +π4<π2+k π,k ∈Z ,解得-3π4+k π<x <π4+k π,k ∈Z.所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z.答案:C3.在下列给出的函数中,以π为周期且在⎝⎛⎭⎪⎫0,π2内是增函数的是( )A .y =sin x2B .y =cos 2xC .y =sin ⎝ ⎛⎭⎪⎫2x +π4D .y =tan ⎝⎛⎭⎪⎫x -π4解析:由函数周期为π可排除A.x ∈⎝ ⎛⎭⎪⎫0,π2时,2x ∈(0,π),2x +π4∈⎝ ⎛⎭⎪⎫π4,54π,此时B 、C 中函数均不是增函数.答案:C 4.若直线x =k π2(-1≤k ≤1)与函数y =tan ⎝⎛⎭⎪⎫2x +π4的图象不相交,则k =( )A.14 B .-34C.14或-34 D .-14或34解析:由题意得2×k π2+π4=π2+m π,m ∈Z. k =14+m ,m ∈Z.由于-1≤k ≤1,所以k =14或-34.答案:C5.函数y =tan ⎝ ⎛⎭⎪⎫3x +π6图象的对称中心为( ) A .(0,0)B.⎝ ⎛⎭⎪⎫π2,0C.⎝⎛⎭⎪⎫k π-π18,0,k ∈ZD.⎝⎛⎭⎪⎫k π6-π18,0,k ∈Z解析:由函数y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0,k ∈Z ,令3x +π6=k π2,k ∈Z ,则x=k π6-π18(k ∈Z), 所以y =tan ⎝ ⎛⎭⎪⎫3x +π6对称中心为⎝ ⎛⎭⎪⎫k π6-π18,0,k ∈Z. 答案:D 二、填空题6.-tan 6π5与tan ⎝ ⎛⎭⎪⎫-13π5的大小关系是______________.解析:-tan 6π5=-tan π5,tan ⎝⎛⎭⎪⎫-13π5=-tan 13π5=-tan 3π5因为0<π5<π2<3π5<π,所以tan π5>0,tan 3π5<0,所以-tan π5<-tan 3π5,即-tan 6π5<t an ⎝ ⎛⎭⎪⎫-13π5.答案:-tan 6π5<tan ⎝⎛⎭⎪⎫-13π5 7.f (x )=a sin x +b tan x +1,满足f (5)=7,则f (-5)=________. 解析:因为f (5)=a sin 5+b tan 5+1=7, 所以a sin 5+b tan 5=6,所以f (-5)=a sin(-5)+b tan(-5)+1= -(a sin 5+b tan 5)+1=-6+1=-5. 答案:-58.y =tan x2满足下列哪些条件________(填序号).①在⎝⎛⎭⎪⎫0,π2上单调递增;②为奇函数; ③以π为最小正周期; ④定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π2,k ∈Z . 解析:当x ∈⎝ ⎛⎭⎪⎫0,π2,所以y =tan x 2在⎝ ⎛⎭⎪⎫0,π2上单调递增正确;t an ⎝ ⎛⎭⎪⎫-x 2=-tan x 2,故y =tan x 2为奇函数,因此①②正确;T =πω=2π,所以③不正确;由x 2≠π2+k π,k ∈Z ,得{x |x ≠π+2k π,k ∈Z},所以④不正确.答案:①② 三、解答题9.求函数y =tan 2x 的定义域、值域和周期,并作出它在区间[-π,π]内的图象.解:定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π4+k π2,k ∈Z ,值域为(-∞,+∞),周期为π2;对应图象如下:10.求函数y =12tan ⎝ ⎛⎭⎪⎫5x +π4的定义域,单调区间及对称中心.解:由5x +π4≠k π+π2,得x ≠k π5+π20,k ∈Z ,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π5+π20,k ∈Z . 由k π-π2<5x +π4<k π+π2,得k π5-3π20<x <k π5+π20,k ∈Z.函数的单调递增区间是⎝⎛⎭⎪⎫k π5-3π20,k π5+π20,k ∈Z ,由5x +π4=k π2得x =k π10-π20,k ∈Z ,函数图象的对称中心坐标为⎝ ⎛⎭⎪⎫k π10-π20,0,k ∈Z.B 级 能力提升1.已知函数y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内是减函数,则ω的取值范围为________.解析:由题意可知ω<0,又⎝ ⎛⎭⎪⎫π2 ω,-π2 ω⊆⎝ ⎛⎭⎪⎫-π2,π2. 故-1≤ω<0. 答案:-1≤ω<0.2.若函数y =tan ⎝ ⎛⎭⎪⎫3ax -π3(a ≠0)的最小正周期为π2,则a =________.解析:因为π|3a |=π2,所以|a |=23,所以a =±23.答案:±233.已知函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx -π3的最小正周期T 满足1<T <32,求正整数k 的值,并指出f (x )的奇偶性、单调区间.解:因为1<T <32,所以1<πk <32,即2π3<k <π.因为k ∈N *,所以k =3, 则f (x )=2tan ⎝⎛⎭⎪⎫3x -π3, 由3x -π3≠π2+k π(k ∈Z)得x ≠5π18+k π3(k ∈Z),定义域不关于原点对称,所以f (x )=2tan ⎝⎛⎭⎪⎫3x -π3是非奇非偶函数.由-π2+k π<3x -π3<π2+k π(k ∈Z)得-π18+k π3<x <5π18+k π3(k ∈Z),所以f (x )=2tan ⎝⎛⎭⎪⎫3x -π3的单调递增区间为⎝⎛⎭⎪⎫-π18+k π3,5π18+k π3,k ∈Z.。

高中数学第一章三角函数章末检测B含解析新人教A版必修42017063018

高中数学第一章三角函数章末检测B含解析新人教A版必修42017063018

第一章 三角函数(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知cos α=12,α∈(370°,520°),则α等于( )A .390° B.420° C.450° D.480° 2.若sin x ·cos x <0,则角x 的终边位于( ) A .第一、二象限B .第二、三象限C .第二、四象限D .第三、四象限3.函数y =tan x2是( )A .周期为2π的奇函数B .周期为π2的奇函数C .周期为π的偶函数D .周期为2π的偶函数4.已知tan(-α-43π)=-5,则tan(π3+α)的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin (ωx +φ))(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2 C.12 D.136.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( )A .-π2B .2k π-π2(k ∈Z )C .k π(k ∈Z )D .k π+π2(k ∈Z )7.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .-310 B.310 C .±310 D.348.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝ ⎛⎭⎪⎫2x -π5C .y =sin ⎝ ⎛⎭⎪⎫12x -π10D .y =sin ⎝ ⎛⎭⎪⎫12x -π209.将函数y =sin(x -θ)的图象F 向右平移π3个单位长度得到图象F ′,若F ′的一条对称轴是直线x =π4,则θ的一个可能取值是( )A.5π12 B .-5π12 C.11π12 D .-11π1210.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )11.在同一平面直角坐标系中,函数y =cos ⎝ ⎛⎭⎪⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是( )A .0B .1C .2D .412.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <b13.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________.14.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 15.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________. 16.给出下列命题:(1)函数y =sin |x |不是周期函数;(2)函数y =tan x 在定义域内为增函数;(3)函数y =|cos 2x +12|的最小正周期为π2;(4)函数y =4sin(2x +π3),x ∈R 的一个对称中心为(-π6,0).其中正确命题的序号是________.三、解答题(本大题共6小题,共70分)17.(10分)已知α是第三象限角,f (α)=α-π23π2+απ-α-α-π-π-α.(1)化简f (α);(2)若cos(α-32π)=15,求f (α)的值.18.(12分)已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.19.(12分)已知sin α+cos α=15.求:(1)sin α-cos α;(2)sin 3α+cos 3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤π2)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间;(3)是否存在实数m ,满足不等式A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:t (时) 0 3 6 9 12 15 18 21 24 y (米) 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?第一章 三角函数(B)答案1.B 2.C 3.A 4.A5.B [由图象知2T =2π,T =π,∴2πω=π,ω=2.]6.D [若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0,∴φ=k π+π2,(k ∈Z ).]7.B [∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2,∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310.]8.C [函数y =sin xy =sin ⎝⎛⎭⎪⎫x -π10――→横坐标伸长到原来的2倍纵坐标不变y =sin ⎝ ⎛⎭⎪⎫12x -π10.]9.A [将y =sin(x -θ)向右平移π3个单位长度得到的解析式为y =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π3-θ=sin(x -π3-θ).其对称轴是x =π4,则π4-π3-θ=k π+π2(k ∈Z ).∴θ=-k π-7π12(k ∈Z ).当k =-1时,θ=5π12.]10.D [图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.]11.C [函数y =cos ⎝ ⎛⎭⎪⎫x 2+3π2=sin x 2,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.]12.D [∵a =sin 5π7=sin(π-5π7)=sin 2π7.2π7-π4=8π28-7π28>0. ∴π4<2π7<π2. 又α∈⎝ ⎛⎭⎪⎫π4,π2时,sin α>cos α. ∴a =sin 2π7>cos 2π7=b .又α∈⎝ ⎛⎭⎪⎫0,π2时,sin α<tan α.∴c =tan 2π7>sin 2π7=a .∴c >a .∴c >a >b .] 13.265解析 ∵α是第四象限的角且cos α=15.∴sin α= -1-cos 2α=-265,∴cos(α+π2)=-sin α=265.14.23解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x 消去y 得6cos x =5tan x .整理得6cos 2x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23.15.3解析 由函数y =A sin(ωx +φ)的图象可知: T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3.16.(1)(4)解析 本题考查三角函数的图象与性质.(1)由于函数y =sin |x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义f (x +π2)=|-cos 2x +12|≠f (x ),∴π2不是函数的周期;(4)由于f (-π6)=0,故根据对称中心的意义可知(-π6,0)是函数的一个对称中心,故只有(1)(4)是正确的.17.解 (1)f (α)=α-π23π2+απ-α-α-π-π-α=-π2-αα-tan α-tan αin α=cos αsin αtan α-tan αsin α=-cos α.(2)∵cos(α-3π2)=cos(3π2-α)=-sin α=15.∴sin α=-15.∵α是第三象限角,∴cos α=-265.∴f (α)=-cos α=265.18.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1.(2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 19.解 (1)由sin α+cos α=15,得2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75.(2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×⎝ ⎛⎭⎪⎫1+1225=37125.20.解 (1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT =2.将点(π6,2)代入f (x )的解析式得sin(π3+φ)=1,又|φ|<π2,∴φ=π6,故函数f (x )的解析式为f (x )=2sin(2x +π6).(2)变换过程如下:y =2sin x 6π−−−−−−−→图像向左平移个单位y =2sin(x +π6)12−−−−−−−−−→所有点的横坐标缩短为原来的纵坐标不变y =2sin(2x +π6). 21.解 (1)由题意得A =3,12T =5π⇒T =10π,∴ω=2πT =15.∴y =3sin(15x +φ),由于点(π,3)在此函数图象上,则有3sin(π5+φ)=3,∵0≤φ≤π2,∴φ=π2-π5=3π10.∴y =3sin(15x +3π10).(2)当2k π-π2≤15x +3π10≤2k π+π2时,即10k π-4π≤x ≤10k π+π时,原函数单调递增.∴原函数的单调递增区间为[10k π-4π,10k π+π](k ∈Z ).(3)m 满足⎩⎪⎨⎪⎧-m 2+2m +3≥0,-m 2+4≥0,解得-1≤m ≤2. ∵-m 2+2m +3=-(m -1)2+4≤4,∴0≤-m 2+2m +3≤2,同理0≤-m 2+4≤2.由(2)知函数在[-4π,π]上递增,若有: A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ),只需要:-m 2+2m +3>-m 2+4,即m >12成立即可,所以存在m ∈(12,2],使A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)成立.22.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放,∴12cos π6t +1>1,∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。

人教A版必修四高一数学必修4第一章三角函数单元测试.doc

人教A版必修四高一数学必修4第一章三角函数单元测试.doc

高中数学学习材料唐玲出品高一数学必修4第一章三角函数单元测试班级 姓名 座号 评分一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是( )A .3πB .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .32-B .32C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位7、如图,曲线对应的函数是 ( )A .y=|sin x |B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8、化简1160-︒2sin 的结果是 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12、函数2cos 1y x =+的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、(8分)已知3tan 3,2απαπ=<<,求sin cos αα-的值.19、(8分)绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm?20、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+21、(10分)求函数21()tan 2tan 5f t x a x =++在[,]42x ππ∈时的值域(其中a 为常数)22、(8分)给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位; ④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修4

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修4

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修41.对于三角函数线,下列说法正确的是( )A.对任何角都能作出正弦线、余弦线和正切线B.有的角的正弦线、余弦线和正切线都不存在C.任何角的正弦线、正切线总是存在,但余弦线不一定存在D.任何角的正弦线、余弦线总是存在,但是正切线不一定存在答案 D解析当角的终边落在y轴上时,正切线不存在,但对任意角来说,正弦线、余弦线都存在.2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A.y轴上 B.x轴上C.直线y=x上 D.直线y=-x上答案 B解析由题意得|cosα|=1,即cosα=±1,角α终边在x轴上,故选B.A.sin1>cos1>tan1 B.sin1>tan1>cos1C.tan1>sin1>cos1 D.tan1>cos1>sin1答案 C解析设1 rad角的终边与单位圆的交点为P(x,y),∵π4<1<π2,∴0<x<y<1,从而cos1<sin1<1<tan1.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<c B.b<a<cC.c<a<b D.a<c<b答案 C解析作α=-1的正弦线、余弦线、正切线,可知:b=OM>0,a=MP<0,c=AT<0,且MP>AT.∴c<a<b.5.若α为第二象限角,则下列各式恒小于零的是( )A.sinα+cosα B.tanα+sinαC.cosα-tanα D.sinα-tanα答案 B解析如图,作出sinα,cosα,tanα的三角函数线.显然△OPM∽△OTA,且|MP|<|AT|.∵MP>0,AT<0,∴MP<-AT.∴MP+AT<0,即sinα+tanα<0.6.已知MP,OM,AT分别是75°角的正弦线、余弦线、正切线,则这三条线从小到大的排列顺序是________.答案OM<MP<AT解析如图,在单位圆中,∠POA=75°>45°,由图可以看出OM<MP<AT.7.利用三角函数线比较下列各组数的大小.(1)tan 4π3与tan 7π6;(2)cos 11π6与cos 5π3.解 (1)如图1所示,设点A 为单位圆与x 轴正半轴的交点,角4π3和角7π6的终边与单位圆的交点分别为P ,P ′,PO ,P ′O 的延长线与单位圆的过点A 的切线的交点分别为T ,T ′,则tan 4π3=AT ,tan 7π6=AT ′.由图可知AT >AT ′>0,所以tan 4π3>tan 7π6.(2)如图2所示,设角5π3和角11π6的终边与单位圆的交点分别为P ,P ′,过P ,P ′分别作x 轴的垂线,分别交x 轴于点M ,M ′,则cos 11π6=OM ′,cos 5π3=OM .由图可知0<OM <OM ′,所以cos 5π3<cos 11π6.答案 0,π4∪π2,5π4∪3π2,2π解析 由0≤θ<2π且tan θ≤1,利用三角函数线可得θ的取值范围是0,π4∪π2,5π4∪3π2,2π.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12;(3)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k +4π3,k ∈Z.(3)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,所以α的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-π4+k π≤α<π2+k π,k ∈Z,如图.一、选择题1.已知α(0<α<2π)的正弦线与余弦线的长度相等,且方向相同,那么α的值为( ) A .5π4或7π4 B .π4或3π4C .π4或5π4D .π4或7π4答案 C解析 因为角α的正弦线与余弦线长度相等,方向相同,所以角α的终边在第一或第三象限,且角α的终边是象限的角平分线,又0<α<2π,所以α=π4或5π4,选C .2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形 答案 D解析 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cos α=23,∴α必为钝角. 3.如果π<θ<5π4,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ 答案 D解析 本题主要考查利用三角函数线比较三角函数值的大小.由于π<θ<5π4,如图所示,正弦线MP 、余弦线OM 、正切线AT ,由此容易得到cos θ<sin θ<0<tan θ,故选D .4.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .⎝ ⎛⎭⎪⎫-π3,π3 B .⎝⎛⎭⎪⎫0,π3 C .⎝⎛⎭⎪⎫5π3,2π D .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π答案 D解析 由图1知当sin α<32时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,2π.由图2知当cos α>12时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π,∴α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π. 5.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 解法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=120°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.解法二:如图,P 1,P 2为单位圆上的两点, 设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β, 则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2. ∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),其中sin α=y 1′,sin β=y 2′,则tan α-tan β=y 1′x 1′-y 2′x 2′=x 2′y 1′-x 1′y 2′x 1′x 2′. 而y 1′>y 2′>0,x 2′<x 1′<0, ∴-x 2′>-x 1′>0,∴x 1′x 2′>0,x 2′y 1′-x 1′y 2′<0,即tan α<tan β.∴B 不正确.同理,C 不正确.故选D . 二、填空题6.若α是第一象限角,则sin2α,cos α2,tan α2中一定为正值的个数为________.答案 2解析 由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin2α>0.故一定为正值的个数为2.7.若0≤θ<2π,且不等式cos θ<sin θ和tan θ<sin θ成立,则角θ的取值范围是________.答案π2,π 解析 由三角函数线知,在[0,2π)内使cos θ<sin θ的角θ∈π4,5π4,使tan θ<sin θ的角θ∈π2,π∪3π2,2π,故θ的取值范围是π2,π.8.若函数f (x )的定义域是(-1,0),则函数f (sin x )的定义域是________. 答案 -π+2k π,-π2+2k π∪-π2+2k π,2k π(k ∈Z )解析 f (x )的定义域为(-1,0),则f (sin x )若有意义,需-1<sin x <0,利用三角函数线可知-π+2k π<x <2k π,且x ≠-π2+2k π(k ∈Z ).三、解答题9.比较下列各组数的大小:(1)sin1和sin π3;(2)cos 4π7和cos 5π7;(3)tan 9π8和tan 9π7;(4)sin π5和tan π5.解 (1)sin1<sin π3.如图1所示,sin1=MP <M ′P ′=sin π3.(2)cos 4π7>cos 5π7.如图2所示,cos 4π7=OM >OM ′=cos 5π7.(3)tan 9π8<tan 9π7.如图3所示,tan 9π8=AT <AT ′=tan 9π7.(4)sin π5<tan π5.如图4所示,sin π5=MP <AT =tan π5.10.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π(k ∈Z ),故k π+π4<θ2<k π+π2(k∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2(k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+3π2(k ∈Z )时,sin θ2<cos θ2<tan θ2.。

人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷

人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷

人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。

人教A版高中数学必修4课后习题 第一章 1.2.1 第2课时 三角函数线

人教A版高中数学必修4课后习题 第一章 1.2.1 第2课时 三角函数线

第一章三角函数1.2 任意角的三角函数 1.2.1 任意角的三角函数 第2课时 三角函数线 课后篇巩固探究1.下列判断错误的是( )A.当α一定时,单位圆中的正弦线一定B.单位圆中有相同的正弦线的角相等C.α和α+π有相同的正切线D.有相同正切线的两个角的终边在同一直线上390°有相同的正弦线,但30°和390°不相等,∴B 错误,其他选项A,C,D 都正确.2.角π5和角6π5有相同的( )A.正弦线B.余弦线C.正切线D.不能确定解析由于6π5=π+π5,即两角的终边在一条直线上,因而它们的正切线相同.3.角α的正弦线、余弦线和正切线的数量分别为a,b,c,如果5π4<α<3π2,那么a,b,c的大小关系为( )A.a>b>cB.b>c>aC.c>b>aD.a>c>b作出角α的正弦线MP,余弦线OM,正切线AT.∵5π4<α<3π2,∴|OM|<|MP|<|AT|,且有向线段OM,MP的方向与坐标轴负方向相同,切线AT与y轴正方向相同.∴tanα>cosα>sinα,即c>b>a.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<cB.b<a<cC.c<a<bD.a<c<b,作出角α=-1rad的正弦线、余弦线及正切线,显然b=cos(-1)=OM>0,c=tan(-1)=AT<MP=sin(-1)=a<0,即c<a<b.5.已知点P(sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( ) A.(π2,3π4)∪(π,5π4)B.(π4,π2)∪(π,5π4)C.(π2,3π4)∪(5π4,3π2) D.(π4,π2)∪(3π4,π)P 在第一象限,所以{sinα-cosα>0,tanα>0,即{sinα>cosα,tanα>0.由tanα>0可知角α为第一或第三象限角,画出单位圆.又sinα>cosα,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即(π4,π2)∪(π,5π4).6.如图,在平面直角坐标系xOy 中,角α的终边与单位圆相交于点A.若点A 的纵坐标为45,则cos α= .是第二象限角.∵点A 的纵坐标为45,∴横坐标为-35,∴cosα=x=-35.-357.函数y=√sinx -√32的定义域为.,得sinx≥√32,作直线y=√32交单位圆于A,B 两点,连接OA,OB,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为{x |2kπ+π3≤x≤2kπ+2π3,k ∈Z}.+π3,2kπ+2π3] (k ∈Z)8.设a=sin 5π7,b=cos 2π7,c=tan 2π7,则a,b,c 的大小顺序为 .(按从小到大的顺序排列)如图,在单位圆O 中分别作出角5π7的正弦线M 1P 1,角2π7的正弦线M 2P 2,余弦线OM 2,正切线AT.由5π7=π-2π7知M 1P 1=M 2P 2.又π4<2π7<π2,易知AT>M 2P 2>OM 2,∴cos 2π7<sin 5π7<tan 2π7,故b<a<c.9.利用三角函数线写出满足下列条件的角x 的集合. (1)sin x>-12,且cos x>12;(2)tan x≥-1.由图①知,当sinx>-12,且cosx>12时,角x 的集合为{x |-π6+2kπ<x <π3+2kπ,k ∈Z}.(2)由图②知,当tanx≥-1时,角x 的集合为{x |2kπ-π4≤x <2kπ+π2,k ∈Z}∪{x |2kπ+3π4≤x <2kπ+3π2,k ∈Z},即{x |kπ-π4≤x <kπ+π2,k ∈Z}.10.求函数y=log sin x (2cos x+1)的定义域.{sinx >0,且sinx ≠1,2cosx +1>0,即{sinx >0,sinx ≠1,cosx >-12.如图,作出三角函数线,阴影部分区域(不包括边界及y 轴的非负半轴)即为所求角的范围.即0<x<π2或π2<x<2π3.考虑终边相同的角可得函数的定义域为{x |2kπ<x <2kπ+π2或2kπ+π2<x <2kπ+2π3,k ∈Z}.。

(易错题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)

一、选择题1.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (51AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④2.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦3.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .84.函数3cos 2cos2sin cos cos510y x x x ππ=-的递增区间是( )A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 5.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x6.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 7.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->- B .cos tan cos tan αββα+<+ C .sin tan sin tan αββα> D .tan sin tan sin αββα<8.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④9.函数()13cos313x xf x x -=+的图象大致是( ) A . B .C .D .10.函数()()sin ln 0=->f x x x ωω只有一个零点,则实数ω的取值范围是( ) A .()0,πB .5,2⎫⎛⎪⎝⎭ππe C .50,2⎫⎛ ⎪⎝⎭πe D .5,2⎫⎛∞⎪⎝⎭π+e11.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦上最大值是3 二、填空题13.已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0>ω)有且仅有3个零点,则ω的最小值是_________.14.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 15.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.16.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .17.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 18.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.19.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分.22.如图,一个半径为4米的筒车按逆时针方向每π分钟转1圈,筒车的轴心O 距水面的高度为2米.设筒车上的某个盛水筒W 到水面的距离为d (单位:米)(在水面下则d 为负数).若以盛水筒W 刚浮出水面时开始计算时间,则d 与时间t (单位:分钟)之间的关系为sin()0,0,22d A t K A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭.(1)求,,,A K ωϕ的值;(2)求盛水筒W 出水后至少经过多少时间就可到达最高点?(3)某时刻0t (单位:分钟)时,盛水筒W 在过O 点的竖直直线的左侧,到水面的距离为5米,再经过6π分钟后,盛水筒W 是否在水中? 23.为整治校园环境,设计如图所示的平行四边形绿地ABCD ,在绿地中种植两块相同的扇形花卉景观,两扇形的边(圆心分别为A 和C )均落在平行四边形ABCD 的边上,圆弧均与BD 相切,其中扇形的圆心角为120°,扇形的半径为12米.(1)求两块花卉景观扇形的面积;(2)记BDA θ∠=,求平行四边形绿地ABCD 占地面积S 关于θ的函数解析式,并求面积S 的最小值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 25.已知函数()231cos 2f x x x =-+.(1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设51AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.2.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确;()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 3.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.4.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.5.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.6.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C7.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断. 【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫ ⎪⎝⎭上单调递减,因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-, 所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.8.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.9.A解析:A 【分析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x xx f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B , 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.C解析:C 【分析】函数()()sin ln 0=->f x x x ωω只有一个零点,等价于sin y x ω=与ln y x =图象只有一个交点,作出两个函数的图象,数形结合即可求解. 【详解】函数()()sin ln 0=->f x x x ωω只有一个零点, 可得sin ln 0x x ω-=只有一个实根,等价于sin y x ω=与ln y x =图象只有一个交点, 作出两个函数的图象如图所示,由sin y x ω=可得其周期2T πω=,当x e =时,ln 1y e ==sin y x ω=最高点5,12A πω⎛⎫⎪⎝⎭所以若恰有一个交点,只需要5ln 12πω>,即52e πω>, 解得:52e πω<,又因为0>ω,所以502eπω<<, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=,所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确;对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.2【分析】根据函数为偶函数可知函数必有一个零点为可得根据函数的图象可知解得即可得解【详解】因为函数为偶函数且有且仅有3个零点所以必有一个零点为所以得所以函数的图象与直线在上有且仅有3个交点因为函数的解析:2 【分析】根据函数为偶函数可知函数必有一个零点为0x =,可得1a =-,根据函数cos y x ω=(0)>ω的图象可知222πππωω≤<⨯,解得24ω≤<即可得解.【详解】因为函数cos ,[],y a x x ωππ=+∈-为偶函数,且有且仅有3个零点,所以必有一个零点为0x =, 所以cos00a +=,得1a =-,所以函数cos y x ω=(0)>ω的图象与直线1y =在[,]-ππ上有且仅有3个交点, 因为函数cos y x ω=(0)>ω的最小正周期2T πω=,所以2T T π≤<,即222πππωω≤<⨯,得24ω≤<,所以ω的最小值是2.故答案为:2 【点睛】关键点点睛:根据偶函数图象的对称性求出a 是解题关键.14.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+=⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.15.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =, 由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭, 23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭ 【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.16.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos 203sin tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020203EFCD S sin cos sin ϕϕϕ=-矩形 400sin 24003(1cos 2)ϕϕ=--800sin(2)40033πϕ=+-,∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(23)()m -.故答案为:400(23)-. 【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.17.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称,∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.18.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应解析:14【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=tan36DR DQ π∴=⋅==PR DP PQ ∴=====由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则sin sin PR PRQPQR PQ⋅∠∠===故答案为:2114【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.19.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.条件选择见解析;(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)12x π=-时,函数f (x )取得最小值,最小值为2-. 【分析】(1)由相邻中心距离得周期,从而可得ω,选择①,写出平移后解析式,由对称性得新函数为偶函数,结合诱导公式求得ϕ, 选择②,求出6y f x π⎛⎫=+ ⎪⎝⎭,由函数为奇函数,结合诱导公式求得ϕ, 选择③,求出()6y f x π=-,代入712x π=,结合正弦函数最大值可得ω, 从而得函数解析式; (2)()2sin 23f x x π⎛⎫=- ⎪⎝⎭由,求得23x π-的范围,然后由正弦函数性质得最小值.【详解】(1)因为函数f (x )=2sin(ωx +φ)的图象相邻的对称中心之间的距离为2π,所以周期22T π=,即T =π,所以22T πω==.若选择①,因为函数f (x )图象向右平移12π个单位所得图象关于y 轴对称,所以()2sin 22sin 2126g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象关于y 轴对称,所以62k ππϕπ-=+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择②,因为2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是奇函数,所以3k πϕπ+=,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择③,2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=⨯-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由题设,当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值,所以当722()1232k k Z πππϕπ⨯-+=+∈,即2()3k k Z πϕπ=-∈, 因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.(2)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以422,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当232x ππ-=-,即12x π=-时,函数f (x )取得最小值,最小值为2-.【点睛】关键点点睛:本题考查由三角函数的图象与性质求解析式,解题关键是掌握正弦函数的图象与性质,解题时注意“五点法”和整体思想的应用.对于奇偶性问题注意诱导公式的应用,由此计算比较方便. 22.(1)4,2,,26A K πωϕ===-=;(2)3π分钟;(3)再经过6π分钟后盛水筒不在水中.【分析】(1)先结合题设条件得到T π=,4,2A K ==,求得2ω=,再利用初始值计算初相ϕ即可;(2)根据盛水筒达到最高点时6d =,代入计算t 值,再根据0t >,得到最少时间即可; (3)先计算0t 时03sin 264t π⎛⎫-= ⎪⎝⎭,根据题意,利用同角三角函数的平方关系求0cos 26t π⎛⎫- ⎪⎝⎭,再由6π分钟后00sin()=sin 2sin 26663t t t ππππωϕ⎡⎤⎡⎤⎛⎫⎛⎫++-=-+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,进而计算d 值并判断正负,即得结果. 【详解】解:(1)由题意知,T π=,即2ππω=,所以2ω=,由题意半径为4米,筒车的轴心O 距水面的高度为2米,可得:4,2A K ==, 当0t =时,0d =,代入4sin(2)2d t ϕ=++得,1sin 2ϕ=-, 因为22ππϕ-<<,所以6πϕ=-;(2)由(1)知:4sin 226d t π⎛⎫=-+ ⎪⎝⎭,盛水筒达到最高点时,6d =, 当6d =时,64sin 226t π⎛⎫=-+ ⎪⎝⎭,所以sin 216t π⎛⎫-= ⎪⎝⎭, 所以22,Z 62t k k πππ-=+∈,解得,Z 3t k k ππ=+∈,因为0t >,所以,当0k =时,min 3t π=, 所以盛水筒出水后至少经过3π分钟就可达到最高点; (3)由题知:04sin 2256t π⎛⎫-+= ⎪⎝⎭,即03sin 264t π⎛⎫-= ⎪⎝⎭, 由题意,盛水筒W 在过O 点的竖直直线的左侧,知0cos 206t π⎛⎫-< ⎪⎝⎭,所以0cos 264t π⎛⎫-=- ⎪⎝⎭,所以00313sin 2sin 2666342428t t ππππ⎛-⎡⎤⎡⎤⎛⎫⎛⎫+-=-+=⨯+-⨯= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,所以,再经过6π分钟后321721420d --=⨯+=>, 所以再经过6π分钟后盛水筒不在水中. 【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.23.(1)96π平方米;(2)1443sin 262S θ+-⎪⎝⎭=,且最小值为2883平方米. 【分析】(1)根据题中条件,由扇形面积公式,即可计算出结果;(2)过点A 作AE BD ⊥于点E ,由题中条件,得到12AE =,再由θ分别表示出BE 和DE ,得出BD ,进而可得出平行四边形ABCD 的面积S 关于θ的函数解析式,由三角函数的性质,即可求出最小值. 【详解】(1)因为两扇形所在圆的半径均为12米,扇形的圆心角为23π, 所以两块花卉景观扇形的面积为112212129623S ππ=⨯⨯⨯⨯=平方米;(2)过点A 作AE BD ⊥于点E ,因为圆弧均与BD 相切,所以E 即为切点,则12AE =, 又BDA θ∠=,23BAD π∠=,所以3DBA πθ∠=-,π0θ3, 在Rt ADE △中,tan AE DE θ=,所以1212cos tan sin DE θθθ==; 在Rt ABE △中,tan 3AE BE πθ⎛⎫=- ⎪⎝⎭,所以12cos 123tan sin 33BE πθππθθ⎛⎫- ⎪⎝⎭==⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 则12sin cos cos sin 12cos 3312cos 3sin sin sin sin 33BD BE DE πππθθθθθθππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+=+=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭12sin31 sin sin sin2 362444πππθθθ====⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此平行四边形绿地ABCD占地面积1sin216222S BD AEπθ⎛⎫+-⎝⨯⨯⎪⎭=⨯=,因为π0θ3,所以52666πππθ<+<,因此当262ππθ+=,即6πθ=时,1sin262Sπθ⎛⎫+-⎪⎝⎭=取得最小值,且最小值为minS=.【点睛】关键点点睛:求解本题的关键在于用θ表示出BD,再由S BD AE=⨯,得出平行四边形的面积S关于θ的函数解析式,利用正弦函数的性质,即可求解最值.24.(1)()2sin24f x xπ⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x值域为⎡⎤⎣⎦.【分析】(1)利用最高点与最低点坐标可求出A和周期T,由2Tπω=可求得ω的值,再将点,28Mπ⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x的解析式;(2)解不等式222242k x kπππππ-≤+≤+,k Z∈,可得()f x的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域.【详解】(1)因为()f x图象上相邻两个最高点和最低点分别为,28π⎛⎫⎪⎝⎭,5,28π⎛⎫-⎪⎝⎭所以2A=,52882Tπππ=-=,则Tπ=,又2||Tπω=,0>ω,所以2ω=,()2sin(2)f x xϕ=+,又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭. (2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin 4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 222226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,. (2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-. 【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。

(典型题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)

一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 4.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .D .5.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④6.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦7.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .8.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.使函数()3)cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π 10.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.已知3()tan 1f x a x x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.14.已知定义在R 上的函数()f x 满足:()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =.若对任意的(],x m ∈-∞,都有()2f x ≤,则实数m 的取值范围是______. 15.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .16.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 17.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________.18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.将函数()sin (0)f x x ωω=>的图象向右平移6π个单位长度,得到函数()y g x =的图像,若()y g x =是偶函数,则ω的最小值为________.三、解答题21.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R .(1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.22.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.23.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b ⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭.(1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围 24.已知函数()()()f x g x h x =,其()22g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由); (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值,所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=- ⎪⎝⎭,代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】 令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.4.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.5.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误.故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 6.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=- ⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 7.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.8.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.B解析:B 【解析】1())cos(2))cos(2))2sin(2)26f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

【全程复习方略】2020学年高中数学 第一章三角函数单元质量评估(一) 新人教A版必修4

"【全程复习方略】2020学年高中数学第一章三角函数单元质量评估(一)新人教A版必修4 "(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·宿州高一检测)-495°角的终边所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(tan2020°,cos2020°)位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.sin的值为( )A. B.- C. D.-4.已知θ为锐角,则下列选项提供的各值中,可能为sinθ+cosθ的值的是( )A. B. C. D.5.已知sin=,则cos= ( )A. B.- C. D.-6.(2020·驻马店高一检测)已知角θ的终边过点(4,-3),则cos(π-θ)=( )A. B.- C. D.-7.(2020·嘉兴高一检测)函数y=sin图象的对称轴方程可能是( )A.x=-B.x=-C.x=D.x=8.下列表示最值是,周期是6π的三角函数的表达式是( )A.y=sinB.y=sinC.y=2sinD.y=sin9.设a为常数,且a>1,0≤x≤2π,则函数f(x)=cos2x+2asinx-1的最大值为( )A.2a+1B.2a-1C.-2a-1D.a210.设函数f(x)=xtanx,若x1,x2∈且f(x1)>f(x2),则下列结论中正确的是( )A.x1>x2B.<C.>D.x1<x211.(2020·南阳高一检测)函数y=sin的图象沿x轴向左平移π个单位长度后得到函数的图象的一个对称中心是( )A.(0,0)B.(π,0)C. D.12.已知函数f(x)=sin(x∈R),下面结论错误的是( )A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知函数y=Asin(ωx+φ)(A>0,ω>0)的最大值为3,最小正周期是,初相是,则这个函数的解析式为.14.已知sin=,α∈,则tanα= .15.将函数f(x)=2sin(ω>0)的图象向左平移个单位得到函数y=g(x)的图象,若y=g(x)在上为增函数,则ω最大值为.16.函数f(x)=3sin的图象为C,如下结论中正确的是(写出所有正确结论的编号).①图象C关于直线x=对称;②图象C关于点对称;③函数f(x)在区间内是增函数;④由y=3sin2x的图象向右平移个单位长度可以得到图象C.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)已知角α的终边经过点P(1,).(1)求sinα+cosα的值.(2)写出角α的集合S.18.(12分)(2020·济南高一检测)已知sin(π+α)=-,α是第二象限角,分别求下列各式的值:(1)cos(2π-α).(2)tan(α-7π).19.(12分)设函数f(x)=3sin,ω>0且以为最小正周期.(1)求f(0).(2)求f(x)的解析式.(3)已知f=,求sinα的值.20.(12分)(2020·陕西高考)函数f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.(1)求函数f(x)的解析式.(2)设α∈,f=2,求α的值.21.(12分)(2020·三明高一检测)已知函数f(x)=2sin(2x+).(1)“五点法”作出y=f(x)的图象.(2)直接看图填空:①将y=f(x)向左平移φ个单位,得到一偶函数,则φ的最小正值为.②写出y=f(x)的一个对称点坐标.(3)说明如何由y=sinx的图象经过变换得到f(x)=2sin的图象.22.(12分)(能力挑战题)已知某地一天从4~16时的温度变化曲线近似满足函数y=10sin+20,x∈[4,16].(1)求该地区这一段时间内温度的最大温差.(2)若有一种细菌在15°C到25°C之间可以生存,那么在这段时间内,该细菌最多能生存多长时间?答案解析1.【解析】选C.-495°=-2×360°+225°,因为225°是第三象限角,所以-495°是第三象限角.2.【解析】选D.因为2020°=360°×6-146°,所以2020°与-146°的终边相同,是第三象限角,所以tan2020°>0,cos2020°<0.所以P点在第四象限.3.【解析】选B.sin=-sin=-sin=-sin=-sin=-sin=-.4.【解析】选A.如图,在单位圆中借助三角函数线,根据三角形的三边关系可得sinθ+cos θ>1.5.【解题指南】“所求角”与已知角的关系满足两角之差为,由此利用诱导公式六求解. 【解析】选B.cos=cos=-sin=-.6.【解析】选B.因为角θ的终边过点(4,-3),所以cosθ=.所以cos(π-θ)=-cosθ=-.7.【解析】选C.由题意知,令2x+=kπ+,k∈Z,得x=π+,k∈Z.当k=0时,x=,故选C.8.【解析】选A.函数y=sin的最大值为,周期为6π.9.【解析】选B.f(x)=cos2x+2asinx-1=1-sin2x+2asinx-1=-(sinx-a)2+a2,因为0≤x≤2π,所以-1≤sinx≤1,又因为a>1,所以f(x)max=-(1-a)2+a2=2a-1.10.【解题指南】判断出奇偶性,再根据单调性判断.【解析】选C.因为f(-x)=-xtan(-x)=-x(-tanx)=xtanx=f(x),所以f(x)为偶函数.由f(x1)>f(x2)得f(|x1|)>f(|x2|).由y=x与y=tanx均在上为增函数,则f(x)图象大致如图所示:则有|x1|>|x2|,即>.11.【解析】选 B.函数y=sin的图象沿x轴向左平移π个单位后得到函数y=sin=sin=cos x的图象,它的一个对称中心是(π,0).12.【解析】选D.因为y=sin=-cosx,所以T=2π,A正确;y=cosx在上是减函数,y=-cosx在上是增函数,B正确;由图象知y=-cosx关于直线x=0对称,C正确;y=-cosx是偶函数,D错误.故选D.13.【解析】由题意,知A=3,ω===7,φ=,所以y=3sin.答案:y=3sin14.【解析】因为sin=,所以cosα=,因为α∈,所以sinα=-=-,所以tanα===-2.答案:-215.【解析】函数f(x)=2sin(ω>0)的图象向左平移个单位,得到函数y=g(x)=2sin ωx,y=g(x)在上为增函数,所以≥,即:ω≤2,所以ω的最大值为:2.答案:216.【解析】f=3sin=-3,①正确;f=3sinπ=0,②正确;f(x)的增区间为(k∈Z),令k=0得增区间,③正确;由y=3sin2x的图象向右平移个单位长度可以得到图象C,④错误.答案:①②③17.【解析】(1)由已知得点P到原点的距离为=2,所以sinα=,cosα=,所以sinα+cosα=.(2)由(1)知,在(0,2π)内满足条件的角α=,所以角α的集合S=.18.【解析】(1)因为sin(π+α)=-sinα,所以sinα=,又α是第二象限角,所以cosα=-,所以cos(2π-α)=cosα=-.(2)tan(α-7π)=tanα==-=-.19.【解析】(1)f(0)=3sin=.(2)因为f(x)=3sin且以为最小正周期,所以=,ω=4,f(x)=3sin.(3)f(x)=3sin,所以f=3sin=3cosα,即3cosα=,所以cosα=,所以sinα=±.20.【解析】(1)因为函数f(x)的最大值为3,所以A+1=3,即A=2,因为函数图象的相邻两条对称轴之间的距离为,所以最小正周期T=π,所以ω=2,故函数f(x)的解析式为y=2sin+1.(2)因为f=2sin+1=2,即sin=,因为0<α<,所以-<α-<,所以α-=,故α=.21.【解析】(1)x -2x+0 π2πsin0 1 0 -1 02sin0 2 0 -2 0(2)①将y=f(x)向左平移φ个单位,得到一偶函数,则φ的最小正值为.②y=f(x)的一个对称点坐标为(不唯一).(3)先将y=sinx向左平移个单位得到y=sin的图象,再将横坐标缩小到原来的倍,纵坐标保持不变得到y=sin的图象,再将纵坐标扩大到原来的2倍,横坐标不变得到f(x)=2sin的图象.(也可先伸缩变换再作平移变换)【拓展提升】对数形结合的认识(1)数形结合是重要的数学思想,它能把代数关系与几何图形的直观形象有机结合起来,将抽象的思维方式转化为直观的思维方式,从而使问题变得简单明了.(2)数形结合常用于解方程、解不等式、求函数的值域、判断图象交点的个数、求参数范围等题目中.22.【解析】(1)由函数易知,当x=14时函数取最大值,此时最高温度为30°C,当x=6时函数取最小值,此时最低温度为10°C,所以最大温差为30°C-10°C=20°C.(2)令10sin+20=15,可得sin=-,而x∈[4,16],所以x=.令10sin+20=25,可得sin=,而x∈[4,16],所以x=.故该细菌能存活的最长时间为-=(小时).。

三角函数(必修4第一章)过关检测题

三角函数(必修4第一章)过关检测题时间:90分钟 满分:100分一、选择题(每小题4分,共40分) 1.下列各角中与-30°角终边不相同的是( ) A .330° B .-750° C .1 770° D .-1 410° 2.若-π2<α<0,则点(tanα,cosα)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知α∈(π2,3π2),tan(α-3π)=-34,则sin(π-α)+sin(π2+α)的值为( )A .±15B .-15 C.15 D .-754.sin(π+α)+cos(π2+α)=-m ,则cos(3π2-α)+2sin(6π-α)等于( )A .-2m 3B .-3m 2 C.2m 3 D.3m25.将函数y =sin4x 的图象向左平移π12个单位,得到y =sin(4x +φ)的图象,则φ等于( )A .-π12B .-π3 C.π3 D.π126.已知函数f(x)=2sin(ωx +φ)(ω>0,-π2≤φ≤π2)的图象与y =2直线相交的两个相邻交点间的距离为π,且f(0)=3,则( )A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π37.已知函数f(x)=sin(2π-2x),则该函数的图象( ) A .关于点(π4,0)对称 B .关于点(π2,0)对称C .关于直线x =3π4对称 D .关于直线x =π对称8.已知函数y =3sin2x 的值域为[3,3],则下列范围可作为该函数定义域的为( ) A .[0,5π12] B .[π12,2π3] C .[-π12,π12] D .[π12,5π12]9.函数y =|tanx|·cosx(0≤x <32π且x ≠π2)的图象是( )10.给定函数:①f(x)=xcos(3π2+x),②g(x)=1+sin 2(π+x),③p(x)=cos(cos(π2+x))中,偶函数的个数是( )A .3B .2C .1D .0 二、填空题(每小题4分,共28分)11.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为________.12.设0≤θ<2π,如果sinθ<0且cos2θ<0,则θ的取值范围是________.13.已知tanα=2,则sin 2α+2sinαcosα=________.14.若α是第三象限角,则1-2sin (π-α)cos (π-α)=________.15.已知函数y =2sinωx(ω>0)的图象与直线y +2=0的相邻的两个公共点之间的距离为2π3,则ω的值为________. 16.已知函数f(x)=3sin(ωx -π6)(ω>0)和g(x)=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f(x)的取值范围是________.17.定义在R 上的函数f(x):当sinx ≤cosx 时,f(x)=cosx ;当sinx >cosx 时,f(x)=sinx.给出以下结论: ①f(x)是周期函数; ②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z )时,f(x)取最大值; ④当且仅当2kπ-π2<x <(2k +1)π(k ∈Z )时,f(x)>0;⑤f(x)的图象上相邻最低点的距离是2π.其中正确命题的序号是________(把你认为正确命题的序号都填上).三、解答题(第18题10分,第19题10分,第20题12分,共32分) 18.已知0<α<π2,若cos α-sin α=-55,求2cos αsin α-cos α+11-tan α的值.19.1+tan (π+α)1+tan (2π-α)=3+22,求cos 2(π-α)+sin (3π2+α)·cos (π2+α)+2sin 2(α-π)的值.20.已知函数f (x )=2sin(2x +π6)(1)求f (x )的单调减区间;(2)求f (x )图象上与原点最近的对称中心的坐标.答案详细解析1、解析:∵330°=360°-30°,-750°=-2×360°-30°,1 770°=5×360°-30°,-1 410°=-4×360°+30°. ∴与-30°角终边不相同的是-1 410°. 答案:D2、解析:∵-π2<α<0,∴α为第四象限角,∴tanα<0,cosα>0.∴(tanα,cosα)是第二象限的点. 答案:B3、解析:∵tan(α-3π)=-tan(3π-α)=-tan(π-α)=tanα, ∴tanα=-34.∵α∈(π2,3π2),∴sinα=35,cosα=-45.∴sin(π-α)+sin(π2+α)=sinα+co sα=-15.答案:B4、解析:由已知得:-sinα-sinα=-m ,∴sinα=m2,所求式子=-(sinα+2sinα)=-3sinα=-3m2.因此B 项对.答案:B5、解析:y =sin4x 的图象向左平移π12个单位后,得到y =sin4(x +π12),即y =sin(4x +π3),即φ=π3.因此C 项对.答案:C6、解析:由已知f(x)的最小正周期为π,则2πω=π,∴ω=2,则f(x)=2sin(2x +φ).又∵f(0)=3,则f(0)=2sinφ=3,∴sinφ=32, ∵-π2≤φ≤π2,∴φ=π3.答案:D7、解析:由已知f(x)=-sin2x ,令2x =kπ,k ∈Z ,得x =kπ2,k ∈Z ,则对称中心为(kπ2,0),k ∈Z ,故B 项正确.令2x =kπ+π2,k ∈Z ,x =kπ2+π4,k ∈Z ,即对称轴为x =kπ2+π4,k∈Z ,故C 、D 两项不正确.答案:B8、解析:由已知3≤3sin2x ≤3,∴12≤sin2x ≤1.∴2kπ+π6≤2x ≤2kπ+5π6,k ∈Z ,∴kπ+π12≤x ≤kπ+5π12,k ∈Z .从而D 项正确.答案:D9、解析:由已知y =|tanx|cosx(0≤x <3π2且x ≠π2)可化为y =⎩⎨⎧sinx (0≤x <π2或π≤x <3π2)-sinx (π2<x <π).从而C 项正确.答案:C10、解析:①f(x)=xsinx ,f(-x)=-xsin(-x)=xsinx ,∴f(x)为偶函数.②g(x)=1+sin 2x ,g(-x)=1+sin 2(-x)=1+sin 2x =g(x),∴g(x)为偶函数.③p(x)=cos[cos(π2+x)]=cos(-sinx)=cos(sinx),p(-x)=cos[sin(-x)]=cos(-sinx)=cos(sinx)=p(x).∴p(x)为偶函数.答案:A11、解析:由题意得扇形的半径为1sin 1,由扇形面积公式S =12αr 2得S =12×2×1sin 21=1sin 21. 答案:1sin 2112、解析:∵0≤θ<2π,且sinθ<0,∴π<θ<2π,由cos2θ<0得2kπ+π2<2θ<2kπ+3π2,即kπ+π4<θ<kπ+3π4(k ∈Z ),∵π<θ<2π,∴k =1,θ的取值范围是5π4<θ<7π4.答案:(5π4,7π4)13、解析:sin 2α+2sinαcosα=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanα1+tan 2α=4+41+4=85.答案:8514、解析:1-2sin (π-α)cos (π-α)=1+2sinαcosα =sin 2α+cos 2α+2sinαcosα=|sinα+cosα|, 又α在第三象限,∴sinα<0,cosα<0, ∴|sinα+cosα|=-(sinα+cosα). 答案:-(sinα+cosα)15、解析:依题意可知:y =2sinωx(ω>0)的图象与直线y +2=0的相邻的两个公共点之间的距离即为y =2sinωx(ω>0)的图象上两个最小值之间的距离,而y =2sinωx(ω>0)的图象上两个最小值之间的距离为一个周期,由T =2πω=2π3ω=3.答案:316、解析:∵f(x)与g(x)的对称轴完全相同, ∴f(x)与g(x)的周期相同. 知ω=2,∴f(x)=3sin(2x -π6),当x ∈[0,π2]时,2x -π6∈[-π6,56π],sin(2x -π6)∈[-12,1]f(x)的取值范围是[-32,3].答案:[-32,3]17、解析:f(x)=⎩⎪⎨⎪⎧sinx ,sinx >cosxcosx ,sinx ≤cosx ,其图象如图所示:观察图象可知f(x)是以2π为最小正周期的周期函数,故①正确;最小值为-22,当x =2kπ+π2时,f(x)也取最大值,故②③错误;观察图象知④⑤正确.答案:①④⑤18、解:将cos α-sin α=-55两边平方,得1-2sin αcos α=15, 则sin αcos α=25.∴(sin α+cos α)2=1+2sin αcos α=1+2×25=95.又0<α<π2,则sin α+cos α=355.解方程组⎩⎨⎧sin α+cos α=355cos α-sin α=-55,得sin α=255,cos α=55,tan α=sin αcos α=2.故2cos αsin α-cos α+11-tan α=2×25-55+11-2=5-95.19、解:由已知得1+tan α1-tan α=3+22,∴tan α=2+224+22=1+22+2=22,∴cos 2(π-α)+sin (3π2+α)cos (π2+α)+2sin 2(α-π)=cos 2α+(-cos α)·(-sin α)+2sin 2α=cos 2α+sin αcos α+2sin 2α =cos 2α+sin αcos α+2sin 2αsin 2α+cos 2α=1+tan α+2tan 2α1+tan 2α=1+22+11+12=4+23. 20、解:因为f (x )=2sin(2x +π6).所以(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z )得,k π+π6≤x ≤k π+2π3(k ∈Z ).∴f (x )的单调减区间为[k π+π6,k π+2π3](k ∈Z ).(2)由sin(2x +π6)=0得2x +π6=k π(k ∈Z ),即x =k π2-π12(k ∈Z ).∴f (x )图象上与原点最近的对称中心坐标是(-π12,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 三角函数 章末检测 (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.sin 600°+tan 240°的值是( )

A.-32 B.32 C.-12+3 D.12+3 2.把-114π表示成θ+2kπ(k∈Z)的形式,使|θ|的最小的θ值是( )

A.-34π B.-π4 C.π4 D.3π4 3.设α角属于第二象限,且cos α2=-cos α2,则α2角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限

4.已知tan α=34,α∈

π,32π,则cos α的值是( )

A.±45 B.45 C.-45 D.35 5.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为( ) A.6π cm B.60 cm C.(40+6π) cm D.1 080 cm 6.若点P(sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是( )

A.π2,3π4∪π,5π4

B.π4,π2∪π,5π4 C.π2,3π4∪5π4,3π2 D.π2,3π4∪3π4,π 7.下列四个命题中,正确的是( ) A.函数y=tanx+π4是奇函数

B.函数y=sin2x+π3的最小正周期是π C.函数y=tan x在(-∞,+∞)上是增函数 D.函数y=cos x在区间

2kπ+π,2kπ+

7

4π (k∈Z)上是增函数

8.方程sin πx=14x的解的个数是( ) A.5 B.6 C.7 D.8 9.为了得到函数y=sin2x-π6的图象,可以将函数y=cos 2x的图象( )

A.向右平移π6个单位长度 B.向右平移π3个单位长度 C.向左平移π6个单位长度 D.向左平移π3个单位长度 10.已知a是实数,则函数f(x)=1+asin ax的图象不可能是( )

11.把函数y=cosx+4π3的图象向左平移φ (φ>0)个单位,所得的函数为偶函数,则φ的最小值是( ) A.4π3 B.2π3 C.π3 D.5π3 12.设函数f(x)=sin 3x+|sin 3x|,则f(x)为( ) A.周期函数,最小正周期为π3

B.周期函数,最小正周期为23π

C.周期函数,最小正周期为2π D.非周期函数

二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=2,则sin αcos α+2sin2α的值是________.

14.函数f(x)=|sin x|的单调递增区间是 ________________________________________________________________________.

15.已知函数f(x)=2sin(ωx+φ)的图象如下图所示,则f(7π12)=________.

16.已知函数y=sinπ3x在区间[0,t]上至少取得2次最大值,则正整数t的最小值是______. 三、解答题(本大题共6小题,共70分) 17.(10分)求函数y=3-4sin x-4cos2x的最大值和最小值,并写出函数取最值时对应的x的值. 18.(12分)求函数y=log12sinπ3-2x的单调递增区间. 19.(12分)已知函数y=acos2x+π3+3,x∈0,π2的最大值为4,求实数a的值. 20.(12分)已知α是第三象限角,f(α)=sinπ-α·cos2π-α·tan-α-πtan-α·sin-π-α. (1)化简f(α); (2)若cosα-32π=15,求f(α)的值; (3)若α=-1 860°,求f(α)的值.

21.(12分)在已知函数f(x)=Asin(ωx+φ),x∈R其中A>0,ω>0,0的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M2π3,-2. (1)求f(x)的解析式; (2)当x∈π12,π2时,求f(x)的值域. 22.(12分)已知函数f(x)=Asin(ωx+φ) (A>0且ω>0,0(1)求函数解析式; (2)若方程f(x)=a在0,5π3上有两个不同的实根,试求a的取值范围.

第一章 章末检测 答案 1.B 2.A 3.C 4.C

5.C [∵圆心角α=54°=3π10,∴l=|α|·r=6π. ∴周长为(6π+40) cm.] 6.B [sin α-cos α>0且tan α>0,

∴α∈π4,π2或α∈

π,54π.]

7.D 8.C [在同一坐标系作出y=sin πx与y=14x的图象观察易知两函数图象有7个交点,所以方程有7个解.] 9.B [y=sin2x-π6=cosπ2-2x-π6 =cos2π3-2x=cos2x-2π3 =cos2x-π3.] 10.D [图A中函数的最大值小于2,故0函数f(x)的图象.图B中,函数的最大值大于2,故a应大于1,其周期小于2π,故B中图象可以是函数f(x)的图象.当a=0时,f(x)=1,此时对应C中图象,对于D可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D中图象不可能为函数f(x)的图象.] 11.B 12.B [f(x)= 2sin 3x 当sin 3x≥0时,0 当sin 3x<0时.] 13.2 14.kπ,kπ+π2,k∈Z 15.0 解析 由图象知,函数的周期为32×T=π,

∴T=2π3.∵f(π4)=0,∴f(7π12)=f(π4+π3) =f(π4+T2)=-f(π4)=0. 16.8 解析 T=6,t≥54T,∴t≥152. ∵t∈Z,∴tmin=8. 17.解 y=3-4sin x-4cos2x

=4sin2x-4sin x-1=4sin x-122-2, 令t=sin x,则-1≤t≤1, ∴y=4t-122-2 (-1≤t≤1). ∴当t=12,即x=π6+2kπ或x=5π6+2kπ(k∈Z)时,ymin=-2; 当t=-1,即x=3π2+2kπ (k∈Z)时,ymax=7.

18.解 y=log2-sin2x-π3log212 =-log2-sin2x-π3, ∵2>1, 由复合函数的单调性知,要求sin2x-π3的单调递增且小于0恒成立. ∴2x-π3在第四象限. ∴2kπ-π2<2x-π3<2kπ(k∈Z). 解得:kπ-π12∴原函数的单调递增区间为 -π12+kπ,π6+kπ,k∈Z.

19.解 ∵x∈0,π2,∴2x+π3∈π3,4π3, ∴-1≤cos2x+π3≤12. 当a>0,cos2x+π3=12时,y取得最大值12a+3, ∴12a+3=4,∴a=2. 当a<0,cos2x+π3=-1时, y取得最大值-a+3, ∴-a+3=4,∴a=-1, 综上可知,实数a的值为2或-1.

20.解 (1)f(α)=sin α·cos-α·[-tanπ+α]-tan α[-sinπ+α]

=-sin α·cos α·tan α-tan α·sin α=cos α. (2)∵cosα-32π=cos

3

2π-α

=-sin α, 又cosα-32π=15,∴sin α=-15. 又α是第三象限角, ∴cos α=-1-sin2α=-265, ∴f(α)=-265. (3)f(α)=f(-1 860°)=cos(-1 860°) =cos 1 860°=cos(5×360°+60°) =cos 60°=12.

21.解 (1)由最低点为M2π3,-2得A=2. 由x轴上相邻两个交点之间的距离为π2, 得T2=π2,即T=π,∴ω=2πT=2ππ=2. 由点M2π3,-2在图象上得 2sin2×2π3+φ=-2, 即sin4π3+φ=-1, 故4π3+φ=2kπ-π2(k∈Z), ∴φ=2kπ-11π6(k∈Z). 又φ∈0,π2,∴φ=π6, 故f(x)=2sin2x+π6. (2)∵x∈π12,π2, ∴2x+π6∈π3,7π6, 当2x+π6=π2,即x=π6时,f(x)取得最大值2; 当2x+π6=7π6,即x=π2时,f(x)取得最小值-1, 故f(x)的值域为[-1,2]. 22.解 (1)由图象易知函数f(x)的周期为 T=47π6-2π3=2π,A=1,所以ω=1. 方法一 由图可知此函数的图象是由y=sin x的图象沿x轴负方向平移π3个单位得到的,故φ=π3,其函数解析式为f(x)=sinx+π3. 方法二 由图象知f(x)过点-π3,0, 则sin-π3+φ=0,∴-π3+φ=kπ,k∈Z. ∴φ=kπ+π3,k∈Z, 又∵φ∈0,π2,∴φ=π3, ∴f(x)=sinx+π3. (2)方程f(x)=a在0,5π3上有两个不同的实根等价于y=f(x)与y=a的图象在0,5π3上有两个交点,在图中作y=a的图象, 如图为函数f(x)=sinx+π3在0,5π3上的图象,

当x=0时,f(x)=32,当x=5π3时,f(x)=0, 由图中可以看出有两个交点时,a∈32,1∪(-1,0).

相关文档
最新文档