集合知识点及经典例题
集合知识点+基础习题(有答案)

集合练习题知识点一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素〞是确定的.⑵互异性-即集合中的元素是互不一样的,假如出现了两个(或几个)一样的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.常用数集及其记法非负整数集〔或自然数集〕,记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R3.元素与集合之间的关系2.选择题⑴以下说法正确的( )(A) “实数集〞可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学〞不能组成一个集合,因为其元素不确定⑵ 2是集合M={ }中的元素,那么实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可二、集合的几种表示方法1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集例如: A={1~20以内所有质数}⑵无限集--------含有无限个元素的集合叫无限集例如: B={不大于3的所有实数}2、描绘法-用集合所含元素的共同特征表示集合的方法.详细方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.3、图示法 -- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给详细元素的抽象集合.对已给出了详细元素的集合也当然可以用图示法来表示如: 集合{1,2,3,4,5}用图示法表示为:三、集合间的根本关系观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x>3},B={x|3x-6>0}.(3) A={正方形},B={四边形}.(4) A=∅,B={0}.定义:一般地,对于两个集合A与B,假如集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B〔或B⊇A〕,即假设任意x∈A,有x∈B,那么A⊆B(或A⊂B)。
专题02:集合知识点与典型例题(原卷版)

专题2:集合知识点与典型例题(原卷版)考点一:集合的定义及其关系 基础知识复习 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.1.下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数2.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体;的近似值的全体.其中能构成集合的组数有( ) A .2组B .3组C .4组D .5组3.能够组成集合的是( ) A .与2非常数接近的全体实数 B .很著名的科学家的全体 C .某教室内的全体桌子 D .与无理数π相差很小的数 (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4.下列元素与集合的关系表示不正确的是( ) A .0N ∈B .0Z ∈C .32Q ∈ D .Q π∈5.设A ={y |y =﹣1+x ﹣2x 2},若m ∈A ,则必有( ) A .m ∈{正有理数} B .m ∈{负有理数}C .m ∈{正实数}D .m ∈{负实数}6.(){}2414M x R k x k=∈+≤+,对任意的k ∈R ,总有( )A .2,0M M ∉∉B .2,0M M ∈∈C .2,0M M ∈∉D .2,0M M ∉∈(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 7.用描述法表示正偶数集______.8.用列举法表示方程组02x y x y -=⎧⎨+=⎩的解集为_________.(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).9.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( ) A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-10.已知集合{}*A 2,n n x x N ==∈,{}*2n,n B x x N ==∈,则( )A .AB ⊆B .B A ⊆C .A B ⋂=∅D .A B =11.下列集合与集合{2,3}A =相等的是( ) A .{(2,3)}B .{(,})|2,3}x y x y ==C .{}2|560x x x -+=D .{}290x N x ∈-≤12.已知集合{}{}1,2,3,4,5,61,2,3U A ==,,集合A 与B 的关系如图所示,则集合B 可能是( )A .{}2,4,5B .{}1,2,5C .{}1,6D .{}1,3(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n -非空真子集.13.集合{|14}A x N x =∈≤<的真子集的个数是( ) A .16B .8C .7D .414.集合A ={a ,b ,c ,d }非空子集的个数是( ) A .13B .14C .15D .16考点二:集合的基本运算 基础知识复习1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集. 记作A ∩B(读作”A 交B ”),即A ∩B={x|x ∈A ,且x ∈B}.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。
集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。
集合典型例题(含解析)

第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。
高一集合知识点 例题

高一集合知识点例题在高一的数学学习中,集合是一个重要的概念。
它是数学中研究元素组成和彼此关系的基本工具。
在这篇文章中,我们将通过一些例题来巩固和应用我们所学的集合知识。
1. 例题一:设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A = {2, 4, 6, 8},集合B = {3, 6, 9}。
求A∩B 和 A∪B 的结果。
解析:A∩B 表示 A 和 B 的交集,即同时属于 A 和 B 的元素组成的集合。
根据题目给出的集合 A 和 B,可以找到A∩B = {6}。
A∪B 表示 A 和 B 的并集,即属于 A 或 B 中任一集合的元素组成的集合。
根据题目给出的集合 A 和 B,可以找到 A∪B = {2, 3, 4, 6, 8, 9}。
2. 例题二:设全集 U = {a, b, c, d, e},集合 A = {a, c, e},集合 B = {b, d}。
求在全集 U 中不属于集合 A 或集合 B 的元素的个数。
解析:首先,我们找出属于集合 A 或集合 B 的元素。
根据题目给出的集合 A 和 B,可以找到 A∪B = {a, b, c, d, e}。
接下来,我们通过对比全集 U 和 A∪B,找出不在 A∪B 中的元素。
根据计算,U - (A∪B) = {},即没有元素。
因此,全集 U 中不属于集合 A 或集合 B 的元素的个数为 0 个。
3. 例题三:设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A = {2, 4, 6, 8},集合B = {3, 6, 9}。
求 A 的补集和 B 的补集。
解析:A 的补集表示全集 U 中不属于集合 A 的元素组成的集合。
根据题目给出的集合 A,可以找到 A 的补集 A' = {1, 3, 5, 7, 9}。
同样地,B 的补集表示全集 U 中不属于集合 B 的元素组成的集合。
根据题目给出的集合 B,可以找到 B 的补集 B' = {1, 2, 4, 5, 7, 8}。
集合复习知识要点及典型例题38页PPT

集合复习知识要点及典型例题
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
集合知识点总结材料及典型例题
集 合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn 图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主。
预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体三.【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a 是集合A 的元素,记作;若b 不是集合A 的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
集合知识点总结及典型例题
集 合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn 图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主。
预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体三.【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a 是集合A 的元素,记作;若b 不是集合A 的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
集合知识点汇总与练习试题
集合知识点汇总与练习试题1.1 集合1.1.1 集合的含义与表⽰⼀集合与元素1.集合是由元素组成的集合通常⽤⼤写字母A、B、C,…表⽰,元素常⽤⼩写字母a、b、c,…表⽰。
2.集合中元素的属性(1)确定性:⼀个元素要么属于这个集合,要么不属于这个集合,绝⽆模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现⼀次。
(3)⽆序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素⼀样,就称这两个集合相等,与元素的排列顺序⽆关。
⼆集合的分类1.有限集:集合中元素的个数是可数的,只含有⼀个元素的集合叫单元素集合;2.⽆限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做?.三集合的表⽰⽅法1.常⽤数集(1)⾃然数集:⼜称为⾮负整数集,记做N;(2)正整数集:⾃然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表⽰⽅法(1)⾃然语⾔法:⽤⽂字叙述的形式描述集合。
如⼤于等于2且⼩于等于8的偶数构成的集合。
(2)列举法:把集合的元素⼀⼀列举出来,并⽤花括号“{}”括起来表⽰集合的⽅法,⼀般适⽤于元素个数不多的有限集,简单、明了,能够⼀⽬了然地知道集合中的元素是什么。
注意事项:①元素间⽤逗号隔开;②元素不能重复;③元素之间不⽤考虑先后顺序;④元素较多且有规律的集合的表⽰:{0,1,2,3,…,100}表⽰不⼤于100的⾃然数构成的集合。
(3)描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,⼀般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使⽤“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句⼒求简明、准确。
(word完整版)集合知识点汇总与练习,推荐文档
1.1 集合1.1.1 集合的含义与表示一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。
2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。
(3)无序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。
二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。
如大于等于2且小于等于8的偶数构成的集合。
(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。
注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。
(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
集合知识点及经典例题
一、知识点整理
㈠集合有关概念
1、集合与元素的关系
元素与集合的关系:属于“”;不属于∉
2、集合中元素的三个特性:
⑴元素的确定性如:世界上最高的山
⑵元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
例题:①设P、Q为两个非空实数集合,定义集合P+Q={|,}abaPbQ,若{0,2,5}P,
}6,2,1{Q
,则P+Q中元素的有________个。 (答:8)
非空集合}5,4,3,2,1{S,且满足“若Sa,则Sa6”,这样的S共有__个(答:7)
⑶元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3、集合的表示:{ „ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
⑴用英文字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
⑵集合的表示方法:列举法与描述法。
1)列举法:{a,b,c„„}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|
x-3>2} ,{x| x-3>2}
例题:xyxlg|—函数的定义域;xyylg|—函数的值域;xyyxlg|),(—函数图象上的
点集,
例题:设集合{|2}Mxyx,集合N=2|,yyxxM,则MN___(答:[4,));
⑶语言描述法:例:{不是直角三角形的三角形}
⑷Venn图:
⑸常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 复数 C
4、集合的分类:
⑴有限集 含有有限个元素的集合
⑵无限集 含有无限个元素的集合
⑶空集 不含任何元素的集合 例:{x|x2=-5}
5、集合间的基本关系
⑴“包含”关系—子集:数学表达式:若对任意BxAx,则BA
注意:BA有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
“真包含”关系—真子集:BA且ABAB
⑵“相等”关系:如果集合A与B的元素都相等,则称A=B
2
证明方法:若BA且AB,则A=B
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
性质:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)
③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B
名称 记号 意义 性质 示意图
子集
BA
(或)AB A中的任一元素都属
于B
(1)AA
(2)A
(3)若BA且BC,则AC
(4)若BA且BA,则AB
A(B)
或BA
真子集
AB (或BA) BA,且B中至少有一元素不属于A (1)A(A为非空子集)
(2)若AB且BC,则AC
BA
集合
相等
AB
A中的任一元素都属
于B,B中的任一元素
都属于A
(1)AB
(2)BA
A(B)
6、空集:不含任何元素的集合叫做空集,记为Φ
性质: 空集是任何集合的子集, 空集是任何非空集合的真子集。
例题:集合{|10}Axax,2|320Bxxx,且ABB,则实数a=__.(答:10,1,2a)
重要结论:有n个元素的集合,含有2n个子集,2n -1个真子集,2n -1个非空子集,2n -2个非
空真子集
7、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB ={x|xA,或xB}). 设S是一个集合,A是S的
一个子集,由S中所有不属
于A的元素组成的集合,叫
做S中子集A的补集(或余
集)记作ACS,即
CSA=},|{AxSxx且
韦
恩
图
示
BA
B
A
3
性 质 AA=A AΦ=Φ AB=BA ABA ABB AA=A AΦ=A AB=BA ABA ABB (CuA) (CuB)
= Cu (AB)
(CuA) (CuB)
= Cu(AB)
A (CuA)=U
A (CuA)= Φ.
集合的运算的重要结论:
⑴ABABA; ⑵ABBBA;
⑶ABuuAB痧; ⑷uuABAB痧;
⑸uABUABð; ⑹()UCABUUCACB;
⑺()UUUCABCACB.
例题:已知函数12)2(24)(22ppxpxxf在区间]1,1[上至少存在一个实数c,使
0)(cf
,求实数p的取值范围。 (答:3(3,)2)
解:∵至少存在一点C使f(c) 〉0, 也就是说 最大值 >0
二次函数看f(x)=4x²-2(p-2)x-2p²-p+1开口向上
所以最大值在端点 取到
f(-1)=-2p² +p+1 f(1)=-2p² -3p+9
函数的对称轴为 (p-2)/4
当 (p-2)/4 ≥0 的时候 , 即p≥2 函数的最大值为 f(-1) -2p² +p+1>0 在p≥2 无解
当 (p-2)/4 <0 的时候 , 即p<2 函数的最大值为 f(1)
-2p² -3p+9>0 在p<2 的情况下 解为 -3 < p<3/2
例题:已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,
A∩C=Φ,求m的值
解:由题意可得:A={-4,2} B={2,3}
若B∩C≠Φ,A∩C=Φ 则3∈C且2不属于C且-4不属于C
则9-3m+m²-19=0 解得 m=5或-2
若m=5则 C={x|x²-5x+6=0}={2,3} 所以m=5不成立舍去
若m=-2则 C={x|x²+2x-15=0}={-5,3} 所以m=-2也成立
综上所述m=-2
例题:设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},B⊆A,求实数a的取值范围.
解 :A={x|x2+4x=0}={0,-4},因此A的子集分别为∅,{0},{-4},{0,-4}.
又B⊆A,若B=∅, Δ=4(a+1)2-4(a2-1)<0,解得a<-1;
若B={0}, -2a+1=0,a2-1=0,解得a=-1;
若B={-4},-2a+1=-8,a2-1=16,无解;
若B={0,-4},-2a+1=-4,a2-1=0,解得a=1;
综上所述,实数a的取值范围是a≤-1或a=1.