2014小学数学典型应用题
小学数学典型应用题(含答案)

1 / 12 小学数学典型应用题(含答案) 一、单选题 1.第12盆花与第8盆花相距( )米。
A.12 B.10 C.8 2.下面四杯糖水中,最甜的一杯是( ) A.糖和水的质量比是1:9 B.20g糖配成200g糖水
C.200g水中加入20g糖 D.含糖率为11% 3.6位中国象棋选手进行比赛,每两人之间比赛一局,如果是平局,参赛选手各得1分;否则赢者得3分,输者得0分。最后六位选手的得分之和为39分,则平了( )局。 A.3 B.4 C.5 D.6 4.
绿化队要在一条50m的小路两边栽树。每隔5m种一棵树(一端栽,一端不栽)。一共要栽
( )棵。 A.10 B.20 C.22 D.18 5. 下面能用算式“140×28”解决的问题是 ( )。 ① 体育场共有28个看台,每个看台能容纳140名观众,一共能容纳多少名观众?
②一个小型停车场可以停放140辆汽车,大型停车场停车的数量是小型停车场的28倍。大型停
车场可以停放多少辆汽车? ③ 一块面积为140m2的菜地,如果每28m2安装一个洒水喷头,一共需要安装多少个洒水喷头?
④一套校服140元,买28套需要多少元?
A.①②③ B.①②④ C.②③④ D.①③④
二、填空题 6.循环小数2.788788…,小数点后第100位上的数字是 。 7.把一根木头平均分成6段,需要锯 次。 把一根木头平均锯4次,可以分成 段。
提示:像这样锯1次,木头就分开成了两段。 8.
栽下一片新绿,播种一片希望。植树队一共购买了4捆树苗,每捆30棵,现将这些树苗重新平 2 / 12
均分成6捆给队员,那么现在每捆有 棵树苗。 9.
多多家住在3楼,他从1楼跑到2楼用了6秒,照这样的速度,他从1楼跑到3楼要用
秒。 10.+=14 -=1 = = 。
11.如果++=13,+++=18,那么6×+= 。 12.☆+☆+☆+☆+☆=38 ☆+☆=15 ☆+☆+☆+☆+☆= 。
小学数学30道典型应用题-分类汇总

小学数学典型应用题小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。
这本资料主要研究以下30类典型应用题:【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
小学数学典型应用题6:年龄问题(含解析)

小学数学典型应用题6:年龄问题(含解析)典型应用题:1.归一问题2.归总问题3.和差问题4.和倍问题5.差倍问题01和倍问题【含义】已知两个或多个人年龄关系,求各自年龄或年龄关系,这类应用题叫做和倍问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数解题思路和方法年龄问题具有年龄同增同减,年龄差不变的特性。
年龄问题都可以转化为和差、和倍、差倍问题。
简单的题目直接利用公式,复杂的题目变通后利用公式。
例1爸爸今年38岁,妈妈今年36岁,当爸爸42岁时,妈妈 _____ 岁。
解:1、本题考查的年龄差不变(简单),不管过了多少年年龄差是不变的。
2、爸爸比妈妈大2岁,根据不管过了多少年年龄差是不变的,当爸爸42岁时,妈妈是40岁。
例2姐姐今年15岁,妹妹今年12岁,当她们的年龄和是39岁时,那时妹妹 _____ 岁。
解:方法一:1、利用年龄同增同减的思路。
2、姐妹俩今年的年龄之和是:15+12=27(岁),年龄之和到达39岁时需要的年限是:(39-27)÷2=6(年)。
3、那是妹妹的年龄是12+6=18(岁)。
方法二:1、利用年龄差不变的思路。
2、两姐妹的年龄差为15-12=3(岁),再根据小数=(和-差)÷2的公式,可以求出妹妹的年龄为(39-3)÷2=18(岁)。
例3爸爸今年50岁,哥哥今年14岁,_____ 年前,爸爸的年龄是哥哥的5倍。
解:1、不管过了多少年,年龄差是不变的,当爸爸的年龄是哥哥的5倍时,年龄差仍是50-14=36(岁)。
2、问什么时候爸爸的年龄是哥哥的5倍,实际上年龄差就是哥哥的5-1=4倍。
3、根据两个数的差÷(几倍-1)=较小的数,可以求出哥哥当时的年龄是(50-14)÷4=9(岁)。
小学数学30种典型应用题与例题完美版

小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。
这本资料主要研究以下30类典型应用题:1 归一问题11 行船问题21 方阵问题2 归总问题12 列车问题22 商品利润问题3 和差问题13 时钟问题23 存款利率问题4 和倍问题14 盈亏问题24 溶液浓度问题5 差倍问题15 工程问题25 构图布数问题6 倍比问题16 正反比例问题26 幻方问题7 相遇问题17 按比例分配27 抽屉原则问题8 追及问题18 百分数问题28 公约公倍问题9 植树问题19 “牛吃草”问题29 最值问题10 年龄问题20 鸡兔同笼问题30 列方程问题1 归一问题在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
2014-2021年人教版五年级数学上册经典例题(二):简易方程

2014-2021年人教版五年级数学上册经典例题(二):简易方程学校:___________姓名:___________班级:___________考号:___________一、解答题1.□+□=4,□×□=4,求□的解。
2.下面是一个长方形,在长方形内剪一个最大的正方形,用字母表示剩余的面积。
3.儿子今年a岁,爸爸今年36岁,30年后,爸爸比儿子大几岁?4.某超市原有苹果150千克,又运来10箱苹果,每箱重a千克。
(1)用式子表示出这个超市里现有苹果的总质量。
(2)根据(1)中所列式子,求但a=15时,超市里共有多少千克苹果。
5.△=■+■+■+■,△=x,■+■=100,用方程表示下面的数量关系。
6.下面算式中的相同字母表示相同的数字,不同的字母表示不同的数字,每个字母表示什么?7.小明身高134厘米,比小刚身高矮2.5厘米。
小刚身高多少厘米?8.钢琴的琴键分为黑、白两种颜色,其中白键有52个,比黑键的1.5倍少2个,一架钢琴的黑键有多少个?9.妈妈到超市买蔬菜,买了2千克西红柿,每千克3.5元,买了4千克青椒,一共花了17元。
青椒每千克多少元?10.今年王老师的年龄是陈强的3倍,王老师6年前的年龄和陈强10年后的年龄相等,陈强和王老师今年各是多少岁?11.今年哥哥的年龄比弟弟年龄的3倍多1岁,弟弟5年后的年龄比3年前哥哥的年龄大1岁,兄弟俩现在各多少岁?12.小丽和小华共踢了144个毽子,小华踢的个数是小丽的2倍,小丽和小华各踢了多少个?二、其他计算13.三、解方程或比例14.解方程:2(x-16)=8参考答案1.□=2【解析】由于结果不大,可以采用列举法。
1×4=4,1+4≠4;2×2=4;2+2=4,符合条件。
考点:用字母表示数的应用。
总结:用字母表示数是学习代数初步知识的起点。
在算数里,人们只对一些具体的、个别的数量关系进行研究,引入字母表示数后,就可以表达研究具有更普遍意义的的数量关系。
2014新人教版五年级上册数学第五单元《用字母表示数》例4

vt 路程S=(
)
3、用字母表示乘法分配率是
((a+b)×c=ac+bc)
第2页,共14页。
这一大杯果汁 一共1200g,倒
了3小杯。
1. 同学们,根据已知条件你 能提出什么问题?
2. 同学们,如果大杯里的果汁还有剩余,
你能提个数学问题吗?
大杯里还剩多少克果汁?
3. 谁来说说怎么解答?
第3页,共14页。
含字母的算式表示:还剩 1200-3x
谁理解了3x在本题 中表示什么意思,
给大家说说?
一小杯果汁x克,
3小杯果汁就是 3个x,总共3x
第5页,共14页。
讨论:1200-3x中x的取值:
思考:1. 请同学们想一想,式子中的x表示 100g行吗?
2. 表示500g行吗? 3.式子中的x最大能表示多少呢?
b的5倍( 5b )
比y小9的数( y-9 )
c与2的和( c+2)
d除以13的商( d÷) 13
比m的2倍少3的数( 2m-3)
比x的7倍多20的数( 7x+20)
2.当a=24,b=6时,求下列各式的值。
a+b=( 30)
a - b=( )18
ab = ( 144)
a÷b=(
)4
第9页,共14页。
简易方程
用字母表示数
绿色圃中 小学教 育网http://w
绿色圃中 小学教 育网http://w
第1页,共14页。
1、如果用字母a表示长方形的长,b表示长方形的
宽,这个长方形的面积S=(
)。 2(a+b)
ab ),周长C=(
2、如果用v表示速度,t表示时间,
小学数学典型的30道应用题:定义数量关系例题详解
⼩学数学典型的30道应⽤题:定义数量关系例题详解归⼀问题【含义】在解题时,先求出⼀份是多少(即单⼀量),然后以单⼀量为标准,求出所要求的数量。
这【含义】类应⽤题叫做归⼀问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求⼏份的数量;另⼀总量÷(总量÷份数)【数量关系】=所求份数【解题思路和⽅法】先求出单⼀量,以单⼀量为标准,求出所要求的数量。
【解题思路和⽅法】例1. 买5⽀铅笔要0.6元钱,买同样的铅笔16⽀,需要多少钱?解:买1⽀铅笔多少钱?0.6÷5=0.12(元)买16⽀铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3. 5辆汽车4次可以运送100吨钢材,如果⽤同样的7辆汽车运送105吨钢材,需要运⼏次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运⼏次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
归总问题【含义】【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、⼏⼩时(⼏天)的总⼯作量、⼏公亩地上的总产量、⼏⼩时⾏的总路程等。
小学数学典型应用题100道附答案(完整版)
小学数学典型应用题100道附答案(完整版)1. 小明有10 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?答案:10×2 = 20(个)2. 商店里有30 个篮球,卖出了15 个,还剩下多少个?答案:30 - 15 = 15(个)3. 一辆汽车每小时行驶80 千米,行驶4 小时,一共行驶了多少千米?答案:80×4 = 320(千米)4. 果园里有120 棵桃树,梨树比桃树少20 棵,梨树有多少棵?答案:120 - 20 = 100(棵)5. 一本书有200 页,小明每天看25 页,看了4 天,还剩多少页没看?答案:200 - 25×4 = 100(页)6. 工厂要生产500 个零件,已经生产了200 个,剩下的要在5 天内完成,平均每天生产多少个?答案:(500 - 200)÷5 = 60(个)7. 学校买了8 套桌椅,每套桌椅150 元,一共花了多少钱?答案:8×150 = 1200(元)8. 长方形的长是12 厘米,宽是8 厘米,它的面积是多少平方厘米?答案:12×8 = 96(平方厘米)9. 一根绳子长50 米,剪掉20 米,剩下的占全长的几分之几?答案:(50 - 20)÷50 = 3/510. 小红有80 元零花钱,花了30 元,还剩下零花钱的几分之几?答案:(80 - 30)÷80 = 5/811. 一个三角形的底是6 分米,高是4 分米,面积是多少平方分米?答案:6×4÷2 = 12(平方分米)12. 小明从家到学校,每分钟走60 米,走了10 分钟,小明家到学校有多远?答案:60×10 = 600(米)13. 一批货物,甲车单独运6 小时运完,乙车单独运8 小时运完,两车一起运,需要几小时运完?答案:1÷(1/6 + 1/8) = 24/7(小时)14. 鸡兔同笼,共有20 个头,56 条腿,鸡和兔各有多少只?答案:假设全是鸡,兔有(56 - 20×2)÷(4 - 2) = 8(只),鸡有20 - 8 = 12(只)15. 果园里苹果树和梨树共180 棵,苹果树是梨树的2 倍,苹果树和梨树各有多少棵?答案:梨树有180÷(2 + 1) = 60(棵),苹果树有120 棵。
小学数学30个典型应用题
小学数学30个典型应用题1. 甲乙两个人共有80元,甲比乙多10元,甲要减去1/5的钱给乙,剩下的钱甲还有多少元?解析:甲比乙多10元,即甲有x元,乙有x-10元。
甲要减去1/5的钱给乙,剩下的钱为4/5x。
所以4/5x = x-10,解得x=50,甲剩下的钱为(4/5)*50=40元。
2. 两个正整数的和是35,差是5,这两个数分别是多少?解析:设两个正整数分别为x和y,所以有x+y = 35和x-y=5。
将两个方程相加得到2x=40,解得x=20,代入第一个方程解得y=15。
所以这两个数分别是20和15。
3. 一辆汽车开车行驶了200公里,行驶速度为60千米每小时,行驶的时间是多少小时?解析:速度等于路程除以时间,所以时间等于路程除以速度。
这里路程为200公里,速度为60千米每小时,所以时间为200/60=3.33小时。
4. 一袋米重5千克,小明买了3袋米,他付了多少钱?如果他付了480元,那么每袋米多少钱?解析:小明买了3袋米,总重量为5千克*3=15千克。
如果他付了480元,那么每千克米的价格为480元/15千克=32元。
所以每袋米的价格为32元*5千克=160元。
5. 一盒饼干有24块,小明吃掉了其中的1/3,还剩下多少块饼干?解析:小明吃掉了1/3,剩下的饼干为原来的2/3。
所以剩下的饼干数量为24块*2/3=16块。
6. 一个苹果25克,小红买了6个苹果,她买了多少克苹果?解析:小红买了6个苹果,总重量为25克*6=150克。
7. 一路程为120公里的旅程,甲和乙同时从同一地点出发,乙的速度是甲速度的1.5倍,他们多少小时后会相遇?解析:设甲的速度为x千米每小时,乙的速度为1.5x千米每小时。
他们相遇时,甲行驶的时间为t小时,乙行驶的时间为1.5t小时。
根据路程等于速度乘以时间的公式,有xt+1.5xt=120,解得t=24/2.5=9.6小时。
所以他们9.6小时后会相遇。
8. 一辆公交车从A地出发,以每小时50千米的速度向B地行驶,另一辆公交车从B地同时以每小时60千米的速度向A地行驶。
小学数学典型应用题《差倍问题》专项练习
小学数学典型应用题专项练习《差倍问题》【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
【经典例题讲解】1、果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?解:(1)杏树有多少棵?124÷(3-1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
2、爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解:(1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。
3、商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解:如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。
4、粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解:由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。
把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨),运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年小学数学典型应用题 任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。为了提高学生数学学习能力,数学网小编坚持每天收集整理各单元应用题,方便学生学习,下面是2014年小学数学典型应用题,欢迎同学参考学习。 应用题可分为一般应用题与典型应用题,没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题: 1、归一问题 2、归总问题 3、和差问题 4、和倍问题 5、差倍问题 6、倍比问题 7、相遇问题 8、追及问题 9、植树问题 10、年龄问题11、行船问题 12、列车问题 13、时钟问题 14、盈亏问题 15、工程问题 16、正反比例问题 17、按比例分配 18、百分数问题 19、“牛吃草”问题 20、鸡兔同笼问题21、方阵问题 22、商品利润问题 23、存款利率问题 24、溶液浓度问题 25、构图布数问题 26、幻方问题 27、抽屉原则问题 28、公约公倍问题 29、最值问题 30、列方程问题 1归一问题 【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。 例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解(1)买1支铅笔多少钱?0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。 例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷? 解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷) 列成综合算式90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6天耕地300公顷。 例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材?5×7=35(吨) (3)105吨钢材7辆汽车需要运几次?105÷35=3(次) 列成综合算式105÷(100÷5÷4×7)=3(次) 答:需要运3次。 2归总问题 【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】先求出总数量,再根据题意得出所求的数量。 例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解(1)这批布总共有多少米?3.2×791=2531.2(米) (2)现在可以做多少套?2531.2÷2.8=904(套) 列成综合算式3.2×791÷2.8=904(套) 答:现在可以做904套。 例2小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 解(1)《红岩》这本书总共多少页?24×12=288(页) (2)小明几天可以读完《红岩》?288÷36=8(天) 列成综合算式24×12÷36=8(天) 答:小明8天可以读完《红岩》。 例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 解(1)这批蔬菜共有多少千克?50×30=1500(千克) (2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天) 列成综合算式50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。 3和差问题 【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】大数=(和+差)÷2 小数=(和-差)÷2 【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。 例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 解甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人) 答:甲班有52人,乙班有46人。 例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。 解长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米) 长方形的面积=10×8=80(平方厘米) 答:长方形的面积为80平方厘米。 例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。 解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知 甲袋化肥重量=(22+2)÷2=12(千克) 丙袋化肥重量=(22-2)÷2=10(千克) 乙袋化肥重量=32-12=20(千克) 答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。 例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐? 解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐) 乙车筐数=97-64=33(筐) 答:甲车原来装苹果64筐,乙车原来装苹果33筐。 4和倍问题 【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。 【数量关系】总和÷(几倍+1)=较小的数 总和-较小的数=较大的数 较小的数×几倍=较大的数 【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。 例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵? 解(1)杏树有多少棵?248÷(3+1)=62(棵) (2)桃树有多少棵?62×3=186(棵) 答:杏树有62棵,桃树有186棵。 例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨? 解(1)西库存粮数=480÷(1.4+1)=200(吨) (2)东库存粮数=480-200=280(吨) 答:东库存粮280吨,西库存粮200吨。 例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍? 解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍, 那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆) 所求天数为(52-28)÷(28-24)=6(天) 答:6天以后乙站车辆数是甲站的2倍。 例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少? 解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。 因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍; 又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍; 这时(170+4-6)就相当于(1+2+3)倍。那么, 甲数=(170+4-6)÷(1+2+3)=28 乙数=28×2-4=52 丙数=28×3+6=90 答:甲数是28,乙数是52,丙数是90。 5差倍问题 【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。 【数量关系】两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数 【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。 例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵? 解(1)杏树有多少棵?124÷(3-1)=62(棵) (2)桃树有多少棵?62×3=186(棵) 答:果园里杏树是62棵,桃树是186棵。 例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁? 解(1)儿子年龄=27÷(4-1)=9(岁) (2)爸爸年龄=9×4=36(岁) 答:父子二人今年的年龄分别是36岁和9岁。 例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元? 解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(万元) 本月盈利=18+30=48(万元) 答:上月盈利是18万元,本月盈利是48万元。 例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍? 解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此 剩下的小麦数量=(138-94)÷(3-1)=22(吨) 运出的小麦数量=94-22=72(吨)