人教版九年级数学下册竞赛专题17 直角三角形中的比例线段.doc

合集下载

新人教版九年级下册数学课件:平行线分线段成比例

新人教版九年级下册数学课件:平行线分线段成比例
27.2 27.2.1 第1课时
一、相似三角形
相似三角形 相似三角形的判定
平行线分线段成比例
∽ △A′B′C′. 1.记法:△ABC与△A′B′C′相似,记作△ABC 2.判定:在△ABC 与△A′B′C′中,如果∠A= ∠A′ ,∠B= ∠B′ ,∠C= ∠C′ ,且
AB AB
=
BC BC
【导学探究】 1.由DE∥BC可得,△ADE∽
2.由△ADE∽△ABC 可得
△ABC
DE
,△ADG∽
△ABH .
AD = AB
AD = AB BCຫໍສະໝຸດ .由△ADG∽△ABH 可得
AG
AH

.
解:因为 DE∥BC, 所以△ADE∽△ABC,△ADG∽△ABH, 所以 所以
AD DE AD AG = , = , AB BC AB AH DE AG = , BC AH
(A) (C)
AD 1 = AB 2 AD 1 = EC 2
)B
(B) (D)
AE 1 = EC 2 DE 1 = BC 2
2.(2017 临沂)已知 AB∥CD,AD 与 BC 相交于点 O.若
BO 2 = ,AD=10,则 AO= OC 3
4
.
3.(2017长春)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和D,E,F.若 6. AB∶BC=1∶2,DE=3,则EF的长为
OE 2.由 l1∥l2 得 = OD
解:(2)因为 l1∥l2,所以
OB OA
OE OB = , OD OA
.
因为 OD=30,OE=12,OB=10, 所以 OA=
OB OD 10 30 = =25, OE 12

初中数学竞赛专题:三角形

初中数学竞赛专题:三角形

初中数学竞赛专题:三角形§9. 1全等三角形1. 1. 1★已知等腰直角三角形A8C,8C是斜边.々的角平分线交AC于。

,过C作CE与a)垂直且交8。

延长线于邑求证:BD = 2CE.解析如图,延长CE、B4,设交于b・则NF3E = NAb,A8 = AC,得△AB£>gA4b,CF = 8O.乂BE 1.CF, BE 平分/FBC,故BE 平分CF, E为CF 中点、,所以2CE = FC = BD .9. 1. 2★在△ABC中,已知乙4 = 60。

,£、F、G分别为/W、AC、8C的中点,P、Q为AABC形外两点,使总_14从尸£ = ¥,°尸_14。

,0尸=卓,若6尸=1,求尸0的长.解析如图,连结EG、FG ,则EG//AC , FG//AB,故/PEG = 150。

= NQFG . 又QF = -AC = EG , PE 4AB = FG , 故APEG 9AGFQ , 所以2 2PG = GQ , AEGP + ZFGQ = ZFQG + ZFGQ = 30°, 乂ZEGF = 60°,所以NPG0 = 9O。

,于是PQ = 0PG = y/2 .10.1. 3★在梯形A8C0的底边AD上有一点心若八钻石、ABCEx △(7£)七的周长相等,求竺L AD 解析作平行四边形EC8A,则△AB石口\。

£»,若H与A不重合,则H在£4 (或延长线)上,但由三角形不等式易知,A,在E4上时,AABE的周长〉/XAZE的周长;A,在E4延长线上时,AABE的周长<AA f BE周长,均与题设矛盾,故A与H重合,A£〃8C ,同理ED//BC ,£ = =.= = AD 2AA f E11.1.4★★△ABC 内,44。

= 60。

,/4(78 = 40。

初中数学竞赛 知识点和真题 第17讲 勾股定理和勾股数组

初中数学竞赛 知识点和真题 第17讲 勾股定理和勾股数组

B 第17讲勾股定理几何学有两大珍宝,其一是毕达哥拉斯定理,另一个是分一线段为中外比。

前者我们可比之为黄金,后者,我们可称之为贵重的宝石。

——开普勒知识方法扫描勾股定理:直角三角形两直角边的平方和等于斜边的平方。

勾股定理的逆定理:即如果一个三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形。

勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用。

它沟通了形与数,将几何论证转化为代数计算是一种重要的数学方法。

勾股定理的逆定理常用来证明两条直线互相垂直。

经典例题解析例1.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.证明由勾股定理得AD2=AC2+CD2,BE2=BC2+CE2,所以AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2例2.(1988年上海市初三数学竞赛题)如图,在凸四边形ABCD中,已知AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠DAB的度数是_____ .解连结AC,设AB=2k,则BC= 2k,CD=3k,DA=k.在Rt△ABC 中,2222)2()2(kkBCABAC+=+=,22k=.45,=∠=∠∴=BCABACBCAB在△ACD中.222222)3()22(CDkkkADAC==+=+,.90︒=∠∴CAD︒︒=+=∠+∠=∠∴1354590CABDACDAB例3.(2001我爱数学初中生夏令营试题)点D、E分别为△ABC的边AC 和BC上,∠C为直角,DE∥AB,且3DE=2AB,AE=13,BD=9,那么,ABFE 的长等于________。

解 由DE ∥AB ,得 32===CA CD CB CE AB DE 记32=CB CE =k ,32=CA CD =m ,则有 CE =2k ,CB =3k ,CD =2m ,CA =3m 。

初中数学竞赛辅导2021届人教版初中数学第17章《几何不等式与极值

初中数学竞赛辅导2021届人教版初中数学第17章《几何不等式与极值

初中数学竞赛辅导2021届人教版初中数学第17章《几何不等式与极值2021年初中数学竞赛辅导专题讲义第17章几何不等式与极值问题17.1.1★一个凸行边形的内角中,恰好有4个钝角,求n的最大值.解析考虑这个凸行边缘的n个外角,n?四角≥ 90?, 为什么?N4.90?? 360? (严格)小于是由于4个钝角的外角和大于0?),因此n?8,n的最大值是7.易构造这样的例子。

如果恰好有k个钝角,则n的最大值是k?3.17.1.2 ★ 在里面△ ABC,AB?AC,P是BC侧的高ad点。

验证:ab?交流电?PB个人计算机apcbd分析易知ab?ac?pb?pc,又是AB2?ac2?bd2?cd2?pb2?pc2故有ab?ac?pb?pc.评论的读者可能希望考虑AD是角平分线和中线的情况。

17.1.3已知四边形abcd,ac、bd交于o,△ado和△bco的面积分别为3、12,求四边形abcd面积的最小值.adobc解析易懂s△abobos△bco??,故s△abo?s△cdo?s△ado?s△bco?36.s△adodos△dco从而s△abo?s△cdo≥2s△abo?s△cdo?12,什么时候△ 阿布?当s时,等号成立△ CDO(此时,四边形ABCD为梯形),因此四边形ABCD面积达到最小值2717.1.4★已知:直角三角形abc中,斜边bc上的高h?6.(1)求证:bc?h?ab?ac;(2)求?bc?h?-?ab?ac?.解析22? 卑诗省?H2.ab?交流电?2?bc2?h2?2bc?h?ab2?ac2?2ab?ac,一2021年初中数学竞赛辅导专题讲义从情况来看,知道2BC吗?H4s△abc?2ab?AC和AB2?ac2?BC2,那么?卑诗省?Hab?交流电??h2?36注意:这同时解决了(1)和(2).17.1.5 ★ 设置矩形ABCD,BC=10,CD?7.移动点F和E分别位于BC和CD上,BF?预计起飞时间?4.找出△ AFE区域ade22bfc分析设置BF?十、de?y??4?x?,则11秒△abf?s△艾德?s△ecf??7x?10岁??10? 十、7.Y70? xy??22 by XY≤ 12? 十、Y4.因此△ AEF≥ 70 ℃ 70? 4.332当bf?ed?2时达到最小值.17.1.6 ★ 将P设置为固定角度?在a中的某一点,通过P的驱动直线与M和n中的两侧相交△ amn最小,P是Mn的中点mpαaβn解析如图所示,连接AP并设置?地图打盹从…起s△amp?s△anp?s△man,得是美联社?罪一美联社?罪是安辛又左式≥2ap?am?an≥sin??sin?,故s△amn当达到最小值时,s△ 放大器?s△ 所以p是Mn的中点n、ca、ab上,bm?cn?ap?1,17.1.7★正三角形abc的边长为1,p分别在bc、m、二12ap2sin?sin?。

数学人教版九年级下册平行线分线段成比例

数学人教版九年级下册平行线分线段成比例

第课时1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握利用平行线判定三角形相似的方法.1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高学生分析问题、解决问题的能力.1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作能力及直觉思维.2.探究利用平行线判定三角形相似的证明,培养学生合情推理及演绎推理能力,提高逻辑思维能力.3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.【重点】1.掌握平行线分线段成比例基本事实.2.能利用平行线判定三角形相似.【难点】探索利用平行线判定三角形相似的方法.【教师准备】多媒体课件.【学生准备】准备距离相等的一组平行线(或语文横格本).导入一:【课件展示】你知道金字塔有多高吗?传说法老命令祭师们测量金字塔的高度,祭师们为此伤透了脑筋,为了帮助祭师们解决困难,古希腊一位伟大的数学家泰勒斯利用巧妙的办法测量金字塔的高度(在金字塔旁边竖立一根木桩,当木桩影子的长度和木桩的长度相等时,只要测量金字塔的影子的长度,便可得出金字塔的高度),展示了他非凡的数学及科学才能.如图所示.导入二:【复习提问】(1)什么是相似多边形?相似多边形有什么性质?(2)当相似比为1时,两个相似多边形有什么关系?【师生活动】学生独立回答,教师点评.[设计意图]通过数学家测量金字塔的高度导入新课,激发学生学习的兴趣,从而向学生进行要刻苦学习的思想教育,同时让学生体会数学在实际生活中的应用;通过复习相似多边形的概念及性质,让学生用类比法得到相似三角形的概念及性质,为本节课的学习做好铺垫.一、认识相似三角形思考并回答:(1)类比相似多边形的概念,你能说出相似三角形的概念吗?(2)如果相似比是1,那么这两个三角形是什么关系?(3)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是多少?(4)类比相似多边形的性质,说出相似三角形的性质,并用几何语言表示.【师生活动】学生思考回答,教师对每个问题点评后展示课件,规范数学语言.(课件展示)(1)定义:三个角分别相等,三条边成比例,我们就说这两个三角形相似.对应边的比就叫做两个三角形的相似比.(2)表示:△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.注意:对应顶点写在对应的位置上.(3)相似比为1时,这两个三角形全等,所以全等三角形是相似三角形的特例.(4)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是.(5)性质:相似三角形的对应角相等,对应边成比例.【几何语言】如图所示,△A1B1C1∽△ABC,∴∠A1=∠A,∠B1=∠B,∠C1=∠C;==.[设计意图]通过复习相似多边形的定义和性质,迁移到相似三角形的定义和性质,让学生体会类比思想在数学中的应用,帮助学生建立新旧知识之间的联系,体会事物之间由一般到特殊,由特殊到一般之间的联系.二、平行线分线段成比例基本事实思路一(1)在课前准备的距离相等的一组平行线l1,l2,l3中,任意作直线AC和A1C1(如图(1)所示),则=,=,即.(2)在课前准备的距离相等的一组平行线l1,l2,l3,l4,l5中,任意作直线AE和A1E1(如图(2)所示),则=,=,即;=,=,即.(3)在图(2)中,你还能得到其他的比例式吗?(4)对于任意一组平行线,截得的对应线段成比例吗?(5)尝试用语言概括你得出的结论.【师生活动】学生观察、思考、计算后,小组合作交流,得出结论,教师在巡视过程中帮助有困难的学生,对学生的展示进行点评.【课件展示】两条直线被一组平行线所截,所得的对应线段成比例.如图所示,当直线l1∥l2∥l3时,则=,=,=,=等.思路二【动手操作】任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5,分别度量l3,l4,l5在l1上截得的线段AB,BC,AC和在l2上截得的线段DE,EF,DF的长度.(1)根据度量的长度,你得到哪些成比例线段?尝试写出来.(2)这些成比例线段在图中的位置有什么关系?(3)对于任意一组平行线,截得的对应线段成比例吗?(4)你能用语言概括你得到的结论吗?【师生活动】学生动手独自测量思考,写出比例式,小组合作交流答案,学生展示后教师点评.【课件展示】两条直线被一组平行线所截,所得的对应线段成比例.如图所示,当直线l1∥l2∥l3时,则=,=,=,=等.[设计意图]通过动手操作,测量或计算得出平行线分线段成比例这一基本事实,体会从特殊到一般的探索过程,激发学生的求知欲,培养学生分析问题的能力.三、平行线分线段成比例转化到三角形中活动1如图所示,l1∥l2∥l3,当两条被截直线的交点在直线l1或l2上时,你能得到哪些比例式?(教师动画演示,将图(1)中的直线平移到图(2)的位置,让学生直观感受平行线分线段成比例基本事实仍然成立)【师生活动】学生观察教师演示动画,小组交流结果,教师点评结论.活动2(1)如图所示,△ABC中,DE∥BC,且DE分别交AB,AC(或AB,AC的反向延长线)于点D,E,那么比例式=成立吗?(2)你能用语言叙述图中的结论吗?(3)用几何语言如何描述这一结论?【师生活动】学生小组合作交流,共同探究结论,教师及时点拨,师生共同归纳结论.【课件展示】平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.【几何语言】如图所示,∵DE∥BC,∴=.[设计意图]通过动画演示将平行线分线段成比例基本事实转化到三角形中,学生易直观形象地得出结论,同时通过学生讨论交流,培养学生的合作意识及语言表达能力.四、利用平行线证明三角形相似问题如图所示,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC相似吗?如何证明?教师引导回答问题:(1)要证明三角形相似,需要哪些条件?(∠A=∠A,∠ADE=∠B,∠AED=∠C,==)(2)你能证明这些角对应相等吗?(由两直线平行,同位角相等可得)(3)如何证明=?(由平行线分线段成比例事实易得)(4)DE不在BC边上,用什么方法将DE转化到BC边上呢?(过E作EF∥AB,交BC于点F)(5)你能证明=吗?(由平行线分线段成比例事实易得)(6)你能写出△ADE∽△ABC的证明过程吗?(7)尝试用语言叙述上述结论,并用几何语言表示你的结论.【师生活动】学生在教师问题的引导下,思考后小组交流,小组代表板书过程,教师在巡视过程中帮助有困难的学生,对学生板书点评,规范书写过程.证明:在△ADE和△ABC中,∠A=∠A.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.过E作EF∥AB,交BC于点F,∵DE∥BC,EF∥AB,∴=,=.∵四边形DBFE是平行四边形,∴DE=BF.∴=,∴==.∴△ADE∽△ABC.【课件展示】平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.【几何语言】如图所示,在△ABC中,∵DE∥BC,∴△ADE∽△ABC.【追问】当DE与BA和CA的延长线相交时,上述结论还成立吗?(教师总结归纳利用平行线证明三角形相似的基本图形:“A”型和“X”型)[设计意图]通过教师设计的小问题,层层深入,达到分析问题的目的,学生易于理解和掌握,提高学生分析问题的能力,同时培养学生归纳总结的能力,加深对平行线证明三角形相似的判定方法的理解.[知识拓展](1)相似三角形与全等三角形的联系与区别:全等三角形的大小相等,形状相同,而相似三角形的形状相同,大小不一定相等,所以全等三角形是相似三角形的特例,相似比是1∶1的两个相似三角形是全等三角形.(2)相似三角形的传递性:如果△ABC∽△A'B'C',△A'B'C'∽△A″B″C″,那么△ABC∽△A″B″C″.(3)在应用平行线分线段成比例这个基本事实时,找准被平行线截得的对应线段,被截线段不一定平行,当“上比下”的值为1时,说明这些平行线间的距离相等.(4)符合平行线证明三角形相似的图形有两个,我们称为“A”型和“X”型,如图所示,若DE∥BC,则△ADE∽△ABC.1.相似三角形的概念、表示:三个角分别相等,三条边成比例,△ABC∽△A'B'C'.2.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.3.平行线分线段成比例在三角形中的应用:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.4.平行线证明三角形相似:“A”型和“X”型.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.1.(2015·乐山中考)如图所示,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F,已知=,则的值为()A. B. C. D.解析:由平行线分线段成比例可得=,∵=,∴=.故选D.2.如图所示,DE∥BC,=,则△ADE和△ABC的相似比为()A.1∶2B.1∶3C.2∶1D.2∶3解析:∵DE∥BC,∴△ADE∽△ABC,∴△ADE和△ABC的相似比为,∵=,∴=.故填B.3.若△ABC与△DEF的相似比是5∶3,则△DEF与△ABC的相似比是.解析:根据相似比的概念,可得△ABC与△DEF的相似比与△DEF与△ABC的相似比互为倒数,所以△DEF与△ABC的相似比是3∶5.故填3∶5.4.如图所示,在△ABC中,DE∥BC,若=,DE=2,则BC的长为.解析:∵DE∥BC,∴△ADE∽△ABC,∴==,又DE=2,∴=,∴BC=6.故填6.5.如图所示,若DE∥BC,DE=3 cm,BC=5 cm,求的值.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE=3 cm,BC=5 cm,∴=,∴=.第1课时1.相似三角形的概念、表示2.平行线分线段成比例的基本事实3.平行线分线段成比例在三角形中的应用4.平行线证明三角形相似:“A”型和“X”型一、教材作业【必做题】教材第42页习题27.2第1,5题.【选做题】教材第44页习题27.2第14题.二、课后作业【基础巩固】1.若△ABC∽△A'B'C',∠A=40°,∠C=110°,则∠B'等于()A.30°B.50°C.40°D.70°2.若△ABC∽△A'B'C',且相似比为k,则k的值等于()A.∠A∶∠A'B.AB∶A'C'C.AB∶A'B'D.BC∶A'B'3.如图所示,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若=,BC=9,则DE等于()A.2B.3C.4D.54.如图所示,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且=,那么的值为()A. B. C. D.5.(2015·海南中考)如图所示,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对6.已知△ABC∽△DEF,∠A=80°,∠B=20°,那么△DEF的各角的度数分别是.7.(2015·金华中考)如图所示,直线l1,l2,…,l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E,C,F.若BC=2,则EF的长是.8.如图所示,AB是斜靠在墙壁上的长梯,梯脚B距墙80 cm,梯上点D距墙70 cm,BD长55 cm.求梯子的长.9.如图所示,已知AC⊥AB,BD⊥AB,AO=78 cm,BO=42 cm,CD=159 cm,求CO和DO.【能力提升】10.如图所示的是A,B,C,D四点在坐标平面上的位置,其中O为原点,AB∥CD.根据图中各点坐标,可知D点坐标为()A. B.C.(0,5)D.(0,6)11.(2015·株洲中考)如图所示,已知AB,CD,EF都与BD垂直,垂足分别是B,D,F,且AB=1,CD=3,那么EF的长是()A. B. C. D.12.如图所示,已知△ABC中,DE∥BC,EF∥CD.求证=.本节课是三角形的判定的第1课时,通过复习相似多边形的概念,学生用类比法易得到相似三角形的概念及表示方法,降低了学习概念的难度.以动手操作为主探究平行线分线段成比例这一事实,学生经历动手操作、观察、计算、比较、讨论、归纳等教学活动,人人参与课堂,积极展示,学生成为课堂的主人,在积极思维中经历知识的形成过程,然后通过动画展示,学生直观形象地观察到这一基本事实在三角形中的应用,体会数学中的转化思想,为平行线证明相似做好铺垫.最后在教师的引导下完成定理的证明,培养学生逻辑思维能力和严谨的学习精神.本节课在探究平行线分线段成比例基本事实后,将这一基本事实转化到三角形中应用,得到三角形中的两个推论,课容量较大,在前面概念及基本事实的探究活动中耽误时间长,后面的探究活动教师设计的小问题较多,造成完不成课时任务,后面的处理过于仓促,有头重脚轻的感觉,学生对本节课的重点把握不准,在以后的教学中要注重时间的安排,突出课时重点.本节课重点是在探究平行线分线段成比例这一基本事实的基础上,将这一结论转化到三角形中,然后得到平行线判定三角形相似的基本方法,在教学设计中要突出重点,通过动手操作、共同探究等数学活动,共同归纳出这一基本事实,通过直观形象的动画演示,自然地转化到三角形中,应用基本事实证明线段成比例,再通过师生共同探究,完成平行线证明三角形相似的定理的证明,注重学生课堂学习的参与度,给学生较大活动空间,达到提高学生学习能力的目的.。

初中数学竞赛 知识点和真题 第17讲 圆内的比例线段

初中数学竞赛 知识点和真题 第17讲 圆内的比例线段

第17讲 圆内的比例线段硬说数学科学无美可言的人是错误的。

美的主要形式是秩序、匀称与明确。

——亚里斯多德知识方法扫描与圆有关的比例线段主要来自于相似形,通常称为圆幂定理,它是相交弦定理,切割线定理,及割线定理的统称。

这些定理的基本表达式是两条线段的乘积等于另外两条线段的乘积,它揭示了一些与圆有关的线段间的比例关系。

相交弦定理:圆内两弦AB ,CD 交于P 点,则PA•PB=PC•PD ;切割线定理:自圆外一点P 引圆的切线PA ,和割线PBC (B 、C 在圆上),则PA 2=PB•PC ;割线定理:自圆外一点P 引圆的两条割线PAB 和PCD (A 、B 、C 、D 在圆上),则PA•PB=PC•PD 。

圆幂定理是证明线段间的比例或乘积关系,证明线段或角的相等,作两条线段的比例中项,进行有关计算的重要依据。

相交弦定理的逆定理是证明四点共圆的重要依据,切割线定理的逆定理是判断切线的重要依据。

经典例题解析例1(2000湖北省初中数学竞赛试题)已知等边△ABC 内接于圆,在AB 上取异于A 、B 点的M ,设相线AC 与BM 相交于点K ,直线CB 与AM 相交于点N 。

证明:线段AK 和BN 的积与M 点的选择无关。

证明 如图,∵∠AMK =∠C ,∠C =∠CAB , ∴∠AMK =∠CAB 。

∵∠CAB =∠K +∠ABK ,又∠AMK =∠MAB +∠ABK ,∴∠K =∠MAB =∠BAN.同理,∠ABK = ∠N,∴△ABK ∽△BNA,∴ABAKBN AB,故AK·BN =AB 2(为常量),即AK 与BN 的乘积与M 点的选择无关。

例2(1981年福建省初中数学竞赛试题)如图,定长弦PQ (长度小于直径)的两端点在⊙O 的半圆弧AB 上滑动。

从P 、Q 分别向AB 作垂线,其垂足P′、Q′,M 为PQ 中点,试证:不论PQ 在什么位置上,△POQ 与△P′MQ′都相似.证明 如图,连接OM 、OP 、OQ ,则OM ⊥PQ ,于是O 、M 、P 、P′四点共圆,∴∠MPO =∠MP′O ,同理,∠MQO =∠MQ′O ,∴△POQ ∽△P′MQ′.不论PQ 滑到什么位置,因PQ 为定长,OP 、OQ 为已知圆的半径,因而所得的△POQ 均为全等的等腰三角形,它的两底角均为定值,因此△P′MQ′的各角大小也不会变,即与△POQ 相应的角相等,所以不论PQ 在什么位置,△POQ 与△P′MQ′都相似.例3(2002年全国初中数学竞赛试题)如图,圆内接六边形ABCDEF 满足AB =CD =EF ,且对角线AD 、BE 、CF 相交于一点Q ,设AD 与CE 的交点为P 。

九上册:直角三角形中的比例线段

4.直角三角形中的比例线段一、基础知识回顾1.相似三角形的判定:(1) 于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

(2)有 角对应相等的两个三角形相似。

(3)两边对应 ,且 相等的两个三角形相似。

(4) 对应成比例的两个三角形相似。

(5)一条 对应成比例的两个直角三角形相似。

2.相似三角形的性质:(1) 相似三角形对应角 ,对应边 。

(2)相似三角形对应高之比、对应中线之比、对应角平分线之比都等于 。

(3)相似三角形的周长之比等于 ;相似三角形的面积之比等于 。

二、知识延伸拓展已知:如图1所示,在Rt △ABC 中,CD 是斜边上的高线.求证: CD 2= AD •BD (1) ;AC 2 = AD •AB (2) ; BC 2 = BD •AB (3) .分析:易证△CBD ∽△ACD ∽△ABC ,根据相似三角形对应边成比例,可得上述三个关系式。

证明:∵∠CDB=∠ACB=Rt ∠ ∠B=∠B ∴△CBD ∽△ABC同理可证 △ACD ∽△ABC ∴△CBD ∽△ACD ∽△ABC由△ACD ∽△CBD 得DD A B C CD D =∴CD 2= AD •BD (1)同理可得AC 2 = AD •AB (2) ; BC 2= BD •AB (3)利用上述三个关系式,可以较轻松地解决很多问题。

例如,利用这三个关系式很容易证明勾股定理,只要把上面(2),(3)两个关系式的两边分别相加,得AC 2 + BC 2 = AD •AB + BD •AB = AB (AD+BD )= AB2 注意:运用这三个关系式时,要注意它们成立的条件。

三、精典例题点拨例1 在 图1中,若AD = 2cm ,DB = 6 cm ,求CD ,AC ,BC 的长。

解:∵ CD 2= AD •BD=2×6=12∴ );(3212cm CD ==∵ AC 2= AD •AB = 2 ×(2+6)=16,图1∴ )(416cm AC ==;∵ BC 2= BD •AB = 6×(2 + 6)=48, ∴ )(3448cm BC ==。

初中数学人教版九年级下册 27.2.2相似三角形的性质 课件(共30张PPT)

27.2.2相似三角形的性质
第二十七章 相似
素养目标
1.掌握相似三角形中相应线段的比等于相似比;
2.掌握相似三角形的周长比等于相似比,面积比等 于相似比的平方; 3.感受几何命题的合理性,培养学生发现问题、解 决问题的能力.
复习巩固 相似三角形的判定方法有哪些?
①定义:对应边 成比例 ,对应角 相等 的两个三角形相似; ② 平行于三角形一边的直线与另外两边相交所构成的三角形 与原三角形相似; ③三边 成比例 的两个三角形相似; ④两边 成比例 且夹角 相等 的两个三角形相似; ⑤两角分别 相等 的两个三角形相似; ⑥一组直角边和斜边 成比例 的两个直角三角形相似.
形的面积比是( D )
A.1 : 3
B.1: 4
C.1 : 6
D.1: 9
解析:两个相似三角形的相似比是1: 3, 则这两个相似三角形的面积比是1: 9 ,故选:D.
练习 4 若△ABC ∽△DEF 且面积比为 49 : 25 ,则△ABC 与
△DEF 的周长之比为( C )
A. 49 : 25
B. 7 : 25
C. 7 : 5
D. 5 : 7
解析:∵△ABC∽△DEF 且面积比为 49 : 25 , ∴△ABC 和△DEF 的相似比为 7 : 5 , ∴△ABC 和△DEF 的周长比为 7 : 5 . 故选:C.
练习 5 已知两个相似三角形的周长比为 2 : 3 ,若较大三角形的面
积等于18 cm2 ,则较小三角形的面积等于(A )
BC · AD k· k k2 .
BD
C
S△A'B'C' 1 B 'C'· A' D ' B 'C ' A' D '

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。

人教版九年级下册数学课件《解直角三角形及其应用》


2021/3/20
20
2.三角函数的应用
2021/3/20
21
解析:
解:延长CA、DB相交于点E, ∠CAB=∠D=90°, ∠ABD=120°,∠C=60°.
在Rt△ABE中,∠E=90°-∠C=30°,
2021/3/20
点拨:构造直角三角形进行解三角形
E
22
2.三角函数的应用
在进行测量时,从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
∴∠C=180°-∠CBA-∠CAB=30°,
∴∠C=∠CAB,∴BC=BA=20(海里),
∠CBD=90°-∠CBE=60°, D
2021/3/20
37
2
C
6B
2021/3/20
∠B , AC , BC ∠A , ∠B , AB AB, AC, BC
5
1.解直角三角形
总结:在直角三角形的六个元素中,除直角外,如果知道两个元素(其中至少有一个是边),就可
以求出其余三个元素.
定义:在直角三角形中,由已知元素求未知元素的过程,叫解直角三角形.
2021/3/20
答:河宽为68.30米.
E
2021/3/20
33
2.三角函数的应用
【练7-3】小丽眼睛距地面1.5米,小丽为了测旗杆AB的高度,站在C点,测出旗杆A的仰角为30°,小 丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.
2021/3/20
34
解析:
【练7-3】小丽眼睛距地面1.5米,小丽为了测旗杆AB的高度,站在C点,测出旗杆A的仰角为30°,小 丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】专题17直角三角形中的比例线段阅读与思考借助相似三角形法研究直角三角形,我们会得到许多在解题中应用极为广泛的结论. 如图,在Rt △ABC 中,∠A =900,AD ⊥BC 于D ,则1.图中角的关系:∠B =∠DAC ,∠C =∠DAB ; 2.同一三角形中三边平方关系:AB 2=AD 2+BD 2,AC 2=AD 2+CD 2;BC 2=AB 2+AC 2.3.三角形之间的关系: △ABD ∽△CAD ∽△CBA ,由此得出的线段之间的关系: AD 2=BD •DC ,AB 2=BD •BC ,AC 2=CD •BC .直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,由此得出的等积式在计算与证明中应用极为广泛,其特点是:①一线段是两个三角形的公共边; ②另两条线段在同一直线上.例题与求解【例1】如图,Rt △ABC 中,CD 为斜边AB 上的高,DE ⊥CB 于E .若BE =6,CE =4,则AD =________.(上海市竞赛试题)解题思想:图中有两个基本图形,恰当选取相应关系式求出AD .例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =900,CD ⊥AB ,下列结论:①CD •AB =AC •BC ; ②22AC ADBC BD=; ③222111AC BC CD+=; ④AC +BC >CD +AB . 其中正确的个数是 ( ) A .4个 B .3个C .2个D .1个(江苏省竞赛试题)CAB DECABAB C D解题思路:综合运用直角三角形性质逐一验证,从而作出判断.【例3】如图,在等腰Rt △ABC 中,AB =1,∠A =900,点E 为腰AC 的中点,点F 在底边BC 上,且EF ⊥BE ,求△CEF 的面积. (全国初中数学联赛试题)解题思想:欲求△EFC 的面积,由于EC =12,只需求出△EFC 中EC 边上的高,或求出EC 边上的高与EC 的关系.本例解法甚多,同学们的解题思路,自由探索与思考,寻求更多更好的解法.【例4】如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2),在直线OB 上找一点C ,使△ACO 为等腰三角形,求点C 的坐标.(江苏省竞赛试题)解题思想:注意分类讨论.能力训练A 级1.如图,在两个直角三角形中,∠ACB =∠ADC =900,AC 6AD =2,当AB =_______时,这两个直角三角形相似.ABEF BA Oxy CA2.如图,在Rt △ACB 中,CD ⊥AB 于点D ,∠A 的平分线AF 交CD 于E ,过E 引EG ∥AB 交BC 于G ,若CE 3,则BG 的长为____________. (上海市竞赛试题)3.如图,ABCD 为矩形,ABDE 为等腰梯形,BD =20,EA =10,则AB =_________________.(“五羊杯”竞赛试题)4.如图,梯子AB 斜靠在墙面上,AC ⊥BC ,AC =BC ,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .y x =B .y x >C .y x <D .不确定(江苏省竞赛试题)5.如图,矩形ABCD 中,AB 3,BC =3,AE ⊥BD 于E ,则EC 等于( )A 7B 5C 15D 21 6.在△ABC 中,AD 是高,且2AD BD CD =⋅,那么∠BAC 的度数是( )A .小于900B .等于900C .大于900D .不确定(全国初中数学联赛试题)7.如图,在△ABC 中,已知∠C =900,AD 是∠CAB 的角平分线,点E 在AB 上,DE ∥CA ,CD =12,BD =15,求AE ,BE 的长.(上海市中考试题)CDB(第1题图)(第2题图)(第3题图) AB(第4题图)ABCD(第5题图)EBDFEGABCDE8.如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 交AC 于F ,过F 作FG ∥AB 交AE 于G ,求证:AG 2=AF ·FC .(西安市中考试题)9.如图,在Rt △ABC 中,∠ACB =900,CD ⊥AB ,DE ⊥AC ,DF ⊥BC ,D ,E ,F 分别为垂足,求证:CD 3=AB ·AE ·BF .(四川省中考试题)10.如图,在Rt △ABC 中,∠ACB =900,AD 平分∠CAB 交BC 于点D ,过点C 作CE ⊥AD 于点E ,CE 的延长线交AB 于点F ,过点E 作EG ∥BC 交AB 于点G ,AE ·AD =16,AB =5.⑴ 求证:CE =EF ;⑵ 求EG 的长. (河南省中考试题)ABE (第9题图)D FCACDE (第7题图)(第8题图)AB C DEFG11.如图,在△ABC 中,已知∠ACB =90°,BC =k ·AC ,CD ⊥AB 于点D ,点P 为AB 边上一动点,PE ⊥AC 于E ,PF ⊥BC 于F .⑴当k =2时,则CEBF=_____________; ⑵当k =3时,连结EF ,DF ,求EFDF的值; ⑶当k =___________时,23EF DF (直接写出结果,不需证明).B 级1.如图,在Rt △ABC 中,∠A =900,AD ⊥BC ,P 为AD 的中点,BP 交AC 于E ,EF ⊥BC 于F ,AE =3,EC =12,则EF =___________.(黄冈市竞赛试题)2.如图,在Rt △ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于______厘米.ABCD F (第1题图)EABE(第10题图)D FCGAB CD(第2题图)ABE(第11题图)D FC P(全国初中数学联赛试题)3.如图,EFGH 是矩形ABCD 的内接矩形,且EF :FG =3:1,AB :BC =2:1,则AH :AE =______.(上海市竞赛试题)4.如图,△ABC 中,∠ACB =900,CD 和CE 分别是底边AB 上的高和∠C 的平分线,若△CED ∽△ABC ,则∠ECD 等于( )A .180B .200C .22.50D .300 (山东省竞赛试题)5.如图,在△ABC 中,D ,E 分别在AC ,BC 上,且AB ⊥AC ,AE ⊥BC ,BD =DC =EC =1,则AC =( )A .2B.3C .32D .33E .43(美国高中统一考试题)6.如图,在等腰Rt △ABC 中,F 为AC 边的中点,AD ⊥BF .求证:BD =2CD .(武汉市竞赛试题)7.如图,P ,Q 分别是正方形ABCD 的边AB ,BC 上的点,且BP =BQ ,过B 点作PC 的垂线,垂足为H .求证:DH ⊥HQ .(“祖冲之杯”邀请赛试题)A BC D (第3题图)FG EH DB AC(第4题图)ABE(第5题图)D F C8.△ABC 中,BC =a ,AC =b ,AB =c .若∠C =900,如图1,根据勾股定理,则a 2+b 2=c 2.若△ABC 不是直角三角形,如图2、图3,请你类比勾股定理,试猜想a 2+b 2与c 2的关系,并证明你的结论.9.已知∠AOB =900,在∠AOB 的平分线OM 上有一点C ,将一个三角形的直角顶点与点C 重合,它的两条直角边分别与OA ,OB (或它们的反向延长线)相交于点D ,E .当三角形绕点C 旋转到CD 与OA 垂直时,如图1,易证:OD +OE 2.当三角形绕点C 旋转到CD 与OA 不垂直,如图2,图3这两种情况下,上述结论是否还成立? 若成立,请给予证明;若不成立,线段OD ,OE ,OC 之间,又有怎样的数量关系?请写出你的猜想,不需证明.10.⑴如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .求ABCD(第7题图)QP H C图2BAA A BBCCc c c b b b a a a 图1图3A D OEB MC CM BEO D A EBA DO C 图1图2图3证:DP PE BQ QC=.⑵在△ABC中,∠BAC=900,正方形DEFG的四个顶点在△ABC的边上.连接AG,AF分别交DE 于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM⋅EN.(武汉市中考试题)D图1 EAPQA AB BCD DE EM M NNG FF图2 图3 C。

相关文档
最新文档