平面向量题

合集下载

平面向量题库

平面向量题库

平面向量题库平面向量为了打字方便,我们首先约定以下记号(1)已知向量a,向量b,用a•b表示a,b的数量积。

[a•b,为了打字方便,有时也写成a*b]。

(2)向量AB,用→AB表示。

(3)在高中阶段,凡是说向量的乘积,都是指数量积,一律不涉及向量积。

所以无论以下题目中是否说明,都这样理解。

(4)x的平方,用x~2表示,也用x^2表示。

(5)向量a的模,用|a|表示。

向量AB的模,用|→AB|表示,为了简便,也用|AB|表示。

1.已知|a|=3,b=(1,2),且a//b,求a的坐标.2.与向量A(12,5)平行的单位向量为___。

3.已知a=(4,2),求与a垂直的单位向量的坐标.4.已知向量A=(1,1),向量B=(1,-1)。

将下列向量表示成xA+yB 的形式(x,y属于R)1)P=(2,3); 2)Q=(-3,2)5.已知→OA=(k,12),→OB=(4,5),→OC=(-k,10),且A,B,C三点共线,则k=?6.已知A(4.1),B(-1.3)两点的连线与Y轴交于P,求点P的坐标.7.已知P1(-1,2),P2(2,-3),点P(X,1)分向量P1P2所成的比为Y,则X的值为()。

8.若e为单位向量,且a//e,则a=|a|e(每个字母都表示向量)。

这句话对吗?9.已知|a|=3,|b|=4,<a,b>=150度,试求|a+b|=?10.已知|a|=2,|b|=3,a*b=1.5, 求|a-b|=?11.已知a、b均为单位向量,它们的夹角为60度, 那么|a+3b|=12.已知:平行四边形ABCD,A在原点上,B(1,1),C(2,1),求D点坐标。

13.已知四边形ABCD中,向量→AB=a-2c , 向量→CD=5a+6b-8c , 对角线向量→AC , 向量→BD的中点分别为E , F, 求向量→EF.14.已知向量 m,n ,向量 A=2m+n ,B=m-3n ,|m|=1,|n|=3,且A与B垂直。

平面向量多选题(讲义及答案)及解析

平面向量多选题(讲义及答案)及解析

平面向量多选题(讲义及答案)及解析一、平面向量多选题1.下列条件中,使点P 与A ,B ,C 三点一定共面的是( ) A .1233PC PA PB =+ B .111333OP OA OB OC =++ C .QP QA QB OC =++ D .0OP OA OB OC +++=【答案】AB 【分析】根据四点共面的充要条件,若A ,B ,C ,P 四点共面(1)PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,对选项逐一分析,即可得到答案. 【详解】 对于A ,由1233PC PA PB =+,12133+=,所以点P 与A ,B ,C 三点共面.对于B ,由111333OP OA OB OC =++,1111333++=,所以点P 与A ,B ,C 三点共面.对于C ,由OP OA OB OC =++,11131++=≠,所以点P 与A ,B ,C 三点不共面. 对于D ,由0OP OA OB OC +++=,得OP OA OB OC =---,而11131---=-≠,所以点P 与A ,B ,C 三点不共面. 故选:AB 【点睛】关键点睛:本题主要考查四点共面的条件,解题的关键是熟悉四点A ,B ,C ,P 共面的充要条件(1)PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,考查学生的推理能力与转化思想,属于基础题.2.如图所示,设Ox ,Oy 是平面内相交成2πθθ⎛⎫≠⎪⎝⎭角的两条数轴,1e ,2e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系中,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y =.在23πθ=的反射坐标系中,()1,2a =,()2,1b =-.则下列结论中,正确的是( )A .()1,3a b -=-B .5a =C .a b ⊥D .a 在b 上的投影为37【答案】AD 【分析】123a b e e -=-+,则()1,3a b -=-,故A 正确;3a =,故B 错误;32a b ⋅=-,故C 错误;由于a 在b 上的投影为33727a b b-⋅==,故D 正确.【详解】()()121212223a b e e e e e e -=+--=-+,则()1,3a b -=-,故A 正确;()2122254cos33a e e π=+=+=B 错误;()()22121211223222322a b e e e e e e e e ⋅=+⋅-=+⋅-=-,故C 错误; 由于()22227b e e =-=a 在b 上的投影为3372147a b b-⋅==-,故D 正确。

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

高中数学平面向量经典练习题(附答案)

高中数学平面向量经典练习题(附答案)

D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3

=

=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角

(完整版)平面向量练习题(附答案)

(完整版)平面向量练习题(附答案)

平面向量练习题一.填空题。

1.AC DB CD BA 等于________.2.若向量a=( 3,2), b=(0,-1),则向量2b-a的坐标是________.3.平面上有三个点A( 1,3),B( 2,2),C( 7,x),若∠ ABC =90°,则 x 的值为 ________.4.向量 a、b 知足 |a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________.5.已知向量 a=( 1, 2), b=( 3, 1),那么向量 2a-1b 的坐标是 _________.26.已知 A(- 1, 2),B( 2, 4), C(4,- 3), D ( x,1),若AB与CD共线,则 | BD |的值等于 ________.7.将点 A( 2, 4)按向量 a=(- 5,- 2)平移后,所获得的对应点A′的坐标是 ______.8.已知 a=(1, -2), b =(1,x), 若 a⊥b,则 x 等于 ______9.已知向量 a, b 的夹角为120,且 |a|=2,| b |=5,则( 2a- b)· a=______10.设 a=(2, - 3), b =(x,2x), 且 3a· b =4, 则 x 等于 _____11.已知 AB( 6,1), BC ( x, y), CD ( 2, 3), 且 BC ∥DA,则x+2y的值为_ ____12.已知向量a+3 b, a-4 b 分别与 7a-5 b,7a-2 b 垂直,且 |a|≠ 0,| b |≠ 0,则 a 与 b 的夹角为 ____uuur uuur uuur13.在△ ABC中, O 为中线 AM 上的一个动点,若AM=2 ,则OA OB OC 的最小值是.14.将圆x2y 2 2 按向量v=(2,1)平移后,与直线 x y0 相切,则λ的值为.二.解答题。

15.设平面三点A( 1, 0), B( 0,1), C( 2, 5).(1)试求向量 2 AB+AC的模;(2)试求向量AB 与 AC 的夹角;(3)试求与BC垂直的单位向量的坐标.16.已知向量a=( sin,cos)(R ),b=(3,3 )(1)当为什么值时,向量a、b 不可以作为平面向量的一组基底1(2)求 |a -b|的取值范围17.已知向量 a 、 b 是两个非零向量,当 a+tb(t ∈R)的模取最小值时,(1)求 t 的值(2)已知 a 、 b 共线同向时,求证b 与 a+tb 垂直18. 设向量 OA (3,1), OB ( 1,2) ,向量 OC 垂直于向量 OB ,向量 BC 平行于 OA ,试求 OD OA OC 时,OD 的坐标 .19.将函数 y= - x 2 进行平移, 使获得的图形与函数 y=x 2- x - 2 的图象的两个交点对于原点 对称 .(如图 )求平移向量 a 及平移后的函数分析式 .20.已知平面向量 a( 3, 1), b (1, 3).若存在不一样时为零的实数k 和 t,使2 2x a (t 23)b, y ka t b, 且 x y.( 1)试求函数关系式 k=f ( t )( 2)求使 f ( t )>0 的 t 的取值范围 .21 11. 02.(- 3,- 4)3.74.90°5.( 2 , 3 2 ).6.73 . 7.(- 3, 2).8.- 29.12110. 311.012. 90 ° 13.214.1或 515. ( 1)∵AB =( 0- 1, 1-0)=(- 1, 1), AC =( 2- 1, 5- 0)=( 1,5).∴ 2 AB + AC = 2(- 1, 1)+( 1, 5)=(- 1, 7).∴ |2AB + AC |= ( 1)2 72 = 50.(2)∵ | AB |=( 1)212= 2 .|AC |= 12 52 = 26 ,AB ·AC =(- 1)× 1+ 1×5= 4.AB AC4 2 13∴ cos = | AB | | AC | = 226= 13 .(3)设所求向量为m =( x , y ),则 x 2+ y 2= 1. ①又 BC =( 2- 0, 5- 1)=( 2,4),由 BC ⊥ m ,得 2 x + 4 y = 0.②x 2 5x -2555y5 . y5 .2 55 2 555 55)或(- 55)即由①、②,得 5 或 ∴ ( ,-,为所求.16.【解】(1)要使向量 a 、 b 不可以作为平面向量的一组基底,则向量 a 、 b 共线3sin3 cos30 tan∴3k(k Z ) k(kZ ) 故6,即当6基底时,向量 a 、b 不可以作为平面向量的一组(2) | a b | (sin 3) 2 (cos 3)2 13 2( 3 sin3cos )而 2 33 sin3cos2 3∴ 2 3 1 | a b | 2 3 1317.【解】(1)由 ( a tb) 2| b |2 t 22a bt| a |2t2a b| a |cos(是a与b的夹角)当2 | b |2| b |时 a+tb(t ∈ R)的模取最小值| a |t(2)当 a、 b共线同向时,则0,此时| b |∴ b (a tb) b a tb2b a | a ||b | | b || a | | a || b | 0∴b⊥ (a+tb)18.解:设OC(x, y),OC OB OCOB 0 2 y x0①又BC // OA,BC(x1, y2)3( y 2)( x 1) 0即:3y x7②x14,联立①、②得y710分OC(14,7),于是 OD OC OA(11,6) .19.解法一:设平移公式为x x hy y k 代入 y x2,获得y k( x h) 2 .即 y x22hx h 2k ,把它与 y x 2x2联立,y x 22hx h 2k得yx 2x 2设图形的交点为(x1, y1),( x2, y2),由已知它们对于原点对称,x1x2即有:y1y2 由方程组消去y得:2x2(12h) x 2 h 2k 0.4x 1 x 21 2h且x 1x 20得h1 . 由22又将(x 1, y1 ),( x 2, y 2 )分别代入①②两式并相加,得: y 1 y 2x 12 x 22 2hx 1 x 2 h 2 k 2.0 (x 2x 1 )( x 2x 1 ) (x 1x 2 ) 1 k 2k9.a ( 1 , 9)4. 解得42 4 .xx12y y9x2得: yx 2平移公式为:4 代入 yx2 .解法二:由题意和平移后的图形与y x 2x2交点对于原点对称,可知该图形上全部点都能够找到对于原点的对称点在另一图形上,所以只需找到特点点即可.y x2x2的极点为(1, 9)1 , 924 ,它对于原点的对称点为 ( 2 4 ),即是新图形的极点 .因为新图形由 yx 2h1 0 1, k 99平移获得, 所以平移向量为22 44 以下同解法一 .20.解:( 1)xy, x y 0.即[( at 2 3)b]( k a tb)0.a b0, a 221,4k t(t23) 0,即k1t(t 23).4,b1t (t 24( 2)由 f(t)>0, 得3) 0,即t (t3)(t3)0,则3t 0或t3.45。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

平面向量练习题(附答案)

平面向量练习题一.填空题。

1.AC DB CD BA 等于________.2.若向量a=( 3, 2),b=( 0,- 1),则向量 2 b-a的坐标是 ________.3.平面上有三个点 A(1,3),B(2,2),C( 7, x),若∠ ABC =90°,则x 的值为 ________.4.向量a、b满足 |a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________.5.已知向量a=(1,2),b=( 3,1),那么向量 2 a-1b的坐标是 _________.26.已知 A(- 1, 2),B(2,4),C(4,- 3),D(x ,1),若AB与CD共线,则| BD |的值等于 ________.7.将点 A(2,4)按向量a=(- 5,- 2)平移后,所得到的对应点A′的坐标是______.8.已知 a=(1,-2),b=(1,x),若 a⊥b,则 x 等于 ______9.已知向量 a,b 的夹角为120,且 |a|=2,|b|=5,则( 2a-b)· a=______10.设 a=(2,-3),b=(x,2x), 且 3a· b=4,则 x 等于 _____11.已知AB( 6,1), BC( x, y ), CD( 2 , 3), 且 BC ∥ DA ,则 x+2y 的值为_____12.已知向量 a+3b,a-4b 分别与 7a-5b,7a-2b 垂直,且 |a|≠0,|b|≠ 0,则 a 与 b 的夹角为____ 13.在△ ABC中, O 为中线 AM 上的一个动点,若AM=2 ,则O A O B OC的最小值是.22按向量 v=( 2,1)平移后,与直线x y0 相切,则λ的值为. 14.将圆xy2二.解答题。

1.设平面三点 A(1,0),B(0,1), C( 2, 5).( 1)试求向量 2 AB+AC的模;(2)试求向量AB与AC的夹角;( 3)试求与BC垂直的单位向量的坐标.2.已知向量a=(sin, cos)(R ),b=( 3 ,3 )(1)当为何值时,向量a、b不能作为平面向量的一组基底(2)求 |a-b|的取值范围3.已知向量a、 b 是两个非零向量,当a+t b(t∈R)的模取最小值时,(1)求 t 的值(2)已知a、b共线同向时,求证 b 与 a+t b 垂直4.设向量OA(3,1), OB( 1,2) ,向量OC垂直于向量OB,向量BC平行于OA,试求OD OA OC 时, OD的坐标 .5.将函数2进行平移,使得到的图形与函数2- x- 2的图象的两个交点关于原点y= - x y=x对称 .(如图 )求平移向量 a 及平移后的函数解析式.6.已知平面向量 a (13k 和 t, 使3 , 1), b ( ,). 若存在不同时为零的实数222k a t b, 且 x y.x a (t3) b, y(1)试求函数关系式 k=f (t)(2)求使 f( t)>0 的 t 的取值范围 .参考答案1.2.(- 3,- 4)3.74.90°11(2,32).6.73.7. (- 3,2).8. -2 9.1210.11.01312. 90 ° 13. 214. 1或 5( 1)∵ AB =( 0-1,1- 0)=(- 1,1), AC =( 2- 1,5- 0)=( 1,5).∴2 AB + AC= 2(- 1,1)+( 1, 5)=(- 1,7).∴ |2AB + AC2 2= 50.=(1)7|222.|AC = 1252 =26,(2)∵ |AB =( 1)1 =||ABAC=(- 1)× 1+1×5=4.·AB AC 42 13∴ cos =| AB||AC|= 226=13.( 3)设所求向量为 m=( x ,y ),则x 2+ y 2 =1. ①又BC =( 2- 0, 5- 1)=( 2,4),由 BC ⊥ m,得 2 x +4 y =0.②x2 5 x -2555y55 . 2 552 55.y由①、②,得 5 或5∴ ( 5 ,- 5 )或(- 5, 5 )即为所求.13.【解】( 1)要使向量 a 、 b 不能作为平面向量的一组基底,则向量a 、b 共线3 sin 33 cos0tan∴3k( k Z )k( k Z )故6,即当6时,向量 a 、 b 不能作为平面向量的一组基底(2) | a22b | (sin 3 )(cos 3)13 2( 3 sin3 cos )而2 33 sin3 cos2 3∴ 2 3 1 | ab | 2 3 12 2 2 214.【解】( 1)由 ( a tb )| b | t2a bt | a |t 2 a b| a | ( 是 a 与 b 的夹角)2cos 当2 | b || b |时 a+tb(t ∈R)的模取最小值t| a || b |(2 )当 a 、 b 共线同向时,则,此时∴ b (a tb ) b a tb2 b a | a || b | | b || a | | a || b | 0∴b⊥( a+t b)18.解:设OC( x , y ),OC OB OC OB0 2 y x0①又 BC // OA ,BC( x1, y2)3( y2) ( x1) 0即:3 yx7 ②x14 ,联立①、②得y7⋯⋯⋯ 10分OC(14 ,7), 于是 OD OC OA(11,6) .19.解法一:设平移公式为x x hy y k 代入y x 2,得到y k( x h ) 2 .即 y x 2 2 hx h 2k,把它与y2 2联立,x xy22hx2k x h2得yx x2设图形的交点为(x1, y1),( x2, y2),由已知它们关于原点对称,x1x 2y1y2由方程组消去 y得:2x22即有:(1 2 h ) x 2 hk0 .x11 2 h0 得 h1 x 2且 x1 x2.由22又将(x1, y1),( x2, y2)分别代入①②两式并相加,得:y1222y 2 x 1 x 2 2 hx 1 x 2h k 2 . 0( x 2 x 1 )( x 2x 1 )( x 1 x 2 )1 k2 9 .a 1 94k(, ). 解得42 4 .xx12y y 9224 代入 y2 .平移公式为:x 得:yx x22交点关于原点对称,可知该图形上所有点 解法二:由题意和平移后的图形与 y x x都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可 .1 91 922的顶点为( ,),y xx24 ,它关于原点的对称点为 (2 4 ),即是新图形的顶点 .h11 9 9yx2, k4 以下同由于新图形由 平移得到, 所以平移向量为224解法一 .20.解:( 1)xy ,x y 0 .即 [( at 23)b ] ( k at b )0.1t (t2a b 0 , a24 , b1,4 k t ( t 23) 0, 即 k3 ).241t (t 20 ,即 t (t 3 ) ( t 3)0,则 3 t 0或 t 3 .3)( 2)由 f(t)>0, 得4。

平面向量练习题(有答案)

平面向量一 、选择题1、已知向量等于则MN ON OM 21),1,5(),2,3(--=-=( ) A .)1,8(B .)1,8(-C .)21,4(-D .)21,4(-2、已知向量),2,1(),1,3(-=-=b a 则b a 23--的坐标是( ) A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-3、已知),1,(),3,1(-=-=x b a 且a ∥b ,则x 等于( ) A .3B .3-C .31D .31-4、若),12,5(),4,3(==b a 则a 与b 的夹角的余弦值为( ) A .6563 B .6533C .6533-D .6563-564==,m 与n 的夹角是135,则⋅等于( ) A .12B .212C .212-D .12-6、点)4,3(-关于点)5,6(-B 的对称点是( ) A .)5,3(-B .)29,0(C .)6,9(-D .)21,3(-7、下列向量中,与)2,3(垂直的向量是( ) A .)2,3(-B .)3,2(C .)6,4(-D .)2,3(-8、已知A 、B 、C 三点共线,且A 、B 、C 三点的纵坐标分别为2、5、10,则点A 分BC 所成的比是() A .83-B .83C .38-D .389、在平行四边形ABCD-=+,则必有( )A .0=ADB .0=AB 或0=ADC .ABCD 是矩形D .ABCD 是正方形10、已知点C 在线段AB的延长线上,且λλ则,CA BC ==等于( )A .3B .31C .3-D .31-11、已知平面内三点AC BA x C B A ⊥满足),7(),3,1(),2,2(,则x 的值为( )A .3B .6C .7D .912、已知ABC ∆的三个顶点分别是),(),,(),,(y C B A 124231-,重心)1,(-x G ,则y x 、的值分别是( ) A .5,2==y xB .25,1-==y x C .1,1-==y xD .25,2-==y x16、设两个非零向量b a ,不共线,且b k a b a k ++与共线,则k 的值为( ) A .1B .1-C .1±D .017、已知AB AM B A 32),2,3(),1,2(=--,则点M 的坐标是( ) A .)21,21(--B .)1,34(--C .)0,31(D .)51,0(-18、将向量x y 2sin =按向量)1,6(π-=平移后的函数解析式是( ) A .1)32sin(++=πx yB .1)32sin(+-=πx yC .1)62sin(++=πx yD .1)62sin(+-=πx y二、填空题20、已知b a b a b a -+==⊥λ与且23,32,垂直,则λ等于 21、已知等边三角形ABC 的边长为1,则=⋅BC AB22、设21e e 是两个单位向量,它们的夹角是 60,则=+-⋅-)23()2(2121e e e e 23、已知=--B A 、),2,5()4,3(三、解答题24、已知),(),,(0823=-AB A ,求线段AB 的中点C 的坐标。

高一数学平面向量的概念练习题(解析版)

练习11 平面向量的概念一、单选题1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个【答案】A【解析】【分析】根据向量的定义即可判断;【详解】解:速度、位移、力、加速度4个物理量是向量,它们都有大小和方向.故选:A【点睛】本题考查向量的定义的理解,属于基础题.2.下列各说法:①有向线段就是向量,向量就是有向线段;②向量的大小与方向有关;③任意两个零向量方向相同;④模相等的两个平行向量是相等向量.其中正确的有( )A.0个B.1个C.2个D.3个【答案】A【分析】根据向量的基本概念分析即可.【详解】有向线段是向量的几何表示,二者并不相同,故①错误;②向量不能比较大小,故②错误;③由零向量方向的任意性知③错误;④向量相等是向量模相等,且方向相同,故④错误.故选:A.【点睛】本题主要考查了向量中的基本概念,属于基础题型.3.如图,在O中,向量,,OB OC AO是()A.有相同起点的向量B.共线向量C.模相等的向量D.相等向量【答案】C【分析】向量是既有大小又有方向的量,通过大小和方向两个方面逐一判断即可.【详解】解:,,OB OC AO起点并不全相同,故A错误;,,OB OC AO的方向均不相同,也不相反,故BD 错误;||||||OB OC AO===圆的半径,故C正确,故选C.【点睛】本题考查向量的概念,是基础题.4.下列说法正确的是( )A.有向线段AB与BA表示同一向量B.两条有公共终点的有向线段表示的向量是平行向量C.零向量与单位向量是平行向量D.对任一向量a,aa是一个单位向量【答案】C【分析】由平面向量的定义、平行向量及单位向量的可依次对选项判断.【详解】对于选项A,向量AB与BA方向相反,不是同一向量,故选项A错误;对于选项B ,有公共终点的有向线段的方向不一定相同或相反,故B 错误;对于选项C ,零向量与任意向量都是平行向量,故C 正确;对于选项D ,当0a =时,a a 无意义,故D 错误. 故选:C 【点睛】本题考查了平面向量的定义与平行向量的应用,属于基础题.二、多选题5.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC = C .AB DC >D .BC AD ∥【答案】BD【分析】 根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.6.下列说法正确的是( )A .长度相等的向量是相等向量B .若a b =,b c =,则a c =C.共线向量是在一条直线上的向量D.向量AB与CD共线是A,B,C,D四点共线的必要不充分条件【答案】BD【分析】根据向量的相关概念判断可得.【详解】解:相等向量不仅要求长度相等,还要求方向相同,故A说法错误;B说法显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故C说法错误;A,B,C,D四点共线⇒向量AB与CD共线,反之不成立,所以向量AB与CD共线是A,B,C,D四点共线的必要不充分条件,故D说法正确.故选:BD【点睛】本题考查向量的相关概念的理解,相等向量、共线向量,属于基础题.三、填空题7.下列结论正确的序号是_______.=;①若a,b都是单位向量,则a b②物理学中作用力与反作用力是一对共线向量;③方向为南偏西60°的向量与北偏东60°的向量是共线向量;④直角坐标平面上的x轴,y轴都是向量.【答案】②③【分析】根据题意,对题目中的命题进行分析、判断正误即可.【详解】解:对于①,a,b都是单位向量,则不一定有a b=,①错误;对于②,物理学中的作用力与反作用力大小相等,方向相反,是一对共线向量,②正确;对于③,如图所示,方向为南偏西60︒的向量与北偏东60︒的向量在一条直线上,是共线向量,③正确;对于④,直角坐标平面上的x 轴、y 轴只有方向,没有大小,不是向量,④错误;综上,正确的命题序号是②③.故答案为:②③.【点睛】本题通过命题真假的判断考查了平面向量的概念与应用问题,属于基础题.8.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于__________.【答案】3π【解析】【分析】本题首先可以通过题意确定向量的终点构成的图形的形状,然后根据圆的面积公式即可得出结果.【详解】由题意可知,这些向量的终点构成的图形是一个圆环,圆环的小圆半径为1,圆环的大圆半径为2,所以圆环的面积为22213πππ⨯-⨯=,故答案为3π.【点睛】本题考查向量的定义的应用,考查圆的面积公式的使用,向量是有方向和大小的量,考查推理能力与运算能力,是简单题.四、解答题9.如图的方格由若干个边长为1的小正方形组成,方格中有定点A ,点C 为小正方形的顶点,且5AC =,画出所有的向量AC.【答案】见解析【分析】利用向量模长的几何意义,即可画出图形.【详解】AC ,∴C点落在以A为圆心,以5为半径的圆上,又∵点C为小正方形的顶点,∵||5根据该条件不难找出满足条件的点C,解析所有的向量AC,如图所示:【点睛】本题考查了向量模长的几何意义,轨迹问题,属于基础题.10.如图所示,平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集{}S A B C D O =,,,,,向量集合{|,,}T MN M N S M N =∈且,不重合,试求集合T 中元素的个数.【答案】12【分析】本题首先可根据题意明确集合T 中所包含的元素,然后根据平行四边形法则找出其中的相等向量,最后根据集合元素的互异性即可得出结果。

平面向量题目及详细答案

平面向量高考经典试一、选择题1.已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向2、已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2 C .2 D .43、若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______;5、在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB ⋅⨯⋅=6、)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则= (A)32 (B) 31 (C) -31 (D) -327、设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|=(A)9 (B) 6(C) 4 (D) 3 解.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则F 为△ABC 的重心,∴ A 、B 、C 三点的横坐标的和为F 点横坐标的3倍,即等于3,∴ |FA|+|FB|+|FC|=(1)(1)(1)6A B C x x x +++++=,选B 。

8、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23- 9、把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( )A .e 2x +B .e 2x -C .2e x -D .2e x + 解.把函数y =e x 的图象按向量a =(2,3)平移,即向右平移2个单位,向上平移3个单位,平移后得到y =f (x )的图象,f (x )= 23x e -+,选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量测试题
一. 选择题
1. 已知(,)AB12,(,)CB13,则()AC
A. (,)21 B. (,)21 C. (,)05 D.(,)16

2. 已知O是ABC所在平面内一点,D为BC边中点,且OAOBOC20,
那么( )

A.
AOOD

 B. AOOD2 C.AOOD3 D.AOOD2

3. 已知向量(,)an1,(,)bn1,若ab2与b垂直,则||()a
A. 1 B. 2 C. 2 D. 4
4. 已知向量a,b满足ab0,||a=1,
||b2


,则2ab( )

A. 0 B. 22 C. 4 D. 8
5. 设
a

、b、c是单位向量,且a·b
=0,则acbc的最小值为 ( )

A. 2 B. 22 C. 1 D. 12
6. 定义平面向量之间的一种运算“”如下,对任意的
=(,)amn

,(,)bpq
,令

abmqnp


,下面说法错误的是( )

A.若
a

与b
共线,则
=0ab




B.=abba

C.对任意的R,有
)=((ab





)ab D. 2222()+()=||||ababab

二.填空题
7. 在正△ABC中,边长AB2,则ABCB=_____________.
8.
已知
1,6,()2ababa



,则向量
a

与向量b
的夹角是__________
.
9.
已知向量

(1,2)a

,(2,3)b.若向量c满足(7)//cba
,()cab,则

c


——————————
.

10.
已知向量

(,12),(4,5),(,10)OAkOBOCk


,且A、B、C三点共线,则k=

_______
.
11. 如图所示,平面内有三个向量OA、OB、OC,其中与OA与
OB



的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=
1,|OC|=23,若OC=OA+OB(,R),则


的值为 .
12. 设V是已知平面M上所有向量的集合,对于映射
:,fVVaV


,记a的象为

()fa

。若映射:fVV满足:对所有、abV及任意实数,都有

()()()fabfafb

,则f称为平面M上的线性变换。现有下列命题:

①设f是平面M上的线性变换,、abV,则
()()()fabfafb




②若e是平面M上的单位向量,对,()设aVfaae,则f是平面M上的线性变
换;

③对,()设aVfaa,则f是平面M上的线性变换;
④设f是平面M上的线性变换,aV,则对任意实数k均有()()fkakfa。

其中的真命题是 (写出所有真命题的编号)
三.解答题
13. 已知向量(,)a11;(1)请写出与a垂直的单位向量;
(2)(sin,cos)bxx2,函数()fxab,(,)x706,求函数()fx的值域.
14.
已知

{|(1,0)(0,1),},{|(1,1)(1,0),}PaaxxRQbbyyR

rrrr
是两个向

量集合
.(1) 求PQ;(2) 若
pP

,qQ, pq

,求||pq的最小值.
答题卡
班级:_______学号:_______姓名:__________
一.选择题
1 2 3 4 5 6
B A B B D B

二.填空题
7. 2 8.3

9. (,)13 10.23
11. 6 12. ①③④
三.解答题

13.解:(1)与a垂直的单位向量为(,)xy,则

xyxy



22
1

0
,解得xy2222或xy2222

所以与a垂直的单位向量为(,)2222或(,)2222
(2)()sincosfxxx2sinsinxx21, (,)x706

得分
令sin,(,]txt112
()()fxyttt2215124
则()(,]fx514.
14.(1)由题意yx111,解得,xy10,此时{(,)}PQ11.
(2)(,)px1,(,)qy11,
pq,则yx10.
(,)pqyx21,
||()()()()pqyxxxx
22222
211122



当x0时,||pq取最小值2.

相关文档
最新文档