小学六年级奥数几何的初步知识精解
小学奥数必备:10大几何图形解法!数学老师强力推荐!

小学奥数必备:10大几何图形解法!数学老师强力推荐!
小学数学是打基础的阶段,内容还比较简单,学有余力的孩子其实可以参加一下小学数学的奥数竞赛,锻炼一下孩子们的脑力。
没有参加过小学奥数的人生,算不上一个学霸的人生。
老师在课堂上讲的方法,是为了照顾孩子的大多数,不可能讲一些超纲的、课程内容之外的东西。
这对于一些成绩普普通通的孩子来说还无所谓,但对于那些成绩比较好的,还有更进一步的发挥余地的孩子们而言,无疑是一种脑力的浪费。
脑子是越转越灵活的,适当的来一些挑战,会让孩子的大脑越来越优秀!
今天我就给大家整理一篇小学数学10大几何图形的解法,有些比较基础,有些则可能属于奥数的范畴。
几何是非常锻炼孩子的空间想象能力的,通过巧妙的辅助线,往往会让孩子的大脑豁然开朗,对开动孩子们的脑力绝对有所帮助。
小升初六年级奥数几何知识专题

第一讲:几何综合之圆与扇形解析第四讲:几何综合之几何之比解析第六讲:几何综合之差不变原理解析第七讲:几何综合之等积变化解析第九讲:几何综合之等积变化解析第十讲:几何综合之图形综合训练题第十一讲:几何综合之等积变化练习几何综合之图形综合训练题(六年级奥数)1.明和爷爷分别沿小圆(A →B →C →D →E →A)和大圆两条路线散步.(如图)如果速度相同,两人同时出发,谁先回到出发地点?为什么?4用胶带捆住两根直径1分米的毛竹,捆一周(接头不计)胶带至少要多少分米?5、ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知:AB =BC =10cm,那么阴影部分的面积是多少?(圆周率14.3=π)6、计算图中阴影部分的面积。
(单位:厘米)7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?9.图中△AOB 的面积为152cm ,线段OB 的长度为OD 的3倍,则梯形ABCD 的面积为______.10.在下左图中ABCD 是梯形,AECD 是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).图形的计数。
例1、数出下列各图中长方形的个数分别是多少?A BC D C D例2 下图中共有多少个正方形?例3下图中有多少个角?练习1、有( )个角。
2、下图中共有多少个正方形?3.如图,O 为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4、数一数(1)、下图中一共有多少个长方形。
E FDAB CO5、将ABC 的每一边4等分,过各分点作边的平行线,在所得下图中有多少个三角形?6. 图中,圆的面积与长方形的面积相等。
长方形的长是12厘米,圆的半径是( )厘米。
7. 三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB 长40厘米, BC 长 厘米.8.图中三个圆的半径都是5厘米,三个圆两两相交于圆心,求阴影部分面积。
小学六年级初步奥数几何知识

小学六年级初步奥数几何知识1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式 c=2(a+b) s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式:c=4a ;s=a3、三角形(1)特征:由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式:s=ah/2(3)分类按角分:锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分:不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形(1)特征:两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的.度数之和为180度。
平行四边形容易变形。
(2)计算公式 s=ah5、梯形(1)特征:只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式 s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母∏表示。
(4) 圆的面积圆所占平面的大小叫做圆的面积。
六年级奥数几何-平面部分.学生版

平面几何部分知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.baS 2S 1DC BA S 4S 3S 2S 1O DCB A A BC D Ob aS 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?_ H_G_F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ DO F ED C B A【例 2】长方形ABCD的面积为362cm,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少?E【巩固】在边长为6厘米的正方形ABCD内任取一点P,将正方形的一组对边二等分,另一组对边三等分,分别与P点连接,求阴影部分面积.【例 3】如图所示,长方形ABCD内的阴影部分的面积之和为70,8AD=,四边形EFGO的面积AB=,15为.B【巩固】如图,长方形ABCD的面积是36,E是AD的三等分点,2=,则阴影部分的面积为.AE EDB【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BA【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E D CBA【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDA【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EF【例 9】 如图所示的四边形的面积等于多少?DCB13131212【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDC【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?x y y x ABCD E FGE D CBA【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABC DO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?B【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGFEDCBA【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF G【例 17】如图,正方形ABCD面积为3平方厘米,M是AD边上的中点.求图中阴影部分的面积.CBA【巩固】在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF的面积为1平方厘米,那么正方形ABCD面积是平方厘米.AB CDEF【例 18】已知ABCD是平行四边形,:3:2BC CE ,三角形ODE的面积为6平方厘米.则阴影部分的面积是平方厘米.B【巩固】右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCDEF【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?B【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .BEE【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADEDEGF FGCB S S S =△四边形四边形 .EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF与BE 相交于点G ,求ABG S △GFAEDCB【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG∆的面积.MHGF E D CBAQ E GNMF P A D C B【例 25】如图,ABCD为正方形,1cmAM NB DE FC====且2cmMN=,请问四边形PQRS的面积为多少?CA【例 26】如右图,三角形ABC中,:4:9BD DC=,:4:3CE EA=,求:AF FB.OFED CBA【巩固】如右图,三角形ABC中,:3:4BD DC=,:5:6AE CE=,求:AF FB.OFED CBA【巩固】如右图,三角形ABC中,:2:3BD DC=,:5:4EA CE=,求:AF FB.OFED CBA【例 27】如右图,三角形ABC中,:::3:2AF FB BD DC CE AE===,且三角形ABC的面积是1,则三角形ABE 的面积为______,三角形AGE的面积为________,三角形GHI的面积为______.IHGFED CBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC的面积.IH G FEDCBA【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的倍.B【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBA【巩固】如图,ABC 的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF G【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EF【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBA【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBA。
小学奥数几何六大模型及例题通用课件

勾股定理模型。通过勾股定理及其 逆定理,求解三角形边长、角度等 问题。
模型四
圆与扇形模型。利用圆和扇形的性质 ,求解面积、弧长、角度等问题。
模型五
平移、旋转、对称模型。通过图形 的平移、旋转、对称等变换,求解 面积、长度等问题。
模型六
轨迹模型。根据点的运动轨迹,求 解图形的性质和问题。
学习方法与建议
概念
等积变换是指在保持面积或体积不变的前提下,通过平移、旋转、翻转等操作, 将复杂的几何图形转化为简单的、易于计算的图形,从而简化问题的解决过程。
特点
等积变换具有直观性、灵活性和创造性等特点,能够帮助学生发展空间观念和几 何直觉,提高解决问题的能力。
典型例题解析
例题1
求解一个不规则图形的面积。通 过等积变换,将不规则图形划分 为若干个规则图形,然后分别计 算规则图形的面积并求和。
典型例题解析
01
02
03
04
例题1
已知两个相似三角形的对应边 分别为3cm和4cm,求它们
的相似比和面积比。
解析
根据相似三角形的定义,可以 得到它们的相似比为3:4,面
积比为9:16。
例题2
在直角三角形ABC中,角C为 直角,AC=6cm,BC=8cm ,求斜边AB上的高CD的长度
。
解析
利用相似三角形的性质,可以 得到三角形ACD与三角形
解析
根据勾股定理,斜边c满足 c²=3²+4²=25,所以c=5。
例2
判断三角形ABC是否为直角三 角形,已知a=5, b=12, c=13 。
解析
根据逆定理,因为5²+12²=13² ,所以三角形ABC为直角三角 形。
六年级数学竞赛上册奥数高思第10讲立体几何(彩色)

六年级上册第10讲10立体几何首先,我们来复习长方体、正方体的体积与表面积的计算方法.图形体积表面积c V=abc长方体S=2×(ab+bc+c a)长方体a bV=a=3 S6a2正方体正立方体a70身体健康立体几何课本例题1将表面积为54平方厘米、96平方厘米、150平方厘米的三个实心铁质正方体熔铸成一个大正方体(不计损耗).请问:这个大正方体的体积是多少立方厘米?分析所给的每个正方体的棱长是多少?体积是多少?熔铸成一个大正方体的体积怎么求?练习1.3个相同的正方体拼成一个长方体,长方体的表面积为350平方厘米,那么每个正方体的体积是多少立方厘米?例题2一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米.请问:这个长方体的表面积是多少平方厘米?分析我们先考虑第一种情况,长增加2厘米,高和宽保持不变.如下图(1),多出的体积用虚线表示,我们就会发现,这一块的体积为2×高×宽=40(立方厘米),由此可以求出左右两个侧面的面积.当然另两对侧面也可以用类似的方法求出.?2??3 Щ?4Щ?1??2??3?71身体健康六年级上册第10讲练习2.一个长方体,如果长减少2厘米,宽和高不变,它的体积将减少48立方厘米;如果宽增加3厘米,长和高不变,它的体积将增加99立方厘米;如果高增加4厘米,长和宽都不变,它的体积则会增加352立方厘米.那么这个长方体的表面积是多少平方厘米?例题3有30个棱长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习3.把棱长为1厘米的正方体,像下图这样层层重叠放置,那么当重叠到第五时,这个立体图形的表面积是多少平方厘米?三视图众所周知,一个物体从正面看与从后面看,从左边看与从右边看、从上面看与从下面看得到的图形都是相同的,于是我们把从正面、左面、上面看过去得到的图形,分别叫做正视图、左视图、俯视图,三个图形合起来我们就称之为三视图.???????72身体健康立体几何课本那么请同学们想一想,一个圆锥的三视图是什么样子的呢?给定了三视图,它所对应的物体形状是不是唯一确定的呢?如果一个物体的三视图如下所示,它的形状又可能有哪几种呢??????例题4一个正方体被切成24个大小形状相同的小长方体(见右图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来相比,正好多出了A、B 两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习4.如图所示,有一个长方体,先后沿不同方向切了三刀.切完第一刀后得到的两个小长方体的表面积之和是472平方厘米,切完第二刀后得到的四个小长方体的表面积之和是632平方厘米,切完第三刀后得到的八个小长方体的表面积之和是752平方厘米.那么在原来长73身体健康六年级上册第10讲方体的6个面中,面积最小的面是多少平方厘米?除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.??????如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高.圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高;顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.立体图形体积侧面展开图h V圆柱= 底面积×高= r2h圆柱的侧面展开图为长方形,长为圆柱底面周长,宽为圆柱的高.r圆锥的侧面展开图为扇形,半hr V圆锥=1313×底面积×高2h径为母线(不是圆锥的高!),弧长为圆锥底面周长.(注:圆锥侧面展开只需了解,不需掌握)大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:V= 底面积×高埃及金字塔金字塔是4000多年前古埃及法老的陵墓,因为其造型的雄伟和年代的久远,被誉为世界七大奇迹之首.其中最大的一座是兴建于公元前2760年的胡夫金字塔.据历史学家推测,当年建造这座金字塔一共动用了10万人的劳力,前后历时30年,才得以竣工.74身体健康立体几何课本在胡夫金字塔的东南面还有著名的狮身人面像,是法老胡夫的儿子哈佛拉的形象.两者交相辉映,甚为壮观.从形状上看,胡夫金字塔是一个正四棱锥,底座是一个正方形,侧面是4个形状一胡夫金字塔侧视图胡夫金字塔俯视图模一样的等边三角形.正方形底座每边长约230米,塔高约147米,有将近50层楼高!这么一个庞然大物,它的体积究竟是多少呢?例题5张大爷去年用长2米、宽1米的长方形苇席围成了一个容积最大的圆柱体粮囤.今年他改用长3米、宽2米的长方形苇席来围,也同样围成容积最大的圆柱囤.请问:今年粮囤的容积是去年粮囤容积的多少倍?分析用长方形苇席成圆柱体的粮囤只有两种围法,如下图所示.用去年的苇席怎样围,得到的圆柱体粮囤最大?用今年的苇席呢?练习5.有一根长为20厘米、底面直径为6厘米的圆柱体钢材,在它的两端各钻一个深为4厘米、底面直径也为6厘米的圆锥形的孔,做成一个零件(如右图).这个零件的体积为多少立方厘米?75六年级上册第10讲例题6一个底面长30分米、宽10分米、高12分米的长方形水池,存有四分之三的池水.(1)将一个高11分米,体积330立方分米的圆柱放入池中,水面的高度变为几分米?(2)如果再放入一个同样的圆柱,水面高度又变成了几分米?(3)如果再放入一个同样的圆柱,水面高度又变成了几分米?分析圆柱放入水中可能有如下几种情况:(1)水浸没了圆柱的一部分.这时的情况如图所示:????????????????????(2)水把圆柱都浸没了,但是水没有溢出池面,如图所示:?????????(3)水溢出了水池.这时水面的新高度就是水池的高度.如图所示:ē? ??? ??????因此,在一次次放入圆柱时,我们要做两次判断:先要判断放入圆柱后,水是否完全浸没圆柱;如果完全浸没,再判断水是否会溢出水池.然后才来求解.76立体几何课本练习6.一个底面长20分米、宽8分米、高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?思考题右图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?本讲知识点汇总一、长方体、正方体的表面积与体积公式.二、圆柱体、圆锥体的体积公式.三、三视图法求表面积.四、立体图形与排水问题.作业1.一个长方体的体积是120立方厘米,底面是面积为4平方厘米的正方形,求长方体的表面积.77六年级上册第10讲2.如图,同样大小的立方体木块堆放在房间的一角,一共垒了10层,那么在这10层中看不见的木块共有多少个?3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.4.求下面图形的体积:(取=3.14)1410165.一个圆柱形玻璃杯内装着水,水面高2.5厘米.从里面量,玻璃杯的底面积是72平方厘米.将一个棱长为6厘米的正方体铁块放入杯中,水面会淹没铁块吗?如果没有,这时水面高多少厘米?78。
六年级奥数讲义必备专题第4讲.几何-平面部分.学生版
一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =aS 2S 1 DC BA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△1. 熟练掌握五大面积模型2. 掌握五大面积模型的各种变形第四讲几何—平面部分教学目标知识点拨EDCBAEDCB A图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):A BCDO ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?E_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ D_H_G_ F_E_D_C_B_ A _A_B_C_D_E_ F_ G_H例题22例题精讲例题11【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.BA【巩固】(2008年清华附中考题)如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .B例题33BGFE DC BAEDCBA例题66例题55例题44【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAEDCBA例题88例题77HGAB CD EF例题1111例题1010例题99DFEABDCFED CBA【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?例题1313例题1212ABEDCBAAB CDO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC的面积;⑵:AG GC=?B例题1515例题1414OGF EDCBAABCD EF GBA【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.例题1717例题1616ABCDEFB【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【巩固】(2008年三帆中学考题)右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B例题1919例题1818?852O A BCDEFBBE例题2222例题2121例题2020EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD D F FM M P PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .Q E GNMF PA D CB例题2323GFAEDCBMHGF E DCBACA例题2626例题2525例题2424O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBAI HGFEDC BA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.例题2727IH G FEDCBA【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD D A =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.B【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAGFE D CBA【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?例题2828K J IHABC D E F GN M GA BCD E FGCBA例题3131例题3030例题2929GCBAFED CBAH GFED CB A练习33练习22练习11家庭作业H GFEDC BADCEBAED练习66练习55练习44FABCDE MNIH G FEDCBA练习77备选22备选11月测备选OE DCBAA BCDEF备选55备选44备选33GF EDCBAIHG FEDCBA备选66。
六年级奥数-第五讲.几何-立体部分.教师版
第五讲 几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查. 知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED BA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】 我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【例 2】 右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【解析】 原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】 对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【例 3】 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【解析】 我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【例 4】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次, 6+1⨯1⨯2⨯6=18(平方米).【巩固】(2008年走美六年级初赛)一个表面积为256cm 的长方体如图切成27个小长方体,这27个小长方体表面积的和是 2cm .【解析】 每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cm )⨯=.【例 5】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【例6】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b=2h时,如何打包?⑵当b<2h时,如何打包?⑶当b>2h时,如何打包?【解析】图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h+6b,图3的周长是12h+4b.两者的周长之差为2(b-2h).当b=2h时,图2和图3周长相等,可随意打包;当b<2h时,按图2打包;当b>2h时,按图3打包.图3图2图1hba【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6=1⨯2⨯3,所以一共有两种拼接方式:第一种按长宽高1⨯1⨯6拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高1⨯2⨯3拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【例7】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:55250⨯⨯=(平方分米);侧面:554100⨯⨯=(平方分米),44464⨯⨯=(平方分米).这个立体图形的表面积为:5010064214++=(平方分米).【例8】(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【解析】(法1)四个正方体的表面积之和为:2222+++⨯=⨯=(平方厘米),(1235)6396234重叠部分的面积为:222222222⨯+⨯+++++++=+++=(平方厘米),13(221)(321)(321)39141440所以,所得到的多面体的表面积为:23440194-=(平方厘米).(法2)三视图法.从前后面观察到的面积为222++=平方厘米,从左右两个面观察到的面积为5323822=平方厘米.+=平方厘米,从上下能观察到的面积为25255334表面积为()++⨯=(平方厘米).3834252194【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面2+个左面2+个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(9810)254++⨯=(平方厘米).上下面左右面前后面【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于(977)246++⨯=个小正方形的面积,所以该图形表面积为46平方厘米.【例10】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【解析】 44(1234)456⨯++++⨯=(平方米).【例 11】 棱长是m 厘米(m 为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m 的最小值是多少?【解析】 切割成棱长是1厘米的小正方体共有3m 个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12,而131225+=,所以小正方体的总数是25的倍数,即3m 是25的倍数,那么m 是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有5554265⨯+⨯⨯=个,表面没有红色的小正方体有 1256560-=个,个数比恰好是13:12,符合题意.因此,m 的最小值是5.【例 12】 有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】 要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42)8-=(个),用黑色的;在面上但不在边上的小正方体有2(42)624-⨯=(个),其中30822-=个用黑色.这样,在表面的44696⨯⨯=个11⨯的正方形中,有22个是黑色,962274-=(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例 13】 三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析】 每个长方体的棱长和是288396÷=厘米,所以,每个长方体长、宽、高的和是96424÷=厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87⨯面,有8756⨯=个;涂两面的长方体,若两面不相邻,应涂两个87⨯面,有872112⨯⨯=个;若两面相邻,应涂一个87⨯面和一个97⨯面,此时有()7892105⨯+-=个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个87⨯面、一个97⨯面,有()78894147⨯++-=个;若三面两两相邻,有()()()()()()718171918191146-⨯-+-⨯-+-⨯-=个,所以涂三面的最少有146个. 那么切割后只有一个面涂色的小正方体最少有56105146307++=个.【例 14】 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】 设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b =⨯,那么分成的小正方体个数为()()()()221242104a b ab a b a b +⨯+⨯=+++=++,为了使小正方体的个数尽量少,应使()a b +最小,而两数之积一定,差越小积越小,所以当10a b ==时它们的和最小,此时共有 ()()102102144+⨯+=个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331÷+⨯=.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227108⨯⨯=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.【例 15】 把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【解析】 一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.红红红红红红红红红红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有52422222⨯+⨯+⨯=(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值. 对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴ ⑵ ⑶ ⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色. ⑵如图,阴影部分是首尾相接由9个方格组成的环,这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的18个方格中最多能有8个可染成红色.⑶剩下633839212⨯⨯-⨯-⨯=个方格,分布在6条棱上,这12个格子中只能有6个能染成红色. 综上所述,能被染成红色的方格最多能有88622++=个格子能染成红色,第一种解法中已经给出22个红方格的染色方法,所以22个格子染成红色是最多的情况.【例 16】 一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:()33321151212961107⨯⨯-++=(立方厘米).12129996663121263912【例 17】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?A【解析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块.【巩固】这个图形,是否能够由112⨯⨯的长方体搭构而成? 【解析】 每一个112⨯⨯的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112⨯⨯的长方体搭构而成.【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?33223323322323111111【解析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.【例 18】 (05年武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【解析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前 后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、 ()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为 138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数: 前后方向:32上下方向:30 左右方向:40总表面积为()2323040204⨯++=.【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目)的题目一般可以采用“切片法”第8题来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的),然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第1层第2层第3层第4层第5层从图中可以看出,第1、2、3、4、5层剩下的小正方体分别有22个、11个、11个、6个、22个,所以总共还剩下22111162272++++=(个)小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体【解析】解法一:(用“容斥原理”来解)5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,正面图形和侧面图形重合抽出的小正方体⨯=个,由底面图形抽出的小正方体有4520有1221228⨯+⨯=个,底面图形和侧⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有13227面图形重合抽出的小正方体有1211227⨯+⨯+⨯=个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,252520877452-=,所以右图中++---+=,所以共抽出了52个小正方体.1255273剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【例19】(2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.⑷⑶⑵⑴⑾⑽⑼⑻⑺⑹⑸【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去1ABDA 、1CBDC 、111D AC D 、111B AC B );而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB 、1DACD ). D 1C 1B 1A 1D CBAABCDA 1B 1C 1D 1假设左图中的立方体的棱长为a ,右图中的立方体的棱长为b ,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:3231114233a a a a -⨯⨯⨯=,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为3231122233b b b b -⨯⨯⨯=.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即2b a =.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:()33331212::21:163333a b a a =⨯=,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【例 20】 图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴ 图⑵ 【解析】 首先,我们把展开图折成立体图形,见下列示意图:图⑴ 图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:1和图3一致!60°图⑶ 图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是1111112222348⨯⨯⨯⨯=,所以切掉8个角后的体积是1518486-⨯=.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为12的立方体来套.如果把图⑵的立体图形放入边长为12的立方体里的话是可以放进去的.12这是切去了四个角后的图形,从上面的分析可知一个角的体积为148,所以图⑵的体积是:1111142224824⨯⨯-⨯=,那么前者的体积是后者的5120624÷=倍.【例 21】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【例 22】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米).【例 23】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米)当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米.【例 24】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【解析】 做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米), 原来的长方形的面积为:10462.81022056⨯+⨯⨯=()()(平方厘米).【例 25】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【解析】 沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2π188π25.12⨯⨯==(立方厘米).【例 26】 一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)。
1.8小学必学奥数几何图形的认识
本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交: 两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大.(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边. 边边顶点直角锐角钝角顶角顶角边边角角角顶角边知识点拨(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等. 直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角腰腰下底上底(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.半径直径半圆直径弧半径半径高宽长底面底面底面(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例 1】请看下图,共有个圆圈。
六年级奥数-第五讲[1].几何-立体部分.教师版.
第五讲几何——立体部分—、长方体和正方体如右图,长方体共有六个面(每个面都是长方形,八个顶点■十二条棱.cF①在六个面中,两个对面是全等的•即三组对面两两全等.(S 放在一起能够完全 重合的两个图形称为全等图形•②长方体的表面积和体积的计算公式是:长方体的 表面积:2( S ab be ca 二++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体•它是长方体的特例,它的六个面都是正方形•如果 它的棱长为a ,那么:26S a 二正方体,3V a 二正方体-例题精讲:2【解析】原正方体的表面积是4X 4X 6=96(平方厘米•每一个面被挖去一个边长是1厘米的正方形,同时又増加了5个边长是1厘米的正方体作为玩具的表面积的组成部分•总的来看■每一个面都増加了4个边长是1厘米的正方形.从而•它的表面积是:96+4x 6=120平方厘米【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】对于和长方体相关的立体图形表面积9一般从上下.左右.前后3个方向考虑•变化前后的表面积不变:50x 50x6=15000(平方厘米•【例3]下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1厘米的正方形小洞•第三个正方形小洞的挖法和前两个相同为1 2厘米•那么最后得到的立体图形的表面积是多少平方厘米?【解析】我们仍然从3个方向考虑•平行于上下表面的各面面积之和: 2X2X2=8(平方厘米;左右方向.前后方向:2X2X4=16(平方厘米.lxlx4=4(平方厘米,1 2 XX 4=1(平方厘米.x4=(平方厘米•这个立体图形的表面积为:816++4+1+ 1429(平方厘米・【例4]-个正方体木块9棱长是1米■沿着水平方向将它锯成2片,每片又锯成3长条■每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】锯一次増加两个面•锯的总次数转化为增加的面数的公式为:锯的总次数X2二增加的面数•原正方体表面积:lx lx6=6(平方米L共锯了(2-1 +(3-1 +(4-1 =6次, 6+1 X I x2x6=18(平方米•【巩固】(2008年走美六年级初赛一个表面积为256cm的长方体如图切成27个小长方体•这27个小长方体表面积的和是2【解析J每一刀増加两个切面•增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cmx=・【例5]如图,25块边长为1的正方体积木拼成一个几何体•表面积最小是多少?【解析J当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333X X的正方体时,表面积最小■现在要去掉2块小积木,只有在两个角上各去掉一块小积木9或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54・【例6】要把12件同样的长Q、宽b.高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b=2h时•如何打包?⑵当b<2h时•如何打包?⑶当b:>2h时•如何打包?【解析】图2和图3正面的面积相同■侧面面积二正面周长X长方体长■所以正面的周长愈大表面积越大,图2的正面周长是8h +6b,图3的周长是12h +4b .两者的周长之差为2(b・2h・当b =2h时,图2和图3周长相等,可随意打包;当b <2h时,按图2打包;当b >2h 时,按图3打包【巩固】要把6件同样的长17.宽人高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6=I X2X3,所以一共有两种拼接方式:第一种按长宽高1x1x6拼接•重叠面有三种选择•共3种包装方法•第二种按长宽高1x2x3拼接,有3个长方体并列方向的重叠面有三种选择•有2个长方体并列方向的重S面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034【例7】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩'‘的「压缩'‘后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起9正好是大正方体的上面•这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向:小正方体的四个侧面,大正方体的四个侧面•上下方向:55250xx={平方分米;侧面:554100xx=(平方分米,44464xx={平方分米.这个立体图形的表面积为:5010064214++={平方分米-【例8】(2008年“希望杯,,五年级第2试如图•棱长分别为1厘米、2厘米、3厘米.5厘米的四个正方【解析】(法1四个正方体的表面积之和为:2(1235 6396234+++x=x=(平方厘米,重叠部分的面积为:22222222213(221 (321 (32139141440X + X+++++++=+++=(平方厘米,所以,所得到的多面体的表面积为:23440194-=(平方厘米.(法2三视图法•从前后面观察到的面积为22253238卄二平方厘米,从左右两个 面观察到的面积为225334+二平方厘米•从上下能观察到的面积为2525二平方厘米•表面积为(3834252194++x=(平方厘米•【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个 立体图形•,求这个立体图形的表面积.丿. 体紧贴在一起,则所得到的多面体的表面积是 平方厘米.二葺丿.r~h【解析】从上下、左右、前后观察到的的平面图形如下面三图表示•因此,这个立体图形的表面积为:2个上面2+个左面2+个前面•上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:iO平方厘米.因此,这个立体图形的总表面积为:(9810254++x=(平方厘米・上下面左右面前后面【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【解析】该图形的上.左、前三个方向的表面分别由9、7. 7块正方形组成.该图形的表面积等于(977 246卄X二个小正方形的面积•所以该图形表面积为46 平方厘米.【例10]有30个边长为1米的正方体•在地面上摆成右上图的形式,然后把露出的表面涂成红色•求被涂成红色的表面积.【解析】44( 1234 456x ++++ x =(平方米•【例11】棱长是m厘米(m为整数的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体•至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为!3订2,此时m的最小值是多少?【解析】切割成棱长是I厘米的小正方体共有3m个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12而131225+m所以小正方体的总数是25的倍数即3m是25 的倍数,那么m是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面.上面和下面涂色,此时至少一面涂红色的小正方体有5554265x+xx=个,表面没有红色的小正方体有1256560•二个,个数比恰好是13:12,符合题意•因此m的最小值是5.【例12】有64个边长为1厘米的同样大小的小正方体•其中34个为白色的,30个为黑色的现将它们拼成-个444X X的大正方体•在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】要使大正方体的表面上白色部分最多•相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42 &=(个,用黑色的;在面上但不在边上的小正方体有2(42 624-x=(个,其中30822-=个用黑色.这样•在表面的44696X "个H X的正方形中,有22个是黑色.962274=(个是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例13】三个完全一样的长方体,棱长总和是288厘米9每个长方体相交于个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色■-个涂一面,一个涂两面,一个涂三面•涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析J每个长方体的棱长和是288396十二厘米,所以■每个长方体长、宽.高的和是96424=厘米因为9每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数•所以•每个长方体的长、宽、高分别是9厘米、8厘米.7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87x面■有8756X =个;涂两面的长方体,若两面不相邻■应涂两个87x面,有872112x X二个;若两面相邻,应涂一个87x面和一个97x面,此时有(7892105x+-=个, 所以涂两面的最少有105个;涂三面的长方体9若三面不两两相邻,应涂两个87x面.一个97x面9有(78894147 x++-=个;若三面两两相邻•有((((((718171918191146-x-+-x-+-x-=个■所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有56105146307++=个.【例14]把一个大长方体木块表面上涂满红色后•分割成若干个同样大小的小正方体•其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】设小正方体的棱长为1•考虑两种不同的情况•一种是长方体的长.宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽.高中有一个是1时■分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b二X,那么分成的小正方体个数为((((221242104a b ab a b a b +x+x二+++=++,为了使小正方体的个数尽量少■应使(a b + 最小,而两数之积一定•差越小积越小,所以当10a b =时它们的和最小,此时共有((102102144+X +二个小正方体.当长方体的长、宽、高都大于I时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331++X二.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227I08xx=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.【例15】把正方体的六个表面都划分成9个相等的正方形•用红、黄.蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色•那么•用红色染的正方形最多有多少个?【解析】一个面最多有5个方格可染成红色(见左下图•因为染有5个红色方格的面不能相邻,可以相对•所以至多有两个面可以染成5个红色方格.红红红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图•因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图•所以,红色方格最多有52422222X +X +X二(个.(另解事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色•但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由9个方格组成的环, 这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格、剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格,像这样的环,在正方体表面最多能找129到不重叠的两道(关于正方体中心对称的两道,涉及的18个方格中最多能有8个可 染成红色•⑶剩下6338392I2xx-x-x=个方格,分布在6条棱上,这12个格子中只能 有6个能染成红色.综上所述.能被染成红色的方格最多能有88622++二个格子能染 成红色.第一种解法中已经给出22个红方格的染色方法,所以22个格子染成红色是 最多的情况.【例16】一个长、宽.高分别为21厘米.15厘米.12厘米的长方形•现从它的上面尽可能大的切下一个正方体•然后从剩余的部分再尽可能大的切下一个正方体•最后再从第二次剩余的 部分尽可能大的切下一个正方体•剩下的体积是多少立方厘米?【解析】本题的关键是确定三次切下的正方体的棱长•由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754»,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要 求・那么对于原长方体来说•三次切下的正方体的棱长分别是12厘米.9厘米和6厘米,所以剩下的体积应是:(33321I5I2I296I107xx-++={立方厘米.1299663 454 12126312【例17】有黑白两种颜色的正方体积木•把它摆成右图所示的形状,已知相邻(有公共面的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?【解析】分层来看,如下图(切面平行于纸面共有黑色积木17块【巩固】这个图形•是否能够由112XX 的长方体搭构而成?【解析】每一个H2X X 的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112X X 的长方体搭构而成・【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图.依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?232311【解析】第一层如下图•第二层.第三层依次比上面一层每格都多1(见下图.76543565第三层65432第二层第一层34323454 2345上面的9个数之和是27•由对称性知,上面、前面.右面的所有数之和都是27・ 同理,下面的9个数之和是45,下面.左面.后面的所有数之和都是45•所以六个面上所有数之和是(2745 3216+x=.【例18] (05年武汉明心杯数学挑战赛如图所示,一个555X X 的立方体,在一 个方向上开有115x X 的孔,在另一个方向上开有215X X 的孔•在第三个方向上开有315X X 的孔,剩余部分的体积是多少?表面积为多少?【解析】求体积:开了 315x X 的孔■挖去31515X x=,开了 115xx 的孔■挖去11514xx ・=;开了215X X 的孔,挖去 215(22 6xx-+=,剩余部分的体积&555(1546 lOOx x ・++二.(另解将整个图形切片•如果切面平行于纸面■那么五个切片分别如图:得到总体积为:22412100x+=求表面积:表面积可以看成外部和内部两部分•外部的表面积为556I2138X 内部的面积可以分为前后、左右.上下三个方向,面积分别为(22515121320X x+x-x-x=.(2153513132* x + x-x-=(2I5I511214x x + x-x-=,所以总的表面积为13820321+++=.(另解运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:32总表面积为(2323040204x++=・【总结】“切片法J全面打洞(例如本题,五层一样,挖块成线(例如本题,在前一层的基础上,一条线一条线地挖,这里体现的思想方法是:化整为零•有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分•请问剩下的部分共有多少个小正方体?【解析J对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的,然后分别计算每一片或每一层的体积或小正方体数目、最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第3层从图中可以看出,第1、2、3、4、5层剩下的小正方体分别有22个.11个.11个.6个、22个,所以总共还剩下22111162272++++=(个小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方【解析】解法一:(用'喀斥原理"来解由正面图形抽出的小正方体有5525X二个,由侧面图形抽出的小正方体有5525X二个,由底面图形抽出的小正方体有4520X二个,正面图形和侧面图形重合抽出的小正方体有1221228x + x + x=个,正面图形和底面图形重合抽出的小正方体有13227X + X二个,底面图形和侧面图形重合抽出的小正方体有1211227x + x + e个,三个面的图形共同重合抽出的小正方体有4个•根据容斥原理■252520877452++"=>所以共抽出了52个小正方体・1255273•三所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块■这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型9再由第三个方向来穿过“花墙".这里,化虚为实的思想方法很重要.解法二:(用“切片法"来解可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者•从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层•首先都应该有第一层的空四块的情况•即如果挖第二层:第(1步,把中间这些位置的四块挖走如图:第(2步•把从右向左的两块成线地挖走•(请注意挖通的效果就是成线挖去,如图:第(3步,把从前向后的一块(请注意跟第二层有关的只是一块!挖成线!如图:【例19】(2009年迎春杯高年级组复赛右图中的⑴⑵⑶⑷是同样的小等边三角形,(5)⑹也是等边三角形且边长为⑴的2倍/7)(8)(9)(10)是同样的等腰直角三角形,(11) 是正方形.那么,以⑸⑹⑺⑻⑼(10)(11)为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.(11)CIO)(7) (6)【解析】本题中的两个图都是立体图形的平面展开图9将它们还原成立体图形, 可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼(10)(11)为平面展开图的立体图形,是一个不规则图形,底面是(11)•四个侧面是(7X8X9X10),两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形9右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套•对于左图来说,相当于由一个正方体切去4个角后得到(如下左图, 切去 1 ABDA . 1CBDC . 11 ID A C D、IIIB ACB;而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB ,1DACD ・假设左图中的立方体的棱长为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数几何的初步知识精解
1、长方形
(1)特征 对边相等,4个角都是直角的四边形。有两条对称轴。
(2)计算公式 c=2(a+b) s=ab
2、正方形
(1)特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。
(2)计算公式:c=4a ;s=a??
3、三角形
(1)特征:由三条线段围成的图形。内角和是180度。三角形具有稳定
性。三角形有三条高。
(2)计算公式:s=ah/2
(3)分类
*按角分:
锐角三角形 :三个角都是锐角。
直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,
它有一条对称轴。
钝角三角形:有一个角是钝角。
*按边分:
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形
(1)特征:两组对边分别平行的四边形。 相对的边平行且相等。对角
相等,相邻的两个角的度数之和为180度。平行四边形容易变形。
(2)计算公式 s=ah
5、梯形
(1)特征:只有一组对边平行的四边形。 中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式 s=(a+b)h/2=mh
6、圆
(1)圆的理解 平面上的一种曲线图形。
圆中心的一点叫做圆心。一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。 圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长
围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。用字母∏表示。
(4) 圆的面积
圆所占平面的大小叫做圆的面积。
(5)计算公式 d=2r r=d/2 c=∏d c=2∏r s=∏r??
7、扇形
(1) 扇形的理解
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
圆上AB两点之间的部分叫做弧,读作“弧AB”。
顶点在圆心的角叫做圆心角。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小相关。
扇形有一条对称轴。
(2) 计算公式 s=n∏r??/360
8、环形
(1) 特征 由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2) 计算公式 s=∏(R??-r??)
9、轴对称图形
特征:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图
形就是轴对称图形。折痕所在的这条直线叫做对称轴。
正方形有4条对称轴, 长方形有2条对称轴。
等腰三角形有2条对称轴,等边三角形有3条对称轴。
等腰梯形有一条对称轴,圆有无数条对称轴。
菱形有4条对称轴,扇形有一条对称轴。