高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法
高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法

一、整体法

方法简介

整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。

赛题精讲

例1:如图1—1所示,人和车的质量分别为m 和M ,

人用水平力F 拉绳子,图中两端绳子均处于水平方向,

不计滑轮质量及摩擦,若人和车保持相对静止,且

水平地面是光滑的,则车的加速度为 .

解析:要求车的加速度,似乎需将车隔离出来才 能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可.

将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有:

2F=(M+m)a ,解得:

m

M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图 1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大 小的恒力,最后达到平衡,表示平衡状态的图可能是

( )

解析 表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。图就确定了。

先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a +m b )g ,作用在两个小球上的恒力F a 、F b 和上端细线对系统的拉力T 1.因为系统处于平衡状态,所受合力必为零,由于F a 、F b 大小相等,方向相反,可以抵消,而(m a +m b )g 的方向竖直向下,所以悬线对系统的拉力T 1的方向必然竖直向上.再以b 球为研究对象,b 球在重力m b g 、恒力F b 和连线拉力T 2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T 2的方向必与恒力F b 和重力m b g 的合力方向相反,如图所示,故应选A.

例3 有一个直角架AOB ,OA 水平放置,表面粗糙,OB 竖直向下,表面光滑,OA 上套有小环P ,OB 上套有小环Q ,两个环的质量均为m ,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P 环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )

A .N 不变,T 变大

B .N 不变,T 变小

C .N 变大,T 变小

D .N 变大,T 变大

解析 先把P 、Q 看成一个整体,受力如图1—4—甲所示,

则绳对两环的拉力为内力,不必考虑,又因OB 杆光滑,则杆在

竖直方向上对Q 无力的作用,所以整体在竖直方向上只受重力和

OA 杆对它的支持力,所以N 不变,始终等于P 、Q 的重力之和。

再以Q 为研究对象,因OB 杆光滑,所以细绳拉力的竖直分量等

于Q 环的重力,当P 环向左移动一段距离后,发现细绳和竖直方向

夹角a 变小,所以在细绳拉力的竖直分量不变的情况下,拉力T 应变小.由以上分析可知应选

B.

例4 如图1—5所示,质量为M 的劈块,

其左右劈面的倾角分别为θ1=30°、θ2=45°,

质量分别为m 1=3kg 和m 2=2.0kg 的两物块,

同时分别从左右劈面的顶端从静止开始下滑,

劈块始终与水平面保持相对静止,各相互接触

面之间的动摩擦因数均为μ=0.20,求两物块下

滑过程中(m 1和m 2均未达到底端)劈块受到地面的摩擦力。(g=10m/s 2)

解析 选M 、m 1和m 2构成的整体为研究对象,把在相同时间内,M 保持静止、m 1和m 2分别以不同的加速度下滑三个过程视为一个整体过程来研究。根据各种性质的力产生的条件,在水平方向,整体除受到地面的静摩擦力外,不可能再受到其他力;如果受到静摩擦力,那么此力便是整体在水平方向受到的合外力。

根据系统牛顿第二定律,取水平向左的方向为正方向,则有 ( ) F 合x=Ma ′+m 1a 1x -m 2a 2x

其中a ′、a 1x 和a 2x 分别为M 、m 1和m 2在水平方向的加速度的大小,而a ′=0,

a 1x =g(sin30°-μcos30°)·cos30°

a 2x = g(sin45°-μcos45°)·cos45°

F 合=m 1g(sin30°-μcos30°)·cos30°-m 2g(sin45°-μcos45°)·cos45° ∴2

2)223.022(100.223)232.021

(103?-??-??-?? =-2.3N

负号表示整体在水平方向受到的合外力的方向与选定的正方向相反.所以劈块受到地面的摩擦力的大小为2.3N ,方向水平向右.

例5 如图1—6所示,质量为M 的平板小车放在倾角为θ的光滑斜面上(斜面固定),一质量为m 的人在车上沿平板向下运动时,车恰好静止,求人的加速度.

解析 以人、车整体为研究对象,根据系统牛顿运动定律求解。如图1—6—甲,由系统牛顿第二定律得:

(M+m)gsin θ=ma

解得人的加速度为a=θsin )(g m

m M + 例6 如图1—7所示,质量M=10kg 的木块

ABC 静置 于粗糙的水平地面上,滑动摩擦因数

μ=0.02,在木块的倾角θ为30°的斜面上,有

一质量m=1.0kg 的物块静止开始沿斜面下滑,

当滑行路程s=1.4m 时,其速度v=1.4m/s ,在

这个过程中木块没有动,求地面对木块的摩擦

力的大小和方向.(重力加速度取g=10/s 2)

解析 物块m 由静止开始沿木块的斜面下滑,受重力、弹力、摩擦力,在这三个恒力的作用下做匀加速直线运动,由运动学公式可以求出下滑的加速度,物块m 是处于不平衡状态,说明木块M 一定受到地面给它的摩察力,其大小、方向可根据力的平衡条件求解。此题也可以将物块m 、木块M 视为一个整体,根据系统的牛顿第二定律求解。

由运动学公式得物块m 沿斜面下滑的加速度:

./7.02222202s m s

v s v v a t t ==-= 以m 和M 为研究对象,受力如图1—7—甲所示。由系统的牛顿第二定律可解得地面对木块M 的摩擦力为f=macos θ=0.61N ,方向水平向左.

例7 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。

解析 以木板为研究对象,木板处于力矩平衡状态,若分别以圆柱体A 、B 、C 为研究对象,求A 、B 、C 对木板的压力,非常麻烦,且容易出错。若将A 、B 、C 整体作为研究对象,则会使问题简单化。

以A 、B 、C 整体为研究对象,整体受

到重力3G 、木板的支持力F 和墙对整体的

支持力F N ,其中重力的方向竖直向下,如

图1—8—甲所示。合重力经过圆柱B 的轴

心,墙的支持力F N 垂直于墙面,并经过圆

柱C 的轴心,木板给的支持力F 垂直于木

板。由于整体处于平衡状态,此三力不平

行必共点,即木板给的支持力F 必然过合

重力墙的支持力F N 的交点.

根据共点力平衡的条件:∑F=0,可得:F=3G/sin θ.

由几何关系可求出F 的力臂 L=2rsin 2θ+r/sin θ+r ·cot θ

以木板为研究对象,受力如图1—8—乙所示,选A 点

为转轴,根据力矩平衡条件∑M=0,有:

F ·L=T ·Lcos θ

图1—9 即θθ

θθθcos sin )cot sin /1sin 2(32??=++L T Gr 解得绳CB 的能力:)cos sin cos 1tan 2(32θ

θθθ?++=L Gr T 例8 质量为1.0kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5.0m ,小球与软垫接触的时间为1.0s ,在接触时间内小球受合力的冲量大小为(空气阻力不计,取g=10m/s 2) ( )

A .10N ·s

B .20N ·s

C .30N ·s

D .40N ·s

解析 小球从静止释放后,经下落、接触软垫、

反弹上升三个过程后到达最高点。动量没有变化,初、

末动量均为零,如图1—9所示。这时不要分开过程

求解,而是要把小球运动的三个过程作为一个整体来

求解。

设小球与软垫接触时间内小球受到合力的冲量大

小为I ,下落高度为H 1,下落时间为t 1,接触反弹上

升的高度为H 2,上升的时间为t 2,则以竖直向上为正方向,根据动量定理得:

s

N gH gH I g H t g H t mgt I t mg ?=+====-+-3022(220

)(212

21

121故而

答案C

例9 总质量为M 的列车以匀速率v 0在平直轨道上行驶,各车厢受的阻力都是车重的k 倍,而与车速无关.某时刻列车后部质量为m 的车厢脱钩,而机车的牵引力不变,则脱钩的车厢刚停下的瞬间,前面列车的速度是多少?

解析 此题求脱钩的车厢刚停下的瞬间,前面列车的速度,就机车来说,在车厢脱钩后,开始做匀加速直线运动,而脱钩后的车厢做匀减速运动,由此可见,求机车的速度可用匀变速直线运动公式和牛顿第二定律求解.

现在若把整个列车当作一个整体,整个列车在脱钩前后所受合外力都为零,所以整个列车动量守恒,因而可用动量守恒定律求解.

根据动量守恒定律,得:

Mv 0=(M -m)V V=Mv 0/(M -m)

即脱钩的车厢刚停下的瞬间,前面列车的速度为Mv 0/(M -m).

【说明】显然此题用整体法以列车整体为研究对象,应用动量守恒定律求解比用运动学公式和牛顿第二定律求简单、快速.

例10 总质量为M 的列车沿水平直轨道匀速前进,其末节车厢质量为m ,中途脱钩,司机发觉时,机车已走了距离L ,于是立即关闭油门,撤去牵引力,设运动中阻力与质量成正比,机车的牵引力是恒定的,求,当列车两部分 都静止时,它们的距离是多少?

解析 本题若分别以机车和末节车厢为研究对象用运动学、牛顿第二定律求解,比较复杂,若以整体为研究对象,研究整个过程,则比较简单。

假设末节车厢刚脱钩时,机车就撤去牵引力,则机车与末节车厢同时减速,因为阻力与质量成正比,减速过程中它们的加速度相同,所以同时停止,它们之间无位移差。事实是机车多走了距离L 才关闭油门,相应的牵引力对机车多做了FL 的功,这就要求机车相对于末节车厢多走一段距离△S ,依靠摩擦力做功,将因牵引力多做功而增加的动能消耗掉,使机车与末节车厢最后达到相同的静止状态。所以有:

FL=f ·△S

其中F=μMg, f=μ(M -m)g

代入上式得两部分都静止时,它们之间的距离:△S=ML/(M -m)

例11 如图1—10所示,细绳绕过两个定滑轮A 和B ,在两端各挂 个重为P 的物体,现在A 、B 的中点C 处挂一个重为Q 的小球,Q<2P ,求小球可能下降的最大距离h.已知AB 的长为2L ,不讲滑轮和绳之间的摩擦力及绳的质量.

解析 选小球Q 和两重物P 构成的整体为研究对象,该整体的速率从零开始逐渐增为最大,紧接着从最大又逐渐减小为零(此时小球下降的距离最大为h ),如图1—10—甲。在整过程中,只有重力做功,机械能守恒。

因重为Q 的小球可能下降的最大距离为h ,所以重为P 的两物体分别上升的最大距离均为.22L L h -+

考虑到整体初、末位置的速率均为零,故根据机械能守恒定律知,重为Q 的小球重力势能的减少量等于重为P 的两个物体重力势能的增加量,即

)(222L L h P Qh --= 从而解得22224)

8(2P Q Q Q P PL h ---=

例12 如图1—11所示,三个带电小

球质量相等,均静止在光滑的水平面上,若

只释放A 球,它有加速度a A =1m/s 2,方向向

右;若只释放B 球,它有加速度a B =3m/s 2,方

向向左;若只释放C 球,求C 的加速度a C .

解析 只释放一个球与同时释放三个球时,每球所受的库仑力相同.而若同时释放三个球,则三球组成的系统所受合外力为0,由此根据系统牛顿运动定律求解.

把A 、B 、C 三个小球看成一个整体,根据系统牛顿运动定律知,系统沿水平方向所受合外力等于系统内各物体沿水平方向产生加速度所需力的代数和,由此可得:

ma A +ma B +ma C =0

规定向右为正方向,可解得C 球的加速度:

a C =-(a A +a B )=-(1-3)=2m/s

方向水平向右:

例13 如图1—12所示,内有a 、b 两个

光滑活塞的圆柱形金属容器,其底面固定在水

平地板上,活塞将容器分为A 、B 两部分,两

部分中均盛有温度相同的同种理想气体,平

衡时,A 、B 气体柱的高度分别为h A =10cm,

h B =20cm , 两活塞的重力均忽略不计,活塞

的横截面积S=1.0×10-3m 2. 现用竖直向上的

力F 拉活塞a, 使其缓慢地向上移动△h=3.0cm ,时,活塞

a 、

b 均恰好处于静止状态,环境温度保护不变,求:

(1)活塞a 、b 均处于静止平衡时拉力F 多大?

(2)活塞a 向上移动 3.0cm 的过程中,活塞b 移动了多少?(外界大气压强为)p 0=1.0×105Pa)

解析 针对题设特点,A 、B 为同温度、同种理想气体,可选A 、B 两部分气体构成的整体为研究对象,并把两部分气体在一同时间内分别做等温变化的过程视为同一整体过程来研究。

(1)根据波意耳定律,p 1V 1=p 2V 2得:p 0(10+20)S=p ′(10+20+3.0)S ′

从而解得整体末态的压强为p ′=11

10p 0 再以活塞a 为研究对象,其受力分析如图1—12甲所示,因活塞a 处于平衡状态,故有F+p ′S=p 0S

从而解得拉力

F=(p 0-p ′)S=(p 0-1110p 0)S=111p 0S=11

1×1.0×105×1.0×10-3=9.1N (2)因初态A 、B 两气体的压强相同,温度相同,

分子密度相同,末态两气体的压强相同,温度相同,分

子密度相同,故部分气体体积变化跟整体气体体积变

化之比,必然跟原来它们的体积成正比,即

B

A B B h h h h h +=??

所以活塞b 移动的距离cm h h h h h B A B B 0.20.320

1020=?+=??+=? 例14 一个质量可不计的活塞将一定量

的理想气体封闭在上端开口的直立圆筒形气缸

内,活塞上堆放着铁砂,如图1—13所示,

最初活塞搁置在气缸内壁的固定卡环上,气

体柱的高度为H 0,压强等于大气压强p 0。现

对气体缓慢加热,当气体温度升高了△T=60K 时, 活塞(及铁砂)开始离开卡环而上升。继续加热直到气柱高度为H 1=1.5H 0.此后,在维持温度不变的条件下逐渐取走铁砂,直到铁砂全部取走时,气柱高度变为H 2=1.8H 0,求此时气体的温度。(不计活塞与气缸之间的摩擦)

解析 气缸内气体的状态变化可分为三个过程:等容变化→等压变化→等温变化;因为气体的初态压强等于大气压p 0,最后铁砂全部取走后气体的压强也等于大气压p 0,所以从整状态变化来看可相当于一个等压变化,故将这三个过程当作一个研究过程。 根据盖·吕萨克定律:2

210T S H T S H = ① 再隔离气体的状态变化过程,从活塞开始离开卡环到把温度升到H 1时,气体做等压变化,有:2

110T S H T T S H =?+ ② 解①、②两式代入为数据可得:T 2=540K

例15 一根对称的“∧”形玻璃管置于

竖直平面内,管所有空间有竖直向上的匀强电

场,带正电的小球在管内从A 点由静止开始运

动,且与管壁的动摩擦因数为μ,小球在B 端 与管作用时无能量损失,管与水平面间夹角为θ,AB 长L ,如图1—14所示,求从A 开始,小球运动的总路程是多少?(设小球受的电场力大于重力)

解析 小球小球从A 端开始运动后共受四个力作用,电场力为qE 、重力mg 、管壁 支持力N 、摩擦力f ,由于在起始点A 小球处于不平衡状态,因此在斜管上任何位置都是不平衡的,小球将做在“∧”管内做往复运动,最后停在B 处。若以整个运动过程为研究对象,将使问题简化。

以小球为研究对象,受力如图1—14甲

所示,由于电场力和重力做功与路径无关,

而摩擦力做功与路径有关,设小球运动的

总路程为s ,由动能定理得:

qELsin θ-mgLsin θ-fs=0 ① 又因为f=μN ②

N=(qE -mg)cos θ 所以由以上三式联立可解得小球运动的总路程:μθ

tan L s = ③

例16 两根相距d=0.20m 的平行金属长

导轨固定在同一水平面内,并处于竖直方向的

匀强磁场中,磁场的磁感应强度B=0.2T ,导轨

上面横放着两条金属细杆,构成矩形回路,每 条金属细杆的电阻为r=0.25Ω,回路中其余部

分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s ,如图1—15所示。不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小;

(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量。

解析 本题是电磁感应问题,以两条细杆组成的回路整体为研究对象,从力的角度看,细杆匀速移动,拉力跟安培力大小相等。从能量的角度看,外力做功全部转化为电能,电又全部转化为内能。根据导线切割磁感线产生感应电动势公式得:ε总=2BLv 从而回路电流r

Blv I 22= 由于匀速运动,细杆拉力F=F 安=N r

v l B BIl 222102.3-?== 根据能量守恒有:J Fs Fvt Pt Q 2

1028.12-?====

即共产生的热量为1.28-10-2J.

例17 两金属杆ab 和cd 长均为l ,

电阻均为R ,质量分别为M 和m, M>m.

用两根质量和电阻均可忽略的不可伸长的

柔软导线将它们连成闭合回路,并悬挂在

水平、光滑、不导电的圆棒两侧.两金属杆

都处在水平位置,如图1—16所示.整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B 。若金属杆ab 正好匀速向下运动,求运动的速度.

解析 本题属电磁感应的平衡问题,确定绳上的拉力,可选两杆整体为研究对,确定感应电流可选整个回路为研究对象,确定安培力可选一根杆为研究对象。设匀强磁场垂直回路平面向外,绳对杆的拉力为T ,以两杆为研究对象,受力如1—16甲所示。因两杆匀速移动,由整体平衡条件得:

4T=(M+m)g

对整个回路由欧姆定律和法拉第电磁感应 定律得:R

BlV I 22= ②

图1—17 图1—18

对ab 杆,由于杆做匀速运动,受力平衡:

02=-+Mg T BIl ③ 联立①②③三式解得:222)(l

B gR m M v -=

针对训练

1.质量为m 的小猫,静止于很长的质量为M 的吊杆上,如图1—17所示。在吊杆上端悬线

断开的同时,小猫往上爬,若猫的高度不变,求吊杆的加速度。(设吊杆下端离地面足够高)

2.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中,若把在空中下落的过程称为过程I ,

进入泥潭直到停止的过程称为过程II ,则 ( )

A .过程I 中钢珠动量的改变量等于它重力的冲量

B .过程II 中阻力的冲量的大小等于全过程中重力冲量的大小

C .过程II 中钢珠克服阻力所做的功等于过程I 与过程II 中钢珠所减少的重力势能之和

D .过程II 中损失的机械能等于过程I 中钢珠所增加的动能

3.质量为m 的运动员站在质量为m/2的均匀长板AB 的中点,板位于水平面上,可绕通过

B 点的水平轴转动,板的A 端系有轻绳,轻绳的另一端绕过两个定滑轮后,握在运动员手中。当运动员用力拉绳时,滑轮两侧的绳子都保持在竖直方向,如图1—18所示。要使板的A 端离开地面,运动员作用于绳子的最小拉力是 。

4.如图1—19,一质量为M 的长木板静止在光滑水平桌面上。一质

量为m 的小滑块以水平速度0v 从长木板的一端开始在木板上滑 动,直到离开木板。滑块刚离开木板时的速度为3/0v 。若把该木

板固定在水平桌面上,其他条件相同,求滑决离开木板时的速度为v 。

5.如图1—20所示为一个横截面为半圆,半径为R 的光滑圆柱,一根不可伸长的细绳两端

分别系着小球A 、B ,且B A m m 2=,由图示位置从静止开始释放A 球,当小球B 达到半圆的顶点时,求线的张力对小球A 所做的功。

6.如图1—21所示,AB 和CD 为两个斜面,其上部足够长,下部分别与一光滑圆弧面相切,EH 为整个轨道的对称轴,圆弧所对圆心角为120°,半径为2m ,某物体在离弧底H 高

h=4m 处以V 0=6m/s 沿斜面运动,物体与斜面的摩擦系数04.0=μ,求物体在AB 与CD 两斜面上(圆弧除外)运动的总路程。(取g=10m/s 2)

7.如图1—22所示,水平转盘绕竖直轴OO ′转动,两木块质量分别为M 与m ,到轴线的距

离分别是L 1和L 2,它们与转盘间的最大静摩擦力为其重力的μ倍,当两木块用水平细绳连接在一起随圆盘一起转动并不发生滑动时,转盘最大角速度可能是多少?

8.如图2—23所示,一质量为M ,长为l 的长方形木板B ,放在光滑的水平地面上,在其右

端放一质量为m 的小木块,且m

9.如图1—24所示,A 、B 是体积相同的气缸,B 内有一导热的、

可在气缸内无摩擦滑动的、体积不计的活塞C 、D 为不导热的

阀门。起初,阀门关闭,A 内装有压强P 1=2.0×105Pa ,温度

T 1=300K 的氮气。B 内装有压强P 2=1.0×105Pa ,温度T 2=600K

的氧气。阀门打开后,活塞C 向右移动,最后达到平衡。以V 1 和V 2分别表示平衡后氮气和氧气的体积,则V 1 : V 2= 。(假定氧气和氮气均为理想气体,并与外界无热交换,连接气体的管道体积可忽略)

10.用销钉固定的活塞把水平放置的容器分隔成A 、B 两部分,其体

积之比V A : V B =2 : 1,如图1—25所示。起初A 中有温度为127℃,

压强为1.8×105Pa 的空气,B 中有温度27℃,压强为1.2×105Pa 的

空气。拔出销钉,使活塞可以无摩擦地移动(不漏气)。由于容器

缓慢导热,最后气体都变成室温27℃,活塞也停住,求最后A 中气体的压强。

11.如图1—26所示,A 、B 、C 三个容器内装有同种气体,

已知V A =V B =2L ,V C =1L ,T A =T B =T C =300K ,阀门D 关

闭时p A =3atm ,p B =p C =1atm 。若将D 打开,A 中气体向

B 、

C 迁移(迁移过程中温度不变),当容器A 中气体压

强降为atm P a 2='时,关闭D ;然后分别给B 、C 加热,

使B 中气体温度维持K T b 400=',C 中气体温度维持K T c 600=',求此时B 、C 两容器内气体的压强(连通三容器的细管容积不计)。

12.如图1—27所示,两个截面相同的圆柱形容器,右边容器高为H ,上端封闭,左边容器

上端是一个可以在容器内无摩擦滑动的活塞。两容

器由装有阀门的极细管道相连,容器、活塞和细

管都是绝热的。开始时,阀门关闭,左边容器中

装有热力学温度为T 0的单原子理想气体,平衡时

活塞到容器底的距离为H ,右边容器内为真空。现 将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,求此时左边容器中活塞的高度和缸内气体的温度。[提示:一摩尔单原子理想气体的内能为(3/2)RT ,其中R 为摩尔气体常量,T 为气体的热力学温度]

13.如图1—28所示,静止在光滑水平面上已经充电的平行板电容器

的极板距离为d ,在板上开个小孔,电容器固定在一绝缘底座上,

总质量为M ,有一个质量为m 的带正电的小铅丸对准小孔水平向

左运动(重力不计),铅丸进入电容器后,距左极板的最小距离为

d/2,求此时电容器已移动的距离。

14.一个质量为m ,带有电量-q 的小物体,

可在水平轨道OX 上运动, O 端有一与轨

道垂直的固定墙壁,轨道处于匀强电场中,

场强大小为E ,方向沿OX 正方向,如图

1—29所示,小物体以初速0v 从0x

点沿Ox 运动时,受到大小不变的摩擦力f 的作用,且qE f <;设小物体与墙碰撞时不

损失机械能,且电量保持不变,求它在停止运动前所通过的总路程s 。

15.如图1—30所示,一条长为L 的细线,上端固定,下端拴一质量为m 的带电小球。将它

置于一匀强电场中,电场强度大小为E ,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡。求:

(1)小球带何种电荷?小球所带的电量;

(2)如果使细线的偏角由α增大到φ,然后将小球由静止开始释放,则φ应为多大,才

能使在细线到达竖直位置时小球的速度刚好为零?

16.把6只相同的电灯泡分别接成如图1—31所示的甲乙两种电路,两电路均加上U 等于

12V 的恒定电压,分别调节变阻器R 1和R 2,使6只灯泡均能正常工作,这时甲乙两种电路消耗的总功率分别为P 1和P 2,试找出两者之间的关系。

17.如图1—32所示,在竖直方向的x 、y 坐标系中,在x 轴上方

有一个有界的水平向右的匀强电场,场强为E ,x 轴的下方有

一个向里的匀强磁场,场强为B 。现从A 自由释放一个带电量

为-q 、质量为m 的小球,小球从B 点进入电场,从C 点进入

磁场,从D 点开始做水平方向的匀速直线运动。已知A 、B 、C

点的坐标分别为(0,y 1)、(0,y 2)、(-x ,0),求D 点的纵坐标y 3。

答案:

1.g M m )1(+ 2.ABC 3.mg 21 4.M M m t +43

5.-0.19m A gR 6.290m 7.12)(mL ML g

m M ++μ 8.mgl W m M ml s μ=+=2 9.4:1 10.1.3×105Pa

11.2.5atm 12.0575

2T T H h == 13.M md 4 14.f mv qEx 22200+ 15.(1)正电 αtan E

mg c = (2)αφ2= 16.P 1=2P 2 17.)21(12223x mg

qE y q B g m y ---=

2007年第38届国际物理奥林匹克理竞赛实验题答案

Solution (The Experimental Question): Task 1 1a. nominal =5′=0.08 nominal (degree) 0.08 If a is the distance between card and the grating and r is the distance between the hole and the light spot so we have ,...,21x x f 0,2 tan a r We want 0 to be zero i.e. r 04.0007.0170,10 rad rad mm a mm r 0 0.4range of visible light (degree) 13 26 中 华 物 理 .c o m 中华物理竞赛网 https://www.360docs.net/doc/d017665100.html, 官方网站 圣才学习网 https://www.360docs.net/doc/d017665100.html,

1c. min R (21.6±0.1) k 0 5′ = 0.081min R R=(192±1) k 0=5′ because = 5′ => R= (21.9±0.1) k =-5′ => R= (21.9±0.1) k 1d. Table 1d. The measured parameters (degree) R glass (M )R glass (M )R film (M )R film (M ) 15.00 3.770.03183315.50 2.580.02132216.00 1.880.0187116.50 1.190.0151.50.517.000.890.0133.40.317.500.680.0119.40.118.000.4860.00510.40.118.500.3650.005 5.400.0319.000.2740.003 2.660.0219.500.2250.002 1.420.0120.000.2000.0020.8800.00520.500.2270.0020.8220.00521.000.3680.003 1.1230.00721.500.6000.005 1.610.0122.000.7750.005 1.850.0122.500.830.01 1.870.0123.000.880.01 1.930.0223.50 1.010.01 2.140.0224.00 1.210.01 2.580.0224.50 1.540.01 3.270.0225.00 1.910.01 4.130.0216.25 1.380.0166.50.516.75 1.000.0140.00.317.250.720.0123.40.217.750.5350.00512.80.118.250.3910.003 6.830.0518.750.2930.003 3.460.0219.250.2350.003 1.760.0119.750.1950.0020.9880.00520.250.2010.0020.7760.00520.75 0.273 0.003 0.89 0.01 中 华 物 理 竞 赛 网 w w w .100w u l i .c o m 中华物理竞赛网 https://www.360docs.net/doc/d017665100.html, 官方网站 圣才学习网 https://www.360docs.net/doc/d017665100.html,

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

第二十六届全国中学生物理竞赛(北京赛区)

第二十六届全国中学生物理竞赛(赛区) (实验中学杯) 获 奖 名 单 北京物理学会 市中学生物理竞赛委员会 2009年11月5日

简报 全国中学生物理竞赛是经教育部批准,在中国科协领导下,由中国物理学会主办,中学生自愿参加的学科竞赛。竞赛的目的是促进中学生提高学习物理的兴趣、扩大学生的视野、增强学习能力,促进学校开展物理课外活动,为学有余力的学生提供发展空间。 第26届全国中学生物理竞赛(赛区)于9月6日举行了预赛(4100人参加)、9月19日举行复赛理论考试(398人参加)、9月27日进行复赛实验操作考试。经过预赛、复赛,评出赛区一等奖34名、二等奖120名、三等奖165名,优秀辅导教师奖多名。 根据教育部有关文件规定,凡荣获全国中学生物理竞赛省市赛区一等奖的学生,将获得下一年度全国高等学校高考保送生资格。 市代表队由17名选手组成,于10月31日—11月5日参加在XX市举行的全国中学生物理竞赛决赛。全国决赛经过理论考试、实验操作考试,评出一等奖50名、二等奖98名、三等奖132名。人大附中俞颐超、实验中学于乾、清华附中戴哲昊、人大附中生冀明、十一学校周琛同学荣获一等奖;十一学校王鹤、八中周叶、四中李新然、人大附中段嘉懿、十一学校孙伟伦、杜超同学荣获二等奖;北师大二附中王沫阳、四中熊泓宇、十一学校梁辰、四中贾弘洋、人大附中X金野、北大附中王焱同学荣获三等奖。人大附中俞颐超同学荣获决赛总成绩最佳奖(第一名)和理论成绩最佳奖(第一名)。 在国际奥林匹克物理竞赛的成绩: 2009年5月,人大附中管紫轩、X思卓同学在第十届亚洲中学生物理竞赛中均获得金牌;2009年7月,人大附中管紫轩同学在墨西哥举行的第四十届国际奥林匹克物理竞赛中获得金牌。 本届竞赛还得到了北师大附属实验中学、十一学校大力支持。在此,物理学会、市中学生物理竞赛委员会向支持本届物理竞赛工作的单位和个人表示衷心的感谢。 北京物理学会 市中学生物理竞赛委员会 2009年11月5日

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

2016年泛珠三角物理竞赛综合试卷一答

Pan Pearl River Delta Physics Olympiad 2016 2016 年泛珠三角及中华名校物理奥林匹克邀请赛 Sponsored by Institute for Advanced Study, HKUST 香港科技大学高等研究院赞助 Simplified Chinese Part-1 (Total 5 Problems) 简体版卷-1(共5题) (9:00 am – 12:00 pm, 18 February, 2016) 1. Electrostatic Force (4 marks) 静电力(4分) Consider a 2017-side regular polygon. There are 2016 point charges, each with charge q and located at a vertex of the polygon. Another point charge Q is located at the center of the polygon. The distance from the center of the regular polygon to its vertices is a. Find the force experienced by Q. 考虑一2017-边正多边形。其中2016个角上各有一点电荷q。另有一个点电荷Q位于多边形的中心。中心到每一个角的距离为a。求Q所受的力。 Consider the polygon with a charge q at each vertex. In other words, there are 2017 charges. The system has a discrete rotational symmetry and hence the force acting on Q must be zero. Now our system is equivalent to the above system but with a charge –q added to one vertex. Hence the force is F= Qq 4πε0a2 a? where a? is a unit vector pointing from the center to the empty vertex. 2.Capacitors (13 marks)电容器(13分) (a-c) Consider two clusters of electric charges. Cluster A consists of N charges q1, q2, …, q N, located at positions r?1,r?2,…,r?N respectively. Cluster B consists of M charges q1′,q2′,…,q M′, located at positions r?1′,r?2′,…,r?M′ respectively. (a-c) 考虑两组电荷。组A由N个电荷q1, q2, …, q N组成, 并分别位于位置r?1,r?2,…,r?N。组B 由M个电荷q1′,q2′,…,q M′组成, 并分别位于位置r?1′,r?2′,…,r?M′。 (a)Write the electric potential ?A(r?) at position r? due to the charges in cluster A. (1 mark) B|A A B|A A|B E B|A和E A|B有何关系? (1分)

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

高中奥林匹克物理竞赛解题方法 一 整体法

一、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 赛题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向,不 计滑轮质量及摩擦,若人和车保持相对静止,且水平地面 是光滑的,则车的加速度为 。 解析:要求车的加速度,似乎需将车隔离出来才能求 解,事实上,人和车保持相对静止,即人和车有相同的加 速度,所以可将人和车看做一个整体,对整体用牛顿第二 定律求解即可。 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力。在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F = (M + m)a ,解得:a =2F M m 例2:用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是( ) 解析:表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a + m b )g ,作用在两个小球上的恒 力F a 、F b 和上端细线对系统的拉 力T 1 。因为系统处于平衡状态, 所受合力必为零,由于F a 、F b 大

高中物理奥赛讲义全套

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23)

专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场 (33) 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40) 中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic

Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。 第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

全国高中物理奥林匹克竞赛试卷及答案

高中物理竞赛试卷 .一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3C.α3D.3α 2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和 p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动 方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于 线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的 形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分 别为F1、F2和F3。若环的重力可忽略,下列说法正确的是 A. F1> F2> F3 B. F2> F3> F1 C. F3> F2> F1 D. F1 = F2 = F3 5.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大 C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大 D.在保持m B

物理竞赛之国际物理奥林匹克竞赛赛事流程

国际物理奥林匹克竞赛赛事流程 每一代表队包括5名年龄在20岁以下的中学生、1名领队和1名副领队,国际间旅费自负,东道国负责竞赛期间各队的食宿和旅游费用。各国可自派观察员参加,费用由派出国自筹。 赛期一般为9天。第1天报到后,队员和领队分开居住,住地一般相距几公里以上。东道国为每一参赛队学生配备1名翻译兼导游,这对东道国来说是一种很大的负担,有些国家难以承办IPhO活动,其部分原因也在于此。因华裔子弟遍布世界各地,东道国为我们代表队配备的翻译几乎都是在该国读研究生的华人学子。 第2天上午是开幕式,常在大学礼堂举行,气氛淡雅肃穆,学术气氛浓厚。开幕式后领队与队员暂不往来,且自觉地互不通电话联系,有事均通过翻译转达。第2天下午学生由主办者组织旅游或参观,领队们则参加本届国际委员会正式会议并集体讨论、修改和通过理论赛题,再由各国领队将题文翻译成本国文字,交由组委会复印。会议开始时,各国领队与观察员分别就座,组委会执行主席及其助手们的座位安排在正前方。东道国将3道理论题的题文和题解,以及评分标准的4种文本(英、俄、德、法)之一发给各国领队。大约一小时后,命题者代表用英语向大家介绍该题的命题思想及解题思路等,然后大会讨论,提出修改意见,最后通过这道理论题。3道题逐题进行,若其中某道题被否决,组委会便公开备用的第4道题。 3道题通过后常已近深夜,这期间除晚餐外,还供应饮料和点心。中国领队们而后所做的翻译工作,一般都会持续到次日清晨6点左右,真可谓"通宵达旦"。

第3天上午8点开始,学生们进行5小时的理论考试,其间有饮料和点心供应,学生们用本国文字答卷。组委会为领队们安排旅游或参观活动;尽管大多数人已经非常疲乏,也许因为身临异国他乡,仍是游兴十足。第3天下午东道国安排的休息性活动常能使领队与学生有机会见面,然而师生间很少谈及上午的考试,为的是不在情绪上影响后面的实验考试。 第4天讨论、修改、通过及翻译实验赛题。实验赛题为1-2道,2道居多。 第5天学生分为两组,分别在上、下午进行5小时的实验考试。若有2道题,则每题2。5小时。实验考试后学生们的紧张情绪骤然间消失,队与队之间频繁交往,学生们"挨门串户"地互赠小礼品,最受欢迎的当数各国硬币。此时,领队们开始悉心研究由组委会送来的本队队员的试卷复印件,上面有评分结果。分数由东道国专设的阅卷小组评定,在评定我国学生试卷时,常请另一位懂中文的研究生协助阅读试卷上的中文内容。 东道国通常在第6、7天安排各国领队与阅卷小组成员面谈,商讨和解决评分中可能出现的差错和意见分歧。第7天的下午或晚上举行最后一次国际委员会会议,多数领队借此机会互赠小礼品。会议最重要的议程是通过学生的获奖名单。理论题每题10分,满分30分;实验题若有2道,则每题10分,满分20分。按现在的章程规定,前三名选手的平均积分计为100%,积分达90%者,授予一等奖(金牌);积分低于90%而达78%者,授予二等奖(银牌);积分低于78%而达65%者,授予三等奖(铜牌);积分低于65%而达50%者,授予表扬奖;积分低于50%者,发给参赛证书。上述评奖积分界限均舍尾取整。例如第24届IPhO前三名平均积分为40。53分,其90%为36。48,取整为36分,即成金牌分数线。通常得奖人数占参赛人数的一半。金牌第1名被授予特别奖。此外,还可由东道国自设各种特别奖,例如女生最佳奖、

第29届(2012年)全国中学生奥林匹克物理竞赛复赛试卷及答案

第29届全国中学生奥林匹克物理竞赛复赛试卷 本卷共8题,满分160分 填空题把答案填在题中的横线上或题给的表格中,只要给出结果,不需写出求解过程。 计算题的解答应写出改要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分。有数值计算的题,答案中必须明确写出数值和单位。 一、(17分)设有一湖水足够深的咸水湖,湖面宽阔而平静,初始时将一体积很小的匀质正立方体物块在湖面上由静止开始释放,释放时物块的下 底面和湖水表面恰好相接触,已知湖水密度为ρ;物块边长为b ,密度为ρ , 且ρ, <ρ。在只考虑物块受重力和液体浮力作用的情况下,求物块从初始位置出发往返一次所需的时间。 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为 2b f b x g ρ= (x b ≤) (1) 式中g 为重力加速度.物块的重力为 3g f b g ρ'= (2) 设物块的加速度为a ,根据牛顿第二定律有 3g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得 g a x b b ρρρρ'?? =- - ?'?? (4) 将x 系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关系为 X x b ρρ ' =- (5) 把(5)式代入(4)式得 g a X b ρρ=- ' (6) (6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为 0x b ρρ ' = (7)

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

高中奥林匹克物理竞赛解题方法+12类比法

高中奥林匹克物理竞赛解题方法 十二、类比法 方法简介 类比法是根据两个研究对象或两个系统在某些属性上类似而推出其他属性也类似的思维方法,是一种由个别到个别的推理形式. 其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大. 在研究物理问题时,经常会发现某些不同问题在一定范围内具有形式上的相似性,其中包括数学表达式上的相似性和物理图像上的相似性. 类比法就是在于发现和探索这一相似性,从而利用已知系统的物理规律去寻找未知系统的物理规律. 赛题精讲 例1 图12—1中AOB是一内表面光滑的楔形槽,固定 在水平桌面(图中纸面)上,夹角(为了能看清楚, 图中画的是夸大了的). 现将一质点在BOA面内从A处以 速度射出,其方向与AO间的夹角 设质点与桌面间的摩擦可忽略不计,质点与OB面及OA面的 碰撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求: (1)经过几次碰撞质点又回到A处与OA相碰?(计算次数时包括在A 处的碰撞) (2)共用多少时间?

(3)在这过程中,质点离O点的最短距离是多少? 解析由于此质点弹性碰撞时的运动轨迹所满足的规律 和光的反射定律相同,所以可用类比法通过几何光学的规律 进行求解. 即可用光在平面镜上反射时,物像关于镜面对称 的规律和光路是可逆的规律求解. (1)第一次,第二次碰撞如图12—1—甲所示,由三角形的外角等于不相邻的一两个内角和可知,故第一次碰撞的入射角为. 第二次碰撞,,故第二次碰撞的入射角为. 因此每碰一次,入射角要减少1°,即入射角为29°、28°、…、0°,当入射角为0°时,质点碰后沿原路返回. 包括最后在A处的碰撞在内,往返总共60次碰撞. (2)如图12—1—乙所示,从O依次作出与OB边成 图12—1—乙 1°、2°、3°、……的射线,从对称规律可推知,在AB 的延长线上,BC′、C′D′、D′E′、……分别和BC、 CD、DE、……相等,它们和各射线的交角即为各次碰撞的 入射角与直角之和. 碰撞入射角为0°时,即交角为90°时 开始返回. 故质点运动的总路程为一锐角为60°的Rt△AMO 的较小直角边AM的二倍. 即 所用总时间 (3)碰撞过程中离O的最近距离为另一直角边长 此题也可以用递推法求解,读者可自己试解. 例2 有一个很大的湖,岸边(可视湖岸为直线)停放着一艘小船,缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h.同时岸上一人从停放点起追赶小船,已知他在岸上跑的速度为 4.0km/h,在水中游的速度为2.0km/h,问此人能否追及小船?

高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法 一、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 赛题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向, 不计滑轮质量及摩擦,若人和车保持相对静止,且 水平地面是光滑的,则车的加速度为 . 解析:要求车的加速度,似乎需将车隔离出来才 能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可. 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F=(M+m)a ,解得: m M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图 1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大 小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )

解析表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a和小球b的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a、b及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a+m b)g,作用在两个小球上的恒力F a、F b和上端细线对系统的拉力T1.因为系统处于平衡状态,所受合力必为零,由于F a、F b大小相等,方向相反,可以抵消,而(m a+m b)g的方向竖直向下,所以悬线对系统的拉力T1的方向必然竖直向上.再以b球为研究对象,b球在重力m b g、恒力F b和连线拉力T2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T2的方向必与恒力F b和重力m b g的合力方向相反,如图所示,故应选A. 例3有一个直角架AOB,OA水平放置,表面粗糙,OB竖直向下,表面光滑,OA上套有小环P,OB上套有小环Q,两个环的质量均为m,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大B.N不变,T变小 C.N变大,T变小D.N变大,T变大 解析先把P、Q看成一个整体,受力如图1—4—甲所示, 则绳对两环的拉力为内力,不必考虑,又因OB杆光滑,则杆在 竖直方向上对Q无力的作用,所以整体在竖直方向上只受重力和 OA杆对它的支持力,所以N不变,始终等于P、Q的重力之和。 再以Q为研究对象,因OB杆光滑,所以细绳拉力的竖直分量等 于Q环的重力,当P环向左移动一段距离后,发现细绳和竖直方向 夹角a变小,所以在细绳拉力的竖直分量不变的情况下,拉力T应变小.由以上分析可知应选B. 例4 如图1—5所示,质量为M的劈块, 其左右劈面的倾角分别为θ1=30°、θ2=45°, 质量分别为m1=3kg和m2=的两物块, 同时分别从左右劈面的顶端从静止开始下滑,

全国中学生物理竞赛内容提要(俗称竞赛大纲)2020版

说明: 1、2016版和2013版相比较,新增了一些内容,比如☆科里奥利力,※质心参考系☆虚功原理,☆连续性方程☆伯努利方程☆熵、熵增。另一方面,也略有删减,比如※矢量的标积和矢积,※平行力的合成重心,物体平衡的种类。有的说法更严谨,比如反冲运动及火箭改为反冲运动※变质量体系的运动,※质点和质点组的角动量定理(不引入转动惯量) 改为质点和质点组的角动量定理和转动定理,并且删去了对不引入转动惯量的限制,声音的响度、音调和音品声音的共鸣乐音和噪声增加限制(前3项均不要求定量计算)。 2、知识点顺序有调整。比如刚体的平动和绕定轴的转动2013版在一、运动学的最后,2016版独立为一个新单元,---很早以前的版本也如此。 3、2013年开始实行的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。2016年开始实行的进一步细化,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。 全国中学生物理竞赛内容提要 (2015年4月修订,2016年开始实行) 说明:按照中国物理学会全国中学生物理竞赛委员会第9次全体会议(1990年)的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛、复赛和决赛命题的依据。它包括理论基础、实验、其他方面等部分。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁经全国中学生物理竞赛委员会第10次全体会议通过,开始实施。 经2000年全国中学生物理竞赛委员会第19次全体会议原则同意,对《全国中学生物理竞赛内容提要》做适当的调整和补充。考虑到适当控制预赛试题难度的精神,《内容提要》中新补充的内容用“※”符号标出,作为复赛题和决赛题增补的内容,预赛试题仍沿用原规定的《内容提要》,不增加修改补充后的内容。 2005年,中国物理学会常务理事会对《全国中学生物理竞赛章程》进行了修订。依据修订后的章程,决定由全国中学生物理竞赛委员会常务委员会组织编写《全国中学生物理竞赛实验指导书》,作为复赛实验考试题目的命题范围。 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2013年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 2015年对《全国中学生物理竞赛内容提要》进行了修订,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。 力学 1. 运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度

相关文档
最新文档