集合经典例题总结

合集下载

集合数学题

集合数学题

集合数学题一、集合的基本概念1. 已知集合A = {xx^2 - 3x+2 = 0},求集合A。

- 解析:- 对于方程x^2 - 3x + 2=0,分解因式得(x - 1)(x - 2)=0。

- 解得x = 1或x = 2。

- 所以集合A={1,2}。

2. 设集合B={x∈ Z2< x<3},求集合B。

- 解析:- 满足-2< x<3的整数x有-1,0,1,2。

- 所以集合B ={-1,0,1,2}。

3. 若集合C={m,m + 1},且1∈ C,求m的值。

- 解析:- 因为1∈ C,当m = 1时,集合C={1,2}满足条件。

- 当m+1 = 1,即m = 0时,集合C={0,1}也满足条件。

- 所以m = 0或m = 1。

二、集合间的关系4. 已知集合A={1,2,3},集合B={1,2},判断B与A的关系。

- 解析:- 因为集合B中的所有元素都在集合A中。

- 所以B⊂ A(B是A的子集)。

5. 设集合M={xx = 2k,k∈ Z},集合N={xx = 4k,k∈ Z},判断N与M的关系。

- 解析:- 对于集合N中的元素x = 4k,因为4k=2×(2k),且2k∈ Z。

- 所以集合N中的元素都在集合M中,但集合M中有元素不在集合N中(如2 = 2×1,1∈ Z,但2不能表示成4k的形式)。

- 所以N⊂ M。

6. 已知集合A={xx^2 - 1 = 0},集合B={- 1,1},判断A与B的关系。

- 解析:- 对于集合A,解方程x^2 - 1=0,即(x + 1)(x - 1)=0,解得x=-1或x = 1。

- 所以A = B。

三、集合的运算7. 已知集合A={1,2,3},集合B={2,3,4},求A∩ B。

- 解析:- A∩ B是由既属于集合A又属于集合B的元素组成的集合。

- 所以A∩ B={2,3}。

8. 设集合M={xx>1},集合N={xx<3},求M∪ N。

高中集合题型和例题大全

高中集合题型和例题大全

高中集合的题型和例题有很多种,以下是一些常见的类型和示例:
1. 集合的表示方法
例题:用列举法表示下列集合:
(1){x|x是小于10的正整数}
(2){y|y是5的正整数倍}
(3){x|x是4除以3的余数}
(4){y|y是9的平方数}
2. 集合之间的关系
例题:已知集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},求证:A∩B=
{x|x=8k+1,k∈Z}。

3. 集合的运算
例题:已知集合A={1,2,3,4},B={3,4,5,6},求:
(1)A∪B;
(2)A∩B;
(3)A-B;
(4)B-A。

4. 集合的元素与集合的关系
例题:已知集合A={a,b,c,d},B={e,f},且集合C满足A∩C≠∅,B∩C≠∅,求C的可能情况。

5. 集合的子集与真子集
例题:已知集合A={1,2,3},求A的所有子集和真子集。

6. 集合的交集、并集、补集运算
例题:已知集合A={1,2,3},集合B={2,3,4},求:
(1)A∩B;
(2)A∪B;
(3)C∪A;
(4)C∪B。

7. 含参数的集合问题
例题:已知集合A={x|ax+b=0},若A=∅时a、b应满足什么条件?如果A≠∅时a、b 应满足什么条件?。

高一数学集合经典题型

高一数学集合经典题型

高一数学集合经典题型一、集合的基本概念题型1. 题型描述•这类题型主要考查对集合定义、元素特征的理解。

例如,判断给定的对象是否能构成集合,或者根据集合元素的确定性、互异性、无序性来解决问题。

•例:下列对象能构成集合的是()A. 接近于0的数B. 著名的科学家C. 平面直角坐标系内所有的点D. 所有的正三角形•答案与解析:•答案:C、D。

•解析:选项A中“接近于0的数”不具有确定性,因为多接近算接近于0不明确;选项B中“著名的科学家”,著名的标准不明确,不满足集合元素的确定性。

而选项C中平面直角坐标系内所有的点是确定的,选项D中所有的正三角形也是确定的,可以构成集合。

2. 元素与集合的关系题型•题型描述•重点考查元素与集合之间的属于(∈)和不属于(∉)关系。

通常会给出一个集合和一些元素,让考生判断元素是否属于该集合。

•例题•设集合 A = {x|x是小于10的素数},则3____A,4____A。

•答案与解析•答案:3∈A,4∉A。

•解析:素数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

小于10的素数有2、3、5、7,所以3属于集合A,4不属于集合A。

二、集合的表示方法题型1. 列举法与描述法的转换题型•题型描述•要求考生能够熟练地在列举法和描述法之间进行转换。

例如,将用描述法表示的集合转换为列举法,或者反之。

•例题•把集合A={x|x²• 5x + 6 = 0}用列举法表示。

•答案与解析•答案:A = {2,3}。

•解析:先解方程x²•5x+6 = 0,即(x•2)(x•3)=0,解得x = 2或x = 3,所以用列举法表示集合A为{2,3}。

2. 用描述法表示集合题型•题型描述•根据给定的元素特征,用描述法准确表示集合。

•例题•用描述法表示所有偶数组成的集合。

•答案与解析•答案:{x|x = 2n,n∈Z}。

•解析:偶数可以表示为2乘以一个整数,所以用描述法表示为{x|x = 2n,n∈Z},其中Z表示整数集。

【高中数学】《集合》高考常考题型(后附解析)

【高中数学】《集合》高考常考题型(后附解析)

《集合》常考题型题型一.通过集合的关系求参数范围1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,A B A =,实数a 的取值范围是 . 2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,实数a 的取值范围是 . 3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是 . 题型二.子集个数问题4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4 题型三.集合与元素的关系5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.参考答案1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,AB A =,求实数a 的取值范围.【解答】解:由2320x x −+=解得1x =,2.{1A ∴=,2}.A B A =,B A ∴⊆. 1B ︒=∅,△8240a =+<,解得3a <−.2︒若{1}B =或{2},则△0=,解得3a =−,此时{2}B =−,不符合题意.3︒若{1B =,2},∴2122(1)125a a +=+⎧⎨⨯=−⎩,此方程组无解. 综上:3a <−.∴实数a 的取值范围是(,3)−∞−.2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,求实数a 的取值范围. 【解答】解:{|121}B x a x a =+−,且U A B ⊆,B ∴=∅,或211a a −>+,解得2a >, ①{|1U B x x a =<+,或21}x a >−,∴251a a ⎧⎨<+⎩或2212a a ⎧⎨−<−⎩, 解得4a >或a ∈∅.此时实数a 的取值范围为4a >.②当B =∅,U B R =,满足U A B ⊆,121a a ∴+>−,解得2a <.综上可得:实数a 的取值范围为4a >或2a <.3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是[2−,2). 【解答】解:因为A B ⊆,所以A =∅或{1}A =,{2}A =或{1A =,2}. 若A =∅,则△240a =−<,解得22a −<<.若{1}A =应有△240a =−=且110a ++=,解得2a =−.若{2}A =时,应有△240a =−=且4210a ++=,此时无解. 若{1A =,2},则1,2是方程210x ax ++=的两个根,所以由根与系数的关系得121⨯=,显然不成立.综上满足条件的实数a 的取值范围是22a −<.故答案为:[2−,2).4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4【解答】解:由题意,d (B )2=,|d (A )d −(B )|1=,d ∴(A )1=或3, 方程22()(1)0x ax x ax −−+=可化为20x ax −=或210x ax −+=, 即0x =或x a =或210x ax −+=,①若d (A )1=,则方程22()(1)0x ax x ax −−+=有且只有一个解,故0a =,此时方程22(1)0x x +=有且只有一个解;②若d (A )3=,则方程22()(1)0x ax x ax −−+=有三个不同的解,则2040a a ≠⎧⎨−=⎩,解得,2a =±, 经检验,2a =±时,方程22()(1)0x ax x ax −−+=有三个不同的解,综上所述,{0M =,2−,2},故()3d M =, 故选:A .5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a ∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.【解答】解:(1)若2A ∈,则1112A =−∈−,于是()11112A =∈−−, 故集合A 中还含有1−,12两个元素. (2)若A 为单元素集,则11a a =−,即210a a −+=,此方程无实数解,∴11a a≠−, ∴a 与11a−都为集合A 的元素,则A 不可能是单元素集. (3)由A 是非空集合知存在1111111a a A A A a a a−∈⇒∈⇒=∈−−−−. 现只需证明a 、11a −、1a a−−三个数互不相等. ①若21101a a a a =⇒−+=−,方程无解,∴11a a≠−; ②若2110a a a a a −=⇒−+=−,方程无解;∴1a a a−≠−; ③若211101a a a a a −=⇒−+=−−,方程无解,∴111a a a −≠−−, 故集合A 中至少有三个不同的元素.。

集合典型例题(含解析)

集合典型例题(含解析)

第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。

高一数学集合典型例题、经典例题

高一数学集合典型例题、经典例题

《集合》常考题型题型一、集合元素的意义+互异性例1.1.设集合{0}例1.2.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________解:∵A∩B ={2,5},∴5∈A.∴a 3-2a 2-a +7=5解得a =±1或a =2.①若a =-1,则B ={1,2,5,4},则A∩B ={2,4,5},与已知矛盾,舍去.②若a =1,则B ={1,4,1,12}不成立,舍去.③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}.题型二、空集的特殊性例2.1.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且B A ,则实数m 的取值X 围为_____________例2.2.已知集合{}R x x ax x A ∈=++=,012,{}0≥=x x B ,且φ=B A ,XX 数a 的取值X 围。

解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=Φ;②当0a ≠时,{|0}A x x ≥=Φ,A ∴=Φ或关于x 的方程210ax x ++=的根均为负数.〔1〕当A =Φ时,关于x 的方程210ax x ++=无实数根,140a ∆=-<,所以14a >. 〔2〕当关于x 的方程210ax x ++=的根均为负数时,12121401010a x x a x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪⋅=>⎪⎩140a a ⎧≤⎪⇒⇒⎨⎪>⎩104a <≤. 综上所述,实数a 的取值X 围为{0}a a ≥.题型三、集和的运算{}{}2|22,|,12,A x x B y y x x A B =-≤==--≤≤=则例3.1.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值X 围是________________-3<a <-1例3.2.集合M={x |x =k 2+13,k ∈Z},N={x |x =k +13,k ∈Z},则〔C 〕A.M=NB.M ⊆NC.N ⊆MD.M∩N=∅解:∵M 中:x =k 2+13={n +13,k =2n ,n ∈Z n +56,k =2n +1,n ∈Z; N 中:x =k +13=n +13,k =n ∈Z ,∴N ⊆M .故选:C .例3.3.全集(){}R y x y x U ∈=,|,,集合()⎭⎬⎫⎩⎨⎧=-+=122|,x y y x M ,(){}4|,-≠=x y y x N , 则()()N C M C U U 等于__{})22(,______________题型四、创新题例4.1.定义集合A 与B 的运算A*B={x |x ∈A 或x ∈B ,且x ∉A ∩B},则(A*B)*A 等于〔D 〕A.A ∩BB.A ∪BC.AD.B 解:如图,A*B 表示的是阴影部分,设A*B=C ,根据A*B 的定义可知:C*A=B ,所以(A*B)*A=B ,故答案为D 例4.2.定义一个集合的所有子集组成的集合叫做集合A 的幂集,记为,用表示有限集的元素个数,给出下列命题:①对于任意集合,都有()A P A ∈;②存在集合A ,使得()[]3=A P n ;③用∅表示空集,若,则()()∅=B P A P ;④若B A ⊆,则()()B P A P ⊆;⑤若,则.其中正确的命题为_①④⑤_________〔填序号〕 对于命题①,,因此,命题①正确;对于命题②,若集合的元素个数为m ,则集合的子集共m2个,若,则 A ()A P ()A n A A ∅=B A ()()1=-B n A n ()[]()[]B P A P n ⨯=2A A ⊆()A P A ∈A A ()[]3=A P n,解得N m ∉=3log 2,命题②错误;对于命题③,若∅=B A ,由于A ⊆∅,B ⊆∅,因此,()B P ∈∅,所以 ,则,命题③错误;对于命题④,若,对集合的任意子集A E ⊆,即对任意()A P E ∈,则B E ⊆, 则()B P E ∈,因此,命题④正确;对于命题⑤,设()n B n =,则()1+=n A n ,则集合的子集个数为,即,集合的子集个数为,即()[]n B P n 2=,因此,命题⑤正确,故正确的命题为①④⑤_变式训练:1.已知集合,集合,若,则实数 12.设集合M ={x |x <3},N ={x |x >-2},Q ={x |x -a ≥0},令P =M ∩N ,若P ∪Q =Q , 则实数a 的取值X 围为__________________解:P =M ∩N ={x |-2<x <3},Q ={x |x ≥a },∵P ∪Q =Q ,∴P ⊆Q .∴a ≤-2,即实数a 的取值X 围是{a |a ≤-2}3.若集合{2,3}≠⊂M ≠⊂{1,2,3,4,5,6,7,8,9},则集合M 共有__________个。

集合知识点及经典例题

集合知识点及经典例题

集合知识点及经典例题一、知识点整理 ㈠集合有关概念1、集合与元素的关系元素与集合的关系:属于“∈”;不属于∉ 2、集合中元素的三个特性: ⑴元素的确定性如:世界上最高的山⑵元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}例题:①设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。

(答:8)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有__个(答:7) ⑶元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} ⑴用英文字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} ⑵集合的表示方法:列举法与描述法。

1)列举法:{a,b,c ……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x ∈R| x-3>2} ,{x| x-3>2}例题:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,例题:设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N = ___(答:[4,)+∞); ⑶语言描述法:例:{不是直角三角形的三角形} ⑷Venn 图:⑸常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 复数 C 4、集合的分类:⑴有限集 含有有限个元素的集合 ⑵无限集 含有无限个元素的集合⑶空集 不含任何元素的集合 例:{x|x 2=-5}5、集合间的基本关系⑴“包含”关系—子集:数学表达式:若对任意B x A x ∈⇒∈,则B A ⊆ 注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

高中数学集合难题

高中数学集合难题

高中数学集合难题集合在高中数学中是一个重要的概念,它是数学中的一个基础部分,也是解决问题的关键。

本文将介绍一些高中数学中的集合难题,帮助学生更好地理解和应用集合概念。

问题1:设集合A={1,2,3,4,5,6,7,8,9},集合B={5,6,7,8,9,10,11,12,13},求A∪B和A∩B。

解析:A∪B表示集合A和集合B的并集,即包含了A和B中所有的元素,不重复计算。

而A∩B表示集合A和集合B的交集,即A和B中共有的元素。

对于本题,集合A中的元素为{1,2,3,4,5,6,7,8,9},集合B中的元素为{5,6,7,8,9,10,11,12,13}。

所以A∪B的结果为{1,2,3,4,5,6,7,8,9,10,11,12,13},A∩B的结果为{5,6,7,8,9}。

问题2:设集合A={x | -3 ≤ x ≤ 3, x∈Z},集合B={x | -1 ≤ x ≤ 4, x∈Z},求A∪B和A∩B。

解析:题目中的集合A和集合B都是由条件表达式定义的集合。

集合A表示满足-3 ≤ x ≤ 3的整数集合,集合B表示满足-1 ≤x ≤ 4的整数集合。

要求A∪B,即找出满足条件-3 ≤ x ≤ 3或-1 ≤ x ≤ 4的整数集合。

可以将两个条件合并为-3 ≤ x ≤ 4,所以A∪B的结果为{-3,-2,-1,0,1,2,3,4}。

要求A∩B,即找出同时满足条件-3 ≤ x ≤ 3和-1 ≤ x ≤ 4的整数集合。

可以将两个条件合并为-1 ≤ x ≤ 3,所以A∩B的结果为{-1,0,1,2,3}。

问题3:集合A={a, b, c, d, e, f, g, h, i, j},集合B={c, d, e, f, g},集合C={f, g, h, i, j},求(A∩B)∪C。

解析:首先求A∩B,即集合A和集合B的交集。

集合A中的元素为{a, b, c, d, e, f, g, h, i, j},集合B中的元素为{c, d, e, f, g}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合经典例题讲解
集合元素的“三性”及其应用
集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错.
例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q
的值.
例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和.
例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A B={3,7},求a 值.
分析:
集合易错题分析
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.你会用补集的思想解决有关问题吗?
3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗?
1、忽略φ的存在:
例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ⊆B ,求实数m 的取值范围.
2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合
()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为…………………………………………………………………………()
(A )1(B )0(C )1或0(D )1或2
3、搞不清楚是否能取得边界值:
例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ⊆A ,求m 的范围.
例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D.
{}2≤y y 集合与方程
例1、已知{}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范围。

例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A ,求
实数a 的取值范围。

例3、已知集合()(){}
30)1()1(,,123,2=-+-=⎭⎬⎫⎩⎨⎧+=--=y a x a y x B a x y y x A ,若φ=B A ,求实数a 的值。

集合学习中的错误种种
数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生.
一、混淆集合中元素的形成
例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =
忽视空集的特殊性
例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ⊆,则m 的值为
没有弄清全集的含义
例 设全集{}{}22323212S a a A a =+-=-,,,,,{}5S C A =,求a 的值
没有弄清事物的本质
例 若
{}|2A x x n n ==∈Z ,,{}
|22B x x n n ==-∈Z ,,试问A B ,是否相等. 等价转化思想 例已知M={(x ,y)|y=x +a},N={(x ,y)|x 2+y 2=2},求使得M N =φ成立的实数a 的取值范围。

分类讨论思想
解答集合问题时常常遇到这样的情况:解题过程中,解到某一步时,不能再以统一的方法、统一的形式继续进行,因为这时被研究的数学对象已包含了多种可能的情形,必须选定一个标准,根据这个标准划分成几个能用不同形式去解决的小问题,将这些小问题一一加以解决,从而使问题得到解决,这就是分类讨论的思想方法.
例设集合A={x|x 2+4x=0,x ∈R},B={x|x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R},若A B ⊆,求实
数a 的取值范围。

开放思想
开放型问题是相对于中学课本中有明确条件和结论的封闭型问题而言的.这类问题的知识覆盖面大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度.集合中的开放型问题问题大多是结论不定性开放型问题.

设集合A={(x ,y)|y 2-x -1=0},集合B={(x ,y)|4x 2+2x -2y +5=0},集合C={(x ,y)|y=kx +b},是否存在k ,b ∈N ,使得()A B C φ=?若存在,请求出k ,b 的值;若不存在,请说明理由. 历年高考题精选:
例1(2005年天津理工高考)设集合A={x||4x -1|≥9,x ∈R},B={x|3+x x
≥0,x ∈R}则A ∩B= 例2(2005年重庆理工高考)集合A={x ∈R|x 2
-x -6<0},B={x ∈R||x -2|<2},则A ∩
B=___________。

例3(2005年湖南理工高考)集合A={x|011<+-x x },B={x||x -b|<a},若“a=1”是“A ∩B=φ”的充
分条件,则b 的取值范围可以是()
例4(2000年春季高考)设全集U={a ,b ,c ,d ,e},集合A={a ,c ,d},B={b ,d ,e},那么C U A ∩C U B=()。

例5(1994年全国高考)设全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则C U A ∪C U B=()
例6(2005年天津文史高考)集合A={x|0≤x<3且x ∈N}的真子集个数为()
例7(1993年全国高考)集合A={x|x=2πk +4π,k ∈Z},B={x|x=4πk +2π
k ∈Z}则有()
A .A=B
B .A ⊃B
C .A ⊂B
D .A ∩B=φ
例8(1996年全国高考),已知全集U=N ,集合A={x|x=2n ,n ∈N},集合B={x|x=4n ,n ∈N},则()
A .U=A ∪B
B .U=
C U A ∪BC .A ∪C U B
D .C U A ∪C U B
交、并集思想在实际中的应用
新教材高中数学(必修1)在课程标准中提到:①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;②能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

交、并集是集合的运算。

准确把握交、并集思想;恰当运用交、并集的运算方法是培养我们从日常生活中的问题抽取到用数学符号表示的抽象、归纳的思维能力,也是培养我们从感性到理性的认识能力。

本文就交、并集思想在实际中的应用作些探讨,供同行参考。

准确理解交、并集的定义从而直接解题 例.设{}042=+=x x x A ,函数{}
01)1(222=-+++=a x a x x B ,求使(1)B B A = 的实数a 的取值范围。

(2)使B B A = 的实数a 的值. 利用交、并集的思想解决实际生活中的问题
例.高一(1)班学生期终考试成绩表明:(1)36人数学成绩不低于80分;(2)20人物理成绩不低于80分;(3)15人的人数学、物理成绩不低于80分.问:有多少人这两科成绩至少有一科不低于80分?
交、并集性质的拓宽应用
例.某班共有学生50名,其中参加数学课外小组的学生有22名,参加物理课外小组的学生有18名,他们中同时参加数学、物理课外小组的学生有13人.问至少参加数学与物理两个课外小组中一个的学生有多少名?数学和物理两个课外小组都不参加的学生有多少名?
复杂问题转化到交、并集的领域,实现思维的升华
例6.设U=R ,集合{}R x a ax x x A ∈=+-+=,03442,{}R x a x a x x B ∈=+--=,0)1(22,
{}
R x a ax x x C ∈=-+=,0222,若A ,B ,C 中至少一个不是空集,求实数a 的取值范围。

在集合运算中,大家都知道这样一个性质:U A C A U =)( ,可是你知道它到底有何作用呢?本文
将通过几个例题与大家谈谈其作用。

例1已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y2-6y+8≤0},若A ∩B ≠φ,求实数a 的取值范围。

例2、若下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,试求实数a 的取值范围。

例3、若x 、y 、z 均为实数,且
62,32,22222πππ+-=+-=+-=x z c z y b y x a ,求证:a 、b 、c 中至少有一个大于0.。

相关文档
最新文档