半周积分法 傅氏变换算法
傅里叶变换概念及公式推导

傅里叶变换概念及公式推导傅里叶变换是一种数学工具,用于将一个函数从时域(时间域)转换为频域。
傅里叶变换的基本概念是,任何一个周期性函数都可以表示为一系列不同频率的正弦和余弦函数的叠加。
通过傅里叶变换,我们可以将原始信号分解成许多不同频率的正弦和余弦波。
F(ω) = ∫[−∞,+∞] f(t) e^(−iωt) dt其中,F(ω)表示频域中的函数,与f(t)相对应。
为了推导傅里叶变换的公式,我们首先将复数e^(−iωt)展开为正弦和余弦函数的形式:e^(−iωt) = cos(ωt) − i sin(ωt)然后将这个展开式代入变换公式中,得到:F(ω) = ∫[−∞,+∞] f(t) (cos(ωt) − i sin(ωt)) dt为了求解这个积分,我们可以利用欧拉公式,将复数表示为以指数函数的形式:F(ω) = ∫[−∞,+∞] f(t) e^(iωt) dt − i ∫[−∞,+∞] f(t) sin(ωt) dt将第一个积分的积分变量由t替换为−t,得到:F(ω) = ∫[−∞,+∞] f(t) e^(iωt) dt − i ∫[−∞,+∞] f(−t) sin(ωt) dt由于f(t)是一个偶函数(即f(−t)=f(t))F(ω) = ∫[−∞,+∞] f(t) e^(iωt) dt − i ∫[−∞,+∞] f(t)sin(ωt) dt记F(ω)的实部为Re[F(ω)],虚部为Im[F(ω)],我们可以将公式进一步简化为:Re[F(ω)] = ∫[−∞,+∞] f(t) cos(ωt) dtIm[F(ω)] = − ∫[−∞,+∞] f(t) sin(ωt) dt这就是傅里叶变换的实部和虚部的计算公式,也称为余弦分量和正弦分量的公式。
通过计算这两个积分,我们可以得到函数在不同频率上的分量。
这些频率分量相当于原始函数在频域中的表现,有助于我们理解原始函数的频率特征。
要注意的是,以上推导过程是针对连续时间信号的傅里叶变换。
傅里叶积分变换

1 j j 2 2
通过傅氏逆变换,可求得指数衰减函数的积分表达 式。由(3)式,并利用奇偶数的积分性质,可得
f (t) F 1 F ()
1
F (
)e
j
t
d
2
1 j e j td
2 2 2
1
(
j )(cost j sin t)d
2 2 2 2 2
0
2 2
由傅氏积分定理,可得到一个含参量广义积分的 结果:
0,
t 0;
cos t sin t
0
2 2
d
2
,
t 0;
e t , t 0
4.单位脉冲函数(狄拉克--Dirac函数)
设
0 ,
(t)
1
t 0或 t , 0t
定义单位脉冲函数为
(t
)
lim
0
(t)
单位脉冲函数的一些性质:
() 的傅氏逆变换为u(t) 。
f (t) F-1 F()
1
2
1
j
()e jt d
1
()ejt d
1
sin td
2
2
1 1 sin td
20
由于
0
sin
td
0,2
,t t
0; 0
2
,
t0
故
f (t) 1 1
2
sin 0
td
1
2 1 2
1
j ( 0 ) t
2 j
1 2
2j
( 0 ) 2
( 0 )
j ( 0 ) ( 0 )
我们可以看出引入δ-函数后,一些在普 通意义下不存在的积分,有了确定的数 值。工程技术上许多重要函数的傅氏变 换都可以利用δ-函数及其傅氏变换很方 便地表示出来,并且使许多变换的推导 大大地简化。
傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
应用高等数学-6.1 傅里叶变换

例8
试证单位阶跃函数
F () F[(t)] (t)e jt d t e jt 1
t0
显然, (t)与常数1构成了一傅氏变换对,按
逆变换公式有
(t)
F
1[F ()]
1 2π
e
jt
d
由上式可得 e jt d 2π (t)
(6-9)
这是一个关于δ函数的重要公式.
例5 证明:1和 2π ()构成傅氏变换对.
f
(t)
1, 1,
π t 0 0 t π
如何将函数展开为傅里叶级数的三角形式.
解: 由定理6.1可得 0 1,a0 0,an 0 (n 1, 2,L )
bn
1
π
f (t)sin ntdt
π
π2
π
sin ntdt
0
nπ 2 (cos
nt
π
) 0
nπ 2 (1 cos nπ)
nπ 2 [1 (1)n ]
2π ( 0 )
例7 求正弦函数 f (t) sin 0t 的傅氏变换.
解:
F() F[ f (t)]
e
jt
sin
0t
d
t
1 (e j0t e j0t )e jt d t
2 j
1 (e j(0 )t e j(0 )t ) d t
2 j
jπ[ ( 0 ) ( 0 )]
式中当t=0可得重要积分公式
sin
x
d
x
π
0x
2
例4
求单边指数衰减函数
f
(t)
0, et ,
t0 t0
( 0)
的频谱函数、振幅谱、相位谱.
大学物理-傅里叶积分变换

设想周期函数的周期 2l 不断增大而趋于无穷,即自 变量每增长无穷,函数才变化一次,当自变量增长为有 限值时,函数并不重复变化,此时它已经转化为非周期 函数。这样,可以把符合一定条件的非周期函数展开成 傅里叶积分。
可以证明: 如果定义在 (–, ) 的函数在任一有限区间上满足
说明:(1) 原函数存在积分运算,像函数中无积分运算;
(2) 积分运算
代数运算 (除法运算)。
证明:令
即 同理,有
,则 g' (x) = f (x)。于是
后 面 的 例 题 会 用 到
)
(
7. 卷积定理
说明: (1) 卷积 f1 (x) * f2 (x) 的定义为
(2) 原函数存在卷积运算
像函数间的普通乘积
3. 积分变换法求解数理方程的基本思想 如果不方便从原函数的方程直接求解,那么可能找
到适当的积分变换,把问题变换成比较简单的求像函数 的定解问题,再通过逆变换把求得的像函数变换成原函 数,从而得到所要求的解。
从物理上讲,经过积分变换后,自变量定义域的类 别也发生了变化。
例:
时间域 t 空间域 r
频率域
U (k, t) (k)ek2a2t t C(k, )ek2a2 (t )d 0
(3) 作像函数的傅里叶逆变换 (10-1-19)
由卷积定理,有
F[ f1(x) f2(x)] F[ f1(x)]F[ f2(x)] f1(k) f2(k)
取上式的傅里叶逆变换,得到 F1[ f1(k) f2 (k)] f1(x) f2 (x) F1[ f1(k)]F1[ f2(k)]
(1 x 1) ( x 1)
x
数理方程:第9讲积分变换法

L1 F p
L1
e
px a
f
t
L1
e
px a
查表得
L1
1
e
px a
p
2
x
e y2 dy g(t)
2a t
易证 而
g0 0
L1
e
px a
L1
p
1
e
px a
p
于是
L[ g
't ]
p
1
e
p x
a
g
0
p
p x
e a
于是
L1[
p
1
e
p a
x
]
g
't
p
d dt
2
x
e
y2
dy
2
e
x2 4a2t
3
2a t
2a t 2
所以
u x,t f t g 't
x
t
f ( )
1
e d
4
x2 a2 (t
)
2a 0
(t )3/2
例 设 x 1, y 0, 求解下面定解问题
2u x2 y xy u | y0 x 2 u | x1 cos y
解 对 y进行拉普拉斯变换, ux, y Ux, p
x
方程可变为
dU ,
t 2U ,t
dt
U , t |t0
可解得
U ,t e2t
由于
F 1[e2t ]
1
x2
e 4t
2 t
即
F
1
x2
e 4t
e2t
2 t
积分变换法

特别的,
f (x) (x)dx f (0)
(2) 对称性: (x) 为偶函数,则有
特别的,
(x x0 ) (x0 x) (x) (x)
自然也有
f (x) (x0 x)dx f (x0 )
7
例1 求函数 (x a) 的傅里叶变换,其中 a 是与
自变量 x 无关的数。
解 由定义知
F[ f (x)ei0x ] fˆ( 0 ) 傅里叶变换
L[ f (t)eat ] F (s a) 拉普拉斯变换
(6) 延迟定理
对变换的自变量而言
若 fˆ () F[ f (x)], F(s) L[ f (t)], 则有
F[ f (x x0 )] fˆ()eix0 傅里叶变换
L[ f (t t0 )u(t t0 )] F (s)est0 拉普拉斯变换
fˆ () F ( f ) f (x)eix dx
f (x) F 1 ( fˆ ) 1 fˆ ()eix d.
2
F (s) L( f ) f (t)est dt. 0
拉普拉斯逆变换记为
f (t) L1 (F (s)),
可用留数定理求得:设F(s) 除在半平面 Re s c内
20
例1 求解下列问题的解 ut a 2uxx f (x,t) ( x , t 0), (37)
u |t0 (x).
(38)
对方程(39)两端关于 t取拉氏变换,并结合条件
(40)得
sU (, s) () a22U (, s) G (, s),
U
(, s)
s
1
2a 2
()
s
1
2a 2
s 2U (s) k 2U (s) f (s)
傅里叶变换[FFT]详解
![傅里叶变换[FFT]详解](https://img.taocdn.com/s3/m/9ade5bd86e1aff00bed5b9f3f90f76c661374c9e.png)
关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier<1768-1830>, Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。
当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日<Joseph Louis Lagrange, 1736-1813>和拉普拉斯<Pierre Simon de Laplace, 1749-1827>,当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半周积分法 傅氏变换算法;几种常用的数字滤波器:差分(减法)滤波器、加法滤波器、积
分滤波器。 监控系统功能:一、实时数据采集和处理。采集变电站电力运行实时数据和设
备运行状态,包括各种状态量、模拟量、脉冲量(电能量)、数字量和保护信号,并将这些
采集到的数据去伪存真后存于数据库供计算机处理之用。二、运行监视与报警功能。三、操
作控制功能。四、数据处理与记录功能。五、事故顺序记录及事故追忆功能。六、故障录波
与测距功能 。七、人机联系功能(CRT显示器、鼠标、键盘)。八、制表打印功能。九、
运行的技术管理功能。十、谐波的分析及监控功能
一、监控系统的结构
监控系统是由监控机、网络管理单元、测控单元、远动接口、打印机等部分组成。
根据完成的功能不同,变电站监控系统可分为信息收集和执行子系统、信息传输子系统、
信息处理子系统和人机联系子系统。
微机保护装置的特点
1.智能化
微机保护装置除了硬件外,还必须具有相应的软件,因此微机保护可以实现智能化。
2. 高可靠性
微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。
3. 易于获得附加功能
微机保护装置除了提供常规保护功能外,还可以提供一些附加功能。例如,保护动作
时间和各部分的动作顺序记录,故障前后电压和电流的波形记录等。这将有助于运行部门对
事故的分析和处理。
4. 调试维护方便
在微机保护应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这
类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件
外,各种复杂的功能均由相应的软件(程序)来实现。
5.完善的网络通信功能
6.可以采用一些新原理,改善保护的性能。
如:采用模糊识别原理或波形对称原理识别励磁涌流。采用自适应原理改善保护的性能
等。
微机保护硬件部分包括:
1.数据采集系统,如:模拟量输入变换与低通滤波回路,采样保持与多路转换,模数转
换系统,开关量输入通道等。
2.微机主系统,如CPU,存储器、实时时钟,Watchdog.
3.输入输出系统,如开关量的输出
4.人机接口,如:键盘、显示器、打印机。
五。输电线路微机距离保护
定义:距离保护是反映故障点至保护安装处的距离,并根据距离的远近而确定动作时
间的一种保护装置。距离愈近,动作时间于短,以保证有选择地切除故障线路。
备用电源自动投入装置:是电力系统故障或其它原因使工作电源被切断后,能迅速将备
用电源或其它正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电
的一种自动控制装置。
一、备用电源的配置方式
备用电源的配置一般分为明备用和暗备用 。
系统正常时,备用电源不工作,称为明备用;
系统正常时,备用电源也投入运行,称为暗备用(实际上是两个工作电源互为备用。)